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Abstract

We describe ACR-SDN, a system to monitor, diagnose, and
quickly respond to attacks or failures that may occur in
software-defined networks (SDNs). An integral part of ACR-
SDN is its use of RAE+UPOM, an automated acting and
planning engine that uses hierarchical refinement. To advise
ACR-SDN on how to recover a target system from faults and
attacks, RAE+UPOM uses attack recovery procedures writ-
ten as hierarchical operational models. Our experimental re-
sults show that the use of refinement planning in ACR-SDN
is successful in recovering SDNs from attacks with respect
to five performance metrics: estimated time for recovery, ef-
ficiency, retry ratio, success ratio, and costEffectiveness.

Introduction
Software-defined networking is a relatively new network
management approach that enables dynamic, modular, pro-
grammatically efficient network configuration in order to
improve network performance and simplify monitoring.
Network management architectures generally have two lay-
ers: the data layer, where traffic flows and network pack-
ets are forwarded, and the control layer, which manages
packet routing. In traditional network architectures, these
two layers are highly coupled and the control is decentral-
ized, which can lead to complexity and lack of agility. SDN
architectures decouple the two layers and have a centralized
control layer, implemented using a set of controllers.

SDNs are susceptible to a wide variety of known and un-
known cyberattacks. With adversaries that can generate au-
tomated attacks at high pace and volume, as well as the pos-
sibility of system failures that can crop up at any time, it
can be difficult for human system managers to perform the
necessary recovery and defense tasks quickly enough.

In this paper, we introduce ACR-SDN, a system for recov-
ering from cyberattacks and anomalies to a SDN. ACR-
SDN is implemented as a management plane, which inter-
acts with SDN components in the control plane and data
plane. ACR-SDN has a Security Manager in charge of de-
tecting anomalies within the SDN. Once an anomaly has
been detected, ACR-SDN’s actions for recovery are guided
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by RAE+UPOM, an online planning and acting engine based
on hierarchical refinement (Patra et al. 2020b).

For each task that one might want RAE+UPOM to accom-
plish, a human expert may write various refinement methods,
each of which is an alternative procedure for accomplishing
the task. If the task is to recover from a particular kind of at-
tack on a SDN, then each refinement method might specify
a different way to try to recover. As cyberattacks become so-
phisticated, cyber responses have to be made sophisticated,
and refinement methods are a good way to capture com-
plex cybersecurity domain knowledge since they support all
of the usual programming constructs, such as if-else state-
ments, loops, and so on.

RAE+UPOM consists of two subsystems: RAE, an actor
that executes refinement methods; and UPOM, a planner that
predicts how well each refinement method is likely to work
in the current situation. Given a task to perform, RAE will
call UPOM to get advice on which refinement method to
use. During RAE’s execution of the recommended method,
at each point where the method specifies another task to
perform, RAE will again call UPOM to get advice on what
method to use for that task. UPOM generates its advice by
performing Monte Carlo rollouts, each rollout being a sim-
ulated execution of RAE in the current situation. The larger
the number of rollouts, the better UPOM’s advice will be.

Automated attack detection and diagnosis are not the fo-
cus of this paper. Rather, our focus is on recovery of the net-
work from abnormal or insecure states. We assume that cy-
berattacks and system faults manifest as changes to the state.
In our experimental evaluation, we generate these states di-
rectly, and then try to recover from them. In our architec-
ture, anomaly detection is handled by the Security Manager,
which sends tasks to RAE+UPOM, and additional diagnosis
can be done via probing actions inside refinement methods.

This paper is organized as follows. This section is fol-
lowed by related work. Then, we describe an example SDN
attack-and-recovery scenario. We give some background on
refinement acting and planning (RAE and UPOM). We de-
scribe ACR-SDN and how RAE+UPOM is integrated with it.
The penultimate section gives experimental results, and the
last section provides a concluding discussion.
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Related Work
In today’s world, cyberattacks are dynamic, fast-paced, and
high-volume, while cyber responses are initiated at human
speed. In current cyber defense systems (Zargar, Joshi, and
Tipper 2013; Zhang et al. 2011; Mendes, Aloi, and Pimenta
2019; Yamaguchi 2020), most system adaptation and recov-
ery processes are ad-hoc, manual, and slow, so keeping pace
with existing and emerging cybersecurity threats is a chal-
lenging task. It is important to construct resilient computer
systems that can autonomously protect and recover from cy-
berattacks and system failures.

Some effort has been invested to apply AI and ML tech-
niques to SDN management and cybersecurity, but the field
is still in its infancy. AI planning has been applied to manage
SDNs (Gironza-Ceron et al. 2017), self-healing of SDNs has
been studied (Ochoa-Aday, Cervelló-Pastor, and Fernández-
Fernández 2019; Thorat et al. 2015), and RL has been ap-
plied to SDN flow rule management (Mu et al. 2018). Apply-
ing deep learning to security mainly focuses on the detection
of intrusions and malware (KP, Alazab et al. 2020; Berman
et al. 2019). One disadvantage of using supervised learning
approaches is that they require a lot of training data, which
can be difficult to obtain for SDN attacks. Recently, RL has
been also applied for autonomous defense of SDNs (Han
et al. 2018). However, (Han et al. 2018) did not consider
typical cyberattacks to SDNs (see (Lee et al. 2020) for a
summary of known SDN attacks) and used only simple ac-
tions (e.g., “isolate and patch a node”; “reconnect a node and
its links”; “migrate the critical server and select the destina-
tion”).

Attack detection is a topic that has been addressed many
times. Various schemes exist to detect cyberattacks of dif-
ferent types (e.g., distributed denial of service (DDoS) at-
tacks in SDNs (Lawal and Nuray 2018)) and network traffic
anomalies (Bhuyan, Bhattacharyya, and Kalita 2014). How-
ever, little research has been done on autonomous cyber re-
sponses. In this paper, we do not deal with the detection of
cyberattacks against a SDN, but rather we assume that they
can be detected and focus on techniques for planning and
executing autonomous responses.

Other systems exist that aim to protect information sys-
tems from cyberattacks. For example, (Shrobe et al. 2007)
proposes a system that can be applied to existing software to
provide attack detection and recovery. While we have a sim-
ilar motivation in this paper, our work is more suitable for
a distributed system like SDN (rather than a self-contained
software application) and we take a different approach (re-
finement planning) to produce a target system with self-
securing properties.

We are not aware of any existing approaches that use re-
finement planning for autonomous responses in SDNs.

Some other areas that have not yet been seriously consid-
ered in the existing literature are how the dynamic nature of
SDNs, or IT systems in general, affect autonomous cyber re-
sponses and the extent to which complex expert knowledge
may have to be utilized to deal with cyberattacks.

RAE (Ghallab, Nau, and Traverso 2016; Patra et al.
2020b) is based on an earlier system called PRS (Ingrand
et al. 1996), which executed refinement methods somewhat

like RAE’s but did not consult a planner for advice on which
method to use. PRS was extended with some planning ca-
pabilities in PropicePlan (Despouys and Ingrand 1999), a
planner that used state-space search techniques.

The UPOM planner (Patra et al. 2020b) can reason about
several aspects of real-world planning that PropicePlan
could not handle, e.g., probabilistic outcomes of actions, ex-
ogenous events, and partial (rather than full) observability of
the environment. UPOM’s Monte Carlo rollout technique is
based on the one used in UCT (Kocsis and Szepesvári 2006),
an algorithm for decision-making on MDPs and game trees.
However, UCT’s search space is simpler than UPOM’s be-
cause UCT has nothing like UPOM’s refinement methods,
and depends instead on searching over sequences of actions.
We discuss this further in the next to next section.

Example SDN Recovery Scenario
SDNs are vulnerable to various kinds of attacks and failures.
Several SDN-specific attacks are discussed in (Yoon et al.
2017; Lee et al. 2020). Avenues of attack typically arise from
weaknesses or vulnerabilities in SDN protocols (e.g., Open-
Flow), software bugs (especially in SDN controller software,
e.g., Floodlight, ONOS, OpenDaylight), and lack of authen-
tication or encryption between components.

For any attack on a SDN, we can expect the symptoms
to manifest as a change in system state. For example, in a
switch malfunction, a switch exhibits unexpected behavior
due to an internal error or some attack from outside, and in
a controller malfunction, the controller’s resource consump-
tion goes out of bounds.

Throughout this paper, we use PACKET IN flooding as an
example of how a SDN can be attacked, how an attack can
manifest as various symptoms throughout the system, and
how ACR-SDN can recover the SDN through refinement act-
ing and planning. This example also highlights the dynamic
nature of the environment of an SDN. In a PACKET IN
flooding attack (see Figure 1), one or more malicious hosts
continuously send traffic to an unknown (and possibly ran-
domized) destination address.

In detecting such an attack, we first see CPU usage in
the controller spike and remain high. One or more switches
may report the controller as unresponsive, and they may ex-
perience increased CPU usage themselves. Some additional
clues can include: (i) increased controller host table size, (ii)
control plane network bandwidth saturation, (iii) increased
control plane network latency, and (iv) increased CPU usage
on the malicious host’s switch.

To mitigate the attack, the malicious hosts could be rate-
limited or disconnected from the network. However, it may
take some time for the existing symptoms throughout the
SDN to subside. This could be accelerated by clearing the
controller host table (e.g., if it is tracking many thousands of
bogus host addresses). If the controller remains unrespon-
sive, it may be necessary to reinstall or replace it. Finally, if
there are any especially critical data flows that have been af-
fected, it could be beneficial to allocate a new switch and mi-
grate critical hosts away from any over-burdened switches.
In the next section, we discuss how such recovery and mit-
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Figure 1: An example SDN with five hosts, four switches,
and a controller. In a PACKET IN flooding attack, host (a)
sends many packets with unknown/randomized destination
MAC addresses. When they are received at switch (b), they
do not match any existing flow, so the switch forwards them
to the controller (c) as an OpenFlow PACKET IN request.
Since the destination is unknown, the controller instructs the
switch to flood the packet to all output ports. If the packet
rate is high enough, and/or continues for long enough, the
controller becomes overwhelmed and this can lead to denial
of service of the whole network.

igation techniques can be implemented as refinement meth-
ods.

Refinement Acting and Planning
This section gives an overview of RAE and UPOM. For fur-
ther information about them, see (Patra et al. 2020b).

Actor. RAE (Refinement Acting Engine) is a system for per-
forming tasks and responding to events in dynamic, unpre-
dictable, and partially observable environments. In order to
accomplish this, RAE takes as input a set of refinement meth-
ods, which are computer programs giving alternative ways
of performing tasks or responding to events. A refinement
method has the form:

method-name(arg1, arg2, ..., argk)
task: task or event identifier
pre: test

body: program

A refinement method for a task or event t specifies how to
perform t, i.e., it gives a procedure for accomplishing t by
performing sub-tasks, commands, and state variable assign-
ments. The procedure may include any of the usual program-
ming constructs: if-else statements, loops, etc.

For example, consider the PACKET IN flooding de-
scribed in the third section. There are several alterna-
tive methods for responding this event. One of them,
m3 ctrl mitigate pktinflood(id) (see Figure 2), searches for
switches which have been marked as unhealthy by the
ACR-SDN’s Security Manager, moves all critical hosts
away from each such switch to a newly added switch be-
fore attempting to fix the old switch, and finally clears
the host table in the controller. A refinement tree us-
ing m3 ctrl mitigate pktinflood(id) and with one unhealthy
switch s1 is shown at the bottom of Figure 2.

Formally, RAE models a domain as a tuple Σ =
(S, T ,M,A) where,
• S is the set of states (e.g., states of the SDN);

m3 ctrl mitigate pktinflood(id)
event: packetIn-flooding(id)
body:

if is component type(id) 6= ‘CTRL’: fail
# Detect which switches are the source of attack
for s id in state.components:

if is component type(s id, ‘SWITCH’)
and not is component healthy(s id):

# Move critical hosts away
if is component critical(s id):

add switch (s id) # Add new switch
# Move critical hosts from bad switches
move critical hosts(s id, s id + ‘-new’)

fix switch(s id) # Fix unhealthy switch
# Clear controller state
clear ctrl state besteffort(id)
# Check whether controller is now healthy
if not is component healthy(id): fail

Figure 2: A refinement method and a partial refinement tree

• T is the set of events (e.g., attacks) and tasks (e.g., recov-
ery from attacks) that ACRS may have to deal with;

• M is the set of methods for handling tasks or events in T ;

• A is the set of primitive actions (e.g., commands that can
be executed on the SDN).

Planner. For each task or event in T ,Mmay contain several
refinement methods, each describing a different way to per-
form the task or respond to the event. Which of these meth-
ods is best to use may depend on the specific situation. RAE
can be configured to run purely reactively, in which case it
will make this choice arbitrarily. RAE can also be config-
ured to call a planner each time it needs to make a choice,
so that the choice will be informed by the planner’s predic-
tions of each refinement method’s potential outcomes. In the
RAE+UPOM system, the planner that RAE uses is UPOM
(UCT-like Procedure for Operational Models).

AI planning systems typically represent actions using de-
scriptive models written in a language such as PDDL (Mc-
Dermott et al. 1998; Haslum et al. 2019). These tell what
the action will do, but not how to perform the action. In con-
trast, UPOM plans using the same refinement methods that
RAE uses, doing simulated execution of the methods, as we
will describe shortly. This gets rid of several issues that may
arise when the models used for planning and acting are in-
consistent, such as plan verification and plan management.

Acting and planning. The deliberative acting problem for
ACR-SDN can be stated informally as follows: given Σ and
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a recovery task or event (an attack to the SDN) τ ∈ T ,
what is the “best” method m ∈ M to accomplish (or re-
cover from) τ in a current state s? For the example of a
PACKET IN flooding attack, this reduces to choosing one
among the three possible candidates, one of which is the
m3 ctrl mitigate pktinflood(id) method in Figure 2. ACR-
SDN requires an online selection procedure which desig-
nates for each task or sub-task at hand the best method for
pursuing attack recovery in the current context.

The current context for an incoming attack τ0 is rep-
resented via a refinement stack σ, which keeps track of
how much further RAE has progressed in recovering from
τ0. The refinement stack is a LIFO list of tuples σ =
〈(τ,m, i), . . . , (τ0,m0, i0)〉, where τ is the deepest current
sub-task in the refinement of τ0, m is the method used to
recover from τ , i is the current instruction in body(m), σ is
handled with the usual stack push, pop and top functions.

When RAE addresses a task or event τ , it must choose
a method m to handle τ . Purely reactive RAE makes this
choice arbitrarily; more informed RAE relies on a planner.
Once m is chosen, RAE progresses on performing the body
of m, starting with its first step. If the current step m[i] is a
primitive already being executed on the SDN, then the ex-
ecution status of this action is checked. If the action m[i]
is still running, stack σ has to wait, RAE goes on for other
pending recovery tasks, if any. If action m[i] fails, RAE
examines alternative methods for the current sub-task via
a procedure called Retry. Otherwise, if the action m[i] is
completed successfully, RAE proceeds with the next step in
method m.

Planning with UPOM searches through this space by do-
ing simulated sampling of the action’s outcomes from a
probability distribution decided by a human expert. UPOM
(UCT-like Procedure for Operational Models) performs a re-
cursive search to find a method m for a task τ and a state s
approximately optimal for a utility function U . It is a UCT-
like (Kocsis and Szepesvári 2006) Monte Carlo tree search
(MCTS) procedure over the space of refinement trees for τ .
The mapping from UPOM’s search to a UCT search is rather
complicated; for details see (Patra et al. 2020b).

Convergence of the planner. UPOM converges when there
are no infinite paths in the search space (for a proof, see Ap-
pendix A of (Patra et al. 2020a)). For scenarios that may con-
tain infinite paths, the proof generalizes as follows. UPOM
can be run using a limited depth d, in which case each roll-
out continues until it reaches depth d or terminates early.
At depth d, UPOM estimates the remaining utility using a
heuristic function. It is straightforward to prove that for suf-
ficiently large values of d, if the heuristic function is admis-
sible then UPOM will still converge to the optimal choice.
The basic idea is that if d is large enough to traverse a large
portion of the infinite path, then UPOM will get a very high
estimated cost for any rollout that pursues the infinite path.

The planning of UPOM is not myopic because irrespective
of where it is in the refinement tree, it searches for the next
*best* action for the root task τ (not the current sub-task
being refined). At any stage, the progress the actor, RAE,
has made towards accomplishing the root task τ is captured

by the refinement stack. A rollout continues until the refine-
ment stack becomes empty, i.e., τ has succeeded or failed.
The utility of the rollout is updated accordingly. After all the
rollouts are done, UPOM chooses a refinement methodm for
any sub-task of τ based on its estimated utility value for τ .

The ACR-SDN System
Architecture. The architecture for ACR-SDN consists of a
number of components, organized into three layers: (1) the
Presentation Layer provides a GUI to keep humans in the
loop with respect to the operation of the system; (2) the
Security Layer contains components that gather situational
awareness and provide security services (e.g., monitoring
and diagnosis) for the rest of the system; (3) the Intelligent
Planning Layer deals with decision-making and is respon-
sible for planning courses of action to be executed on the
SDN. These components all are in the SDN management
plane and interact with the SDN components (switches, con-
trollers) (see Figure 3).

Figure 4 illustrates the components and data flows neces-
sary for our implementation of the ACR-SDN architecture.
• The Management Layer is in the SDN management plane.
• The Infrastructure Layer is the underlying platform re-

sponsible for provisioning the virtual machines that act as
our SDN controllers and switches.

• The Control Layer is in the SDN control plane and allows
for monitoring of SDN components and executing actions
in the SDN controllers and switches.
There are many different flavors and implementations of

SDNs. In this paper, we utilize a software-based SDN as
that target system that we defend, where the switch and
controller software processes run inside virtual machines
(VMs). The VMs serve as useful building blocks and allow
us to have more diverse actions in our operational model
(e.g., restart VM, add VCPU). With slight modifications to
the operational model and action space, our approach could
be adapted to defend other types of SDNs, including those
with hardware-based switches.

We leverage the Web Application Messaging Protocol
(WAMP, see https://wamp-proto.org/) to provide one-to-
many and one-to-one communication between the vari-
ous ACR-SDN components via publish-subscribe messaging
(Pub-Sub) and remote procedure calls (RPC).

A central WAMP router in the management layer allows
the State Manager, Security Manager, and WAMP Relays to
communicate. The State Manager persists state information
in a database. This database is accessed on-demand by the
Web Server to provide situational awareness to human oper-
ators via the GUI. The WAMP Relays allow for controlled
access to components in the SDN (control layer) and virtual
machine platform (infrastructure layer), which allows sys-
tem state monitoring and the execution of probing actions
and corrective actions. Ultimately, monitoring and execution
is handled by various agents in the infrastructure and control
layers: LibVirt, SDNCTL, and SysMon.

The Security Manager receives system statistics, log mes-
sages, and alerts from the SDN components (switches, con-
trollers). It monitors the health of each component and the
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Figure 3: ACR-SDN architecture

Figure 4: Data flows among components in ACR-SDN

overall health of the network, and uses configurable thresh-
olds to determine when a task needs to be submitted to the
planner. It also acts as the execution platform for RAE; when
it receives a command, it executes it on the SDN and returns
the status back to RAE.

RAE, the actor, is integrated directly with the Security
Manager as a Python module, and they communicate with
each other asynchronously using a set of shared queues.

Integration of ACR-SDN and RAE+UPOM
The implementation of ACR-SDN in the SDN management
plane has a security layer and an intelligent planning layer
(Figure 3). The ACR-SDN Security Manager, Refinement
Acting Engine (RAE), and the planner (UPOM) interact with
each other and work together to defend against, and recover
from, attacks to a SDN. A defense system for SDNs continu-
ously monitors the switches and controllers and ensures that

the target system is behaving as expected. To accomplish
this, it must:

Step 1. Detect that an attack has occurred on the SDN.

Step 2. Diagnose what kind of attack has occurred. An at-
tack may be detected when the network reaches some incon-
sistent state, or shows irregular behavior.

Step 3. Come up with an online plan to recover from the
damage this attack has caused. The recovery process differ
depending on current state of the system and the nature of
the attack. The planner may re-plan when necessary. The
Security Manager may or may not choose to use the planner,
UPOM, via configuration parameters of RAE.

State definition for SDN. The state consists of two top-
level dictionaries: components and stats. In order to secure
a SDN, ACR-SDN has two types of components that it must
deal with: controllers and switches. The components dictio-
nary maps from component IDs to a nested dictionary con-
taining keys that map to properties of the component (id,
type, critical, etc.). The “critical” property warrants some ex-
planation. It is a boolean flag that denotes whether a com-
ponent is currently serving a mission-critical purpose, from
a system requirements perspective. There may be many data
flows passing through the network at any given time, but
not all are critical for the system to meet its requirements.
A switch might serve some combination of critical and non-
critical data flows. This property allows for context-sensitive
planning (e.g., move all critical hosts from one switch to a
new switch, in order to temporarily insulate them from an
ongoing cyberattack).

The stats dictionary maps from component IDs
to a nested dictionary containing the keys health,
cpu perc ewma, and potentially a number of other keys for
statistics that may depend on the component’s type (e.g.,
a switch will have flow table size). Each of these maps to
another dictionary containing the key’s value, the current
value of this statistic, and thresh exceeded fn, a function
that evaluates to true if the value exceeds the configured
threshold (a numeric value in valid range of the state
variable chosen by a human expert) for that statistic.

The state representation is designed to accommodate the
dynamic nature of the SDN. The number of components
(switches and controllers) can change at any time for various
reasons: an unexpected failure or outage, a course of action
that includes adding or removing a component, perform-
ing moving target defense, etc. As components are added
or removed, the top-level dictionaries are simply updated
to reflect the new set of components. This goes hand-in-
hand with the operational model, which is designed with this
state representation in mind and enables effective planning
no matter what the current system configuration looks like.

Communication between components. The communica-
tion between the Security Manager and RAE takes place us-
ing three shared queues:

• Task queue: After the Security Manager detects an attack,
it puts an attack event or a recovery task on the task queue.
The task stays in the queue until RAE reads from it and
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chooses an applicable refinement method. RAE calls the
planner, UPOM for making this choice.

• Command execution queue: After planning using
UPOM, RAE sends commands (atomic actions to be ex-
ecuted) to the Security Manager by putting them in the
command execution queue one by one. The Security Man-
ager reads the command from the queue.

• Command status queue: After executing a command,
Security Manager puts the information about whether a
command succeeded or failed and next state of the SDN
in the command status queue. RAE reads this information
and updates the state accordingly.

Within a refinement method, if more information is
needed than is currently available in the state, then a probing
action is used to request this information from the Security
Manager. For example, if a switch component is misbehav-
ing and the course of action depends on whether its flow ta-
ble is over-filled, but the size of its flow table was not avail-
able in the state, then the get switch flowtable size action can
be requested. When this command returns successfully, then
flow of control can continue and the missing value will have
been included in the updated state.

The Security Manager has a process that continually
checks the execution queue. When a command is available,
it reads the command name and parameters from the queue.
It then looks up the command by name and dispatches it
as appropriate. Some commands need to run on the compo-
nent itself, while others need to run on the underlying plat-
form (e.g., the virtual machine monitor) that the component
is running on. In either case, the Security Manager notifies
RAE of success or failure (along with a copy of the updated
state) via the command status queue.

Action and environmental model. Each low-level action is
modeled in the operational model and has a counterpart on
the execution platform (the Security Manager), so that when
an action is passed by RAE to the Security Manager, it can
be carried out on the SDN. These actions have costs associ-
ated with them (defined by experts in the operational model),
which are estimates of how long it will take to implement the
action on the target system. While these estimates may not
be absolutely accurate (e.g., they can vary depending on the
underlying hardware specs of the target system), they should
at least reflect reality when they are compared relative to
each other. For example: restarting a virtual machine takes
longer than adding or removing a flow rule; reinstalling con-
troller software takes longer than clearing the controller’s
state. We arrived at our cost estimates using experimenta-
tion and analysis from domain experts.

When declaring an action in the operational model, we
assign the name, any parameters (e.g., component ID), and
code that modifies the state and return success or failure, to
model the effect that the action is expected to have on the
system. Preconditions are encoded in the operational model
(either in a action function or refinement method) by check-
ing the state and returning failure if the action does not ap-
ply to the current state. The actions are nondeterministic and
the predictive models used by UPOM sample their outcome

from a probability distribution. In the environment defini-
tion, the domain expert assigns an estimated probability to
each action. Other strategies, such as learning from history
or running the action in an emulated system, may also be
used to guess how likely an action is to succeed.

Experimental Evaluation
To test our SDN attack recovery system (ACR-SDN with
RAE+UPOM), we modeled attacks to the SDN as events and
component recovery tasks. We generated a test suite that rep-
resented three different classes of cyberattacks:

1. Attacks that exhaust controller memory, e.g.,
PACKET IN flooding, switch table flooding, mem-
ory resource exhaustion (Yoon et al. 2017; Lee et al.
2020)

2. Attacks that exhaust switch memory, e.g., flow table
flooding (Yoon et al. 2017; Lee et al. 2020)

3. Attacks that disconnect a switch from a controller,
e.g., switch ID spoofing, malformed/corrupted OpenFlow
message type (Yoon et al. 2017; Lee et al. 2020)

The test suite that we generated consists of 300 recovery
tasks, 100 for each class of attack. Our operational model
consists of 15 tasks, 22 refinement methods, and 16 com-
mands. The individual tests were randomized in such a way
that the initial assignment of state variables reflected symp-
toms that would be caused by the given class of cyberattack.
The number of controllers in a given test ranged from one to
four and the number of switches ranged from 16 to 64. One
to three switches or controllers were randomly chosen to be
attacked. We configured UPOM to optimize a linear combi-
nation of efficiency (reciprocal of estimated time, see (Patra
et al. 2020b)) and probability of success. Each test was run
50 times to account for nondeterministic outcomes. We ran
the tests on a simulated SDN running on a 2.8 GHz Intel Ivy
Bridge processor.1

To measure ACR-SDN’s performance, we measure five
different metrics: the estimated time for attack recovery,
the efficiency, retry-ratio, success-ratio (from (Patra et al.
2019)), and costEffectiveness (a linear combination of effi-
ciency and probability of success). We discuss each of them
as follows.

Estimated time for attack recovery. Figure 5(a) shows how
the estimated time for attack recovery changes as we give
more time to the refinement planner, UPOM. We observe
that purely reactive RAE (with no planning, i.e., 0 time given
to UPOM) is able to help the SDN recover from attacks in
∼11 seconds. Further, when doing refinement planning with
UPOM, we observe ∼32% decrease in the estimated time
for recovery. The error bars in the plot show 95% confi-
dence intervals. Note that we used a Python implementation
of RAE and UPOM which is a relatively slow programming
language. Using faster programming language like C++ or
Java could speed up the recovery process even further.

1Full code is at 〈https://bitbucket.org/sunandita/rae/src/nrl-
domain-airs/〉.

15382



(a) (b)

Figure 5: (a) Estimated time for attack recovery (in
∼seconds) and (b) retry ratio for attack recovery in ACR-
SDN, with UPOM configured to optimize a linear combina-
tion of efficiency (reciprocal of estimated time) and proba-
bility of success. The error bars show 95% confidence.

(a) (b)

Figure 6: (a) Estimated costEffectiveness (a linear combi-
nation of reciprocal of estimated time and probability of
success) for attack recovery and (b) success ratio for attack
recovery in ACR-SDN, with UPOM configured to optimize
costEffectivess. The error bars show 95% confidence.

Retry ratio. If a method for a task τ fails during execution,
RAE looks at the list of untried methods for τ and chooses
one among them. Each such choice is called a Retry. The
higher the number of retries, the higher the execution time.
Retry ratio measures the number of retries including all sub-
tasks divided the total number of incoming tasks in RAE.
Figures 5(b) shows the retry ratio for the experiments with
the randomly generated test suite. From the plot, we can
conclude that planning with a time limit of 200 msecs for
UPOM outperforms purely reactive RAE with 95% confi-
dence. Planning with a time limit of 2 seconds for UPOM
outperforms planning with a time limit of 200 msecs with
95% confidence.
Cost-effectiveness. The cost-effectiveness is a linear combi-
nation of the reciprocal of the cost and the probability of suc-
cess. Figure 6(a) shows that the cost-effectiveness improves
gradually as UPOM is give more time to do a larger number
of Monte Carlo rollouts. Using the planner, UPOM achieves
close to 31% improvement in cost-effectiveness, compared
to purely reactive acting.

Success ratio. Figure 6(b) shows how the success ratio (the
number of attacks ACR-SDN is able to recover from suc-
cessfully / total number of attacks) as we give more time

to the refinement planner, UPOM. When doing refinement
planning with UPOM, we observe close to 7% increase in
the success-ratio.

In summary, we are able to automate attack recovery in
SDNs using ACR-SDN and the refinement acting engine,
RAE. Planning with UPOM further improves the perfor-
mance in terms of estimated recovery time, efficiency, retry-
ratio, costEffectiveness and success ratio with 95% confi-
dence.

Conclusions and Future Work
In this paper, we introduced ACR-SDN, a system for au-
tonomous attack recovery in software-defined networks.
ACR-SDN integrates RAE+UPOM into the management
plane to help a SDN autonomously recover from failures
and cyberattacks. Refinement methods for RAE+UPOM are
recovery procedures written by human experts. A recovery
procedure can be any complex algorithm with any program-
ming constructs, such as if-else statements, loops, and so on.
An attack to the SDN corresponds to an event or a recovery
task for RAE, and there may be multiple refinement meth-
ods to recover from it. RAE+UPOM suggests to the Security
Manager of ACR-SDN the best way to proceed. Our exper-
iments show that integrating RAE+UPOM within ACRS im-
proves the estimated time for recovery, efficiency, and retry-
ratio with 95% confidence on a simulated SDN.

ACR-SDN configured RAE+UPOM to optimize a linear
combination of efficiency and probability of success, and
observed that the SDN can always recover after a finite num-
ber of attempts. This is because it is possible to recover from
attacks by rebooting the network, if nothing else works. In
future, it will be interesting to model scenarios with dead-
ends that cannot be recovered from.

Future work. To leverage RAE+UPOM to achieve au-
tonomous cyber responses, human domain experts are
needed to develop the refinement methods in the hierar-
chical operational model. This requires them to understand
RAE+UPOM, in order to effectively express their knowledge
of the cyber domain and tune the system to work well in
practice. Areas of future research are to ease this burden, to
develop a framework or methodology that domain experts
can use to encode their domain knowledge for the planning
context, and to expand the research results from ACR-SDN
to other IT systems.

Actions have cost estimates assigned to them in the op-
erational model. Furthermore, a refinement method can also
have a cost assigned to it, in which case this cost is added
to the sum of the costs of the actions to arrive at an overall
cost that is used for planning. However, sometimes a partic-
ular action may conflict with operational requirements, for
example when blocking an attack must also block critical
services. Capturing such conflicts and taking them into ac-
count when planning is another area of future research.
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