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Abstract

The mining sector is a very relevant part of the Chilean econ-
omy, representing more than 14% of the country’s GDP and
more than 50% of its exports. However, mining is also a high-
risk activity where health, safety, and environmental aspects
are fundamental concerns to take into account to render it vi-
able in the longer term. The Chilean National Geology and
Mining Service (Sernageomin, after its name in Spanish) is
in charge of ensuring the safe operation of mines. On-site in-
spections are their main tool in order to detect issues, pro-
pose corrective measures, and track the compliance of those
measures. Consequently, it is necessary to create inspection
programs relying on a data-based decision-making strategy.
This paper reports the work carried out in one of the most
relevant dimensions of said strategy: predicting the mining
worksites accident risk. That is, how likely it is a mining
worksite to have accidents in the future. This risk is then used
to create a priority ranking that is used to devise the inspec-
tion program. Estimating this risk at the government regulator
level is particularly challenging as there is a very limited and
biased data. Our main contribution is to apply a multi-task
learning approach to train the risk prediction model in such
a way that is able to overcome the constraints of the limited
availability of data by fusing different sources. As part of this
work, we also implemented a human-experience-based model
that captures the procedures currently used by the current ex-
perts in charge of elaborating the inspection priority ranking.
The mining worksites risk rankings built by model achieve a
121.2% NDCG performance improvement over the rankings
based on the currently used experts’ model and outperforms
the non-multi-task learning alternatives.

Introduction
Mining is an essential activity for humankind since prehis-
toric times. As humanity has grown and developed the need
for minerals has expanded. This has lead to an increase in ex-
ploration, extraction, and processing. However, modern and,
in particular, extensive mining is also a high-impact activ-
ity. Mining has a long-established track of negative implica-
tions, ranging from the degradation of the natural environ-
ment, the production of highly toxic waste and its impact on
communities, etc.
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Consequently, health, safety, and environment (HSE) is-
sues are priority matters for the mining industry. This in-
dustry is frequently in the news. Much of the time it is be-
cause of changes in prices of minerals. Other —less frequent
but, perhaps, more important— subject of media attention
is when disasters strike, as is the case of toxic spills, min-
ing tailing overflows, and underground accidents. These in-
cidents have a high impact on lives, the environment, and
public opinion regarding this sector. That is why the correct
handling of HSE is a determining factor in this industry’s
long-term success.

The Chilean mining industry is not an exception. Min-
ing was responsible for 14.2% of Chile’s GDP in 2012 and
nearly 57% of exports were concentrated in this industry.
The country is the largest producer of copper in the world,
satisfying the 36% of the world’s needs and having 28% of
the world’s reserves of that mineral (de Solminihac, Gonza-
les, and Cerda 2018). It is also the world’s largest producer
of lithium and iodine. However, this intensive and extensive
growth has not come without negative ramifications.

Because of this, companies, governments, and communi-
ties have been working together to draw policies and meth-
ods to make the mining activities as viable and sustainable as
possible. The Chilean National Geology and Mining Service
(Sernageomin, after its name in Spanish) is the country’s na-
tional authority regarding mining and geology.

One of its primary objectives is the reduction of accidents
and incidents in the mining facilities, as it has a direct im-
pact on the quality of life of workers and the environment. To
achieve this, it essential to have near-optimal programming
of the inspections of a mining worksite. It can be hypothe-
sized that by optimizing the inspection visits to the facilities
some early signs of problems in the riskier areas could be
detected and reported and, hopefully, corrected. This pro-
gramming is particularly complex because of the extreme
oblongness of the Chilean geography (as can be perceived
in Figure 1), the frequent natural hazards like earthquakes,
tsunamis, and flash floods, and the difficulty of accessing
sites that are located in the aridest desert of the planet.

The current method for doing the programming of the vis-
its is currently defined as a two-step process. First, for each
mining facility, it must be determined a perceived risk based
on a given set of human experience and intuition factors and,
second, given that perceived risk organize a ranking so that
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Figure 1: Map of the distribution of mining activities along
the Chilean geography. Source: Sernageomin, used with per-
mission.

the worksite with higher risk are visited first.
This method can be improved by enhancing i) how that

risk is estimated and, then, ii) how the worksite rank is elab-
orated. As the risk is currently estimated as a result of a
semi-intuitive experience-based process, it seemed like the
best way to yield a rapid and substantial improvement with-
out disrupting the procedures and formalisms in a highly-
regulated sector.

Today, with the advances of new technologies, accidents,
incidents, and occupational health records are stored in het-
erogeneous repositories. Similarly, the amount of informa-
tion about HSE that is daily generated is increasing but it
is generally stored as unstructured or poorly-structured data
and. This poses a challenge that is a top priority for indus-
tries that are looking for ways to search, sort, analyze and
extract knowledge from masses of data

One important challenge when tackling this task at the
level of a regulatory authority, is the lack of detailed data,
as the service only receives reports with highly-aggregated
data of accidents when severe accidents happen and —as it
can be expected— these are infrequent events. However, it
can be hypothesized that there are a number of features that
can be extracted from previous inspection reports that can
act as early indicators and be used to predict if and/or when
accidents happen in the year ahead.

In order to overcome the limited-sized and heavily-biased
dataset, we pose the problem of determining the risk by pos-
ing it as a multitask learning problem (Thrun 1995; Caruana
1997; Crawshaw 2020).

This work reports the progress achieved addressing the
problem of transforming the operation of Sernageomin gen-

erating a data-based decision-making tool. We succeed at
providing a principled method for estimating facility risk
that relies on existing data and that outperforms the proce-
dure that is being currently used.

The rest of this paper is organized as follows. In the next
section, we present the necessary theoretical foundations
and related works that are necessary to understand our pro-
posal. After that, in Section we describe the approach that
is currently in place and that has been formalized in an al-
gorithmic way for the first time as part of this work. Sub-
sequently, in Section we introduce the multitask learning
model that we propose. Then, in Section we apply and com-
pare different variants of our model as well as the current
experience-based approach. Finally, in Section we provide
some final remarks and outline our future work.

Related Work
Accident prevention is a priority for any modern industry.
It is self-evident that eliminating them or mitigating their
impact is a key element of success from the human, envi-
ronmental, and operational points of view. Using evidence
and/or data from previous cases to understand the nature and
causes of accidents have been in the foundations of fields
like statistics and actuarial science, to just cite two.

One of the characteristics of this class of problems is that
each instance has many particular characteristics that call for
a very customized approach. Consequently, there have been
a myriad of papers proposing solutions that range from on-
tologies (Sanchez-Pi, Martı́, and Bicharra Garcia 2016), fea-
ture selection (Lin, Wang, and Sadek 2015), convolutional
neural networks (Wenqi, Dongyu, and Menghua 2017), rep-
resentation learning (Chen et al. 2016), data fusion and time-
series prediction (Martı́ et al. 2014; Sanchez-Pi et al. 2014;
Moosavi et al. 2019), just to mention a few.

However, what best characterizes the effort when dealing
with these problems is the need to carry out intense work on
data preparation and problem understanding. Perhaps this is
best understood with two prototypical examples. Rudin et al.
(2010) tackle the problem of predicting manhole events in
Manhattan. In order to deal with such a problem, it is neces-
sary to process text reports, fuse that information with differ-
ent sources, and then propose a predictive model. Similarly,
Moosavi et al. (2019) deals with the traffic accident predic-
tion problem by consuming multi-source and heterogeneous
data like weather, traffic patterns, points of interest, etc. to
produce a predictor.

In the case of the problem we are dealing with here, there
is a particular machine learning scheme denominated multi-
task learning that is particularly useful, as it will be demon-
strated on subsequent sections. While in machine learning
the focus is to optimize the parameters of a given model for
a particular metric, whether this is an error score on a cer-
tain benchmark or other performance indicators. In order to
achieve this, the optimization algorithm is executed in a pro-
cess generally denominated as training until the performance
of the model no longer improves.

While it is possible to achieve an acceptable performance
using this approach, it has been shown that doing this it is
possible that it is ignored information that might help the
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model even better on the metric of interest. Specifically, this
information comes from the training signals of similar tasks.
By sharing representations between related tasks, it enables
the model to generalize better on the main task. This ap-
proach is called multitask learning.

There are at least four approaches for implementing a
multitask learning scenario:

1. task grouping and overlap (Hajiramezanali et al. 2018),
where tasks are grouped or exist in a hierarchy, or be re-
lated according to some general metric,

2. exploiting a priori unrelated tasks (Paredes et al. 2012),
where joint learning of unrelated tasks which use the same
input data is deemed beneficial as it can lead to sparser
and more informative representations for each task group-
ing, essentially by screening out biases present in the data,

3. knowledge transfer (Yosinski et al. 2014), where a pre-
trained model can be used as a feature extractor to perform
pre-processing for another learning algorithm, and

4. group online adaptive learning (GOAL) (Zweig and
Chechik 2017) where sharing information is deemed par-
ticularly useful when models operate in continuously
changing environments because a model could benefit
from previous experience of another and quickly adapt to
a new environment.

Experience-Based Model
One of the main challenges of this wprk was the absence
of key performance indicators and baseline algorithms that
would allow the evaluation of the risk rankings. Therefore,
it was not straightforward to assess the performance of the
predictive models that will be implemented.

Additionally, in Sernageomin there was no standardiza-
tion regarding the mechanism that each regional office must
use to determine the worksites to be inspected. In practice,
each one of the ten different regional offices has the free-
dom to develop risk calculation methods for mining work-
sites, which are then used to schedule inspections. The foun-
dations, formulation, and implementation of these methods
are diverse: risk matrices that assign each mining worksite
a scalar, matrices with worksites features that allow them to
be ordered, among others. What all risk models have in com-
mon is that they are designed based on the experience of the
inspections coordinators of the regional offices.

Taking the above premises under consideration, one of the
first activities carried out with Sernageomin was to formu-
late a model —not necessarily predictive— that allowed cal-
culating the risk of mining worksites. The construction of
this experience–based model was done in close collabora-
tion between the authors and the experts in Sernageomin.

This model would help to establish a baseline against
which to compare the performance of the future predictive
models, to become familiarized with the terms and seman-
tics of the mining industry, which would later prove useful
in the construction of a multitask neural network.

An interesting outcome of the construction of the
experience-based model was discovering that building a
ranking ordered by the risk of mining worksites was more

Algorithm 1 Experience-based model for worksite risk
ranking.

1: Sort worksites by descending order, using the number
of facilities stopped by a Sernageomin issued sanction.

2: Untie worksites sorting by ascending order, using the
year of the last inspection.

3: Untie worksites sorting by ascending order, using the
number of pending corrective measures to be fulfilled.

4: Untie worksites sorting by descending order, using the
sum of number of accidents with lost time plus the num-
ber of fatal accidents in the last 24 months.

5: Untie worksites sorting by descending order, using the
number of days since the last inspection.

important than the individual risk score itself. This makes
sense if we consider the main use case of this tool: to ef-
ficiently focus the limited inspections resources of each re-
gional office.

Due to the above, the experience-based model was built
using a set of features considered relevant by experts to de-
termine the risk of mining worksites. Then, the features were
ranked in terms of how relevant they are to the calculation
of the risk. Finally, depending on the feature hierarchy, the
worksites are sequentially sorted.

The formulation of the model based on experience is ob-
served in the Algorithm 1. It allows sorting the mining work-
sites of the different regional offices of the Service to better
focus the inspections resources. Although the formulation
of the model is not characterized for being one with solid
statistical foundations, it formalizes a working modality that
generally reflects the operation of the Service before imple-
menting digital transformation strategies. Also, and as men-
tioned above, it will allow establishing a baseline to evaluate
the machine learning model experiments.

Finally, and from a broader project management perspec-
tive, this model was successfully implemented in Serna-
geomin through a web application that is currently being
used nationwide shown in Figure 2. This way, the risk of
adoption always present in this type of project was miti-
gated.

Multitask Model
A widely studied family of problems that can be adapted
to solve the worksite risk one is those of predictive mainte-
nance (Susto et al. 2015).

Some of these models try to predict the remaining useful
life (RUL) of machines to prevent halts in industrial pro-
cesses (Okoh et al. 2014). On the other hand, other models
learn the probability distribution of failure of some element
or piece within a time window in the future. Applying these
notions to our problem, a practitioner could draw the anal-
ogy that “machines” or “pieces” are the mining worksites
and that “failures” are the accidents. Then, a risk ranking
can be constructed by sorting the mining worksites in as-
cending order according to their RUL or descending order
according to their probability of failure in the future.

After experimenting with both tasks and different models,
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Figure 2: Implementation of experience-based model. The application serves a ranking of worksites with visual cues about the
datapoints that explain the worksite position.

such as decision trees and multi-layer perceptrons, we pro-
pose a multitasking neural network to solve our risk prob-
lem.

The neural network input is a feature vector x ∈ Rn

from the tabular dataset representing a mining worksite in
a particular year–month. This input vector x passes through
a shared hidden layer activated by a non-linearity imple-
mented with a hyperbolic tangent function. Then, the com-
putation graph is branched off into the two tasks. The first
one, a regressor, learns to predict the approximate amount
of days until the next accident at the given mining work-
site, similar to an RUL–predictive maintenance model. The
second one, a classifier, learns to predict the approximate
probability that the given mining worksite suffers accidents
in the future, analog to the predictive maintenance models
that predict probability distributions.

A set of mining worksite could be a risk–ranked by order-
ing it in descending order according to the probability that
they will have accidents in the future. Even though we don’t
explicitly use the regressor output to build the risk ranking,
we supervise its outputs during training seeing an increase in
the overall ranking quality, as we’ll see in the experiments
section.

Unlike the experience-based model, the multitasking
model requires to be properly trained before it can be used.
We define the loss function as the loss of a multitasking
model parameterized by Θ on a dataset D as

L(D,Θ) = λLclf(D,Θ) + (1− λ)Lreg(D,Θ) . (1)
The classifier output, which is the probability that the work-
site will have accidents in the future, is supervised by a
Boolean label. The term Lclf(D,Θ) is implemented using
a binary cross entropy between the predicted value and the
true value column.

On the other hand, the regressor output is supervised by
the true value of days until the next accident. The term of

the loss function Lreg(D,Θ) is implemented by the mean
squared error between the predicted value and the supervised
value. We use a hyperparameter λ to linearly combine both
terms and balance the importance of each task in this multi-
tasking setting.

Experiments and Results
The data stored in Sernageomin’s databases were processed
to build a tabular dataset. Essentially, for each year-month
existing since the system came into operation, the state of
each mining worksite was recorded. The state of each min-
ing site was structured according to the features described in
Table 1.

After performing this pre-processing, a table with 191,518
rows was built. The obtained records span a time range from
January 2014 until June 2019. All records from January
2014 to November 2017, equivalent to 134,062 rows, were
considered part of the training dataset. On the other hand, the
records spanned between November 2017 and May 2018,
corresponding to 19,151 rows, were assigned to the valida-
tion dataset. Finally, the rows from May 2018 to June 2019,
equivalent to 38,305 records, were part of the testing dataset.
Therefore, the training, validation, and testing sets were ap-
proximately 70%, 10%, and 20% of the complete dataset,
respectively. Each split feature was individually scaled to a
range of (0, 1) using a min–max transformation.

During training, when mining worksites have no accidents
in the future, we fill the missing values with 1, 460, equiv-
alent to the number of days in 4 years. Finally, the MONTH
feature is categorical and represented with a one–hot trans-
formation.

Evaluation Framework
The purpose of applying mining risk models is to build
worksite rankings that allow a better usage of the limited
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Feature name Feature description
NUM FACILITIES The number of mining facilities operating in the worksite.
DAYS SINCE LAST INSPECTION Number of days since the worksite’s last inspection.
HAS NEVER BEEN INSPECTED True if the worksite has been inspected in the past, otherwise it is false.
STOPPED BY SANCTION Number of worksite’s facilities stopped because of sanction.
PENDING ACTIONS Number of worksite’s corrective measures whose execution is still pending.
NO TIME LOST COUNT Worksite’s number of accidents with no worker time lost in the last 24 months.
TIME LOST COUNT Worksite’s number of accidents with worker time lost in the last 24 months.
FATAL COUNT Worksite’s number of fatal accidents in the last 24 months.
HOURS WORKED Worksite’s work hours performed in the last 24 months.
ACCIDENTS RATE Average number of accidents with lost time per million hours worked.
MONTH Worksite recorded month.
TOTAL ACCIDENTS COUNT Sum of NO TIME LOST COUNT, TIME LOST COUNT, and FATAL COUNT.
FATAL TIME LOST COUNT Sum of TIME LOST COUNT and FATAL COUNT.

Table 1: Dataset features used as input for the multitask learning model along with their descriptions.

organization’s resources. Therefore, one risk model is better
than another if it builds better risk rankings.

We define a ranking as an ordered set of mining worksites.
Also, we define the function reli that maps objects from the
set of mining worksites to the set of real numbers. In particu-
lar, the value of reli indicates how relevant a mining worksite
is in the context of a risk ranking. For this particular task, the
relevance of a mining worksite is defined as the number of
accidents it’ll have in the following twelve months.

A commonly used metric for measuring ranking quality is
the discounted cumulative gain (DCG) (Wang et al. 2013).
The DCG of a ranking is calculated as

DCGp =

p∑
i=1

reli
log2(i+ 1)

. (2)

In this way, when the most relevant elements are in the first
ranking positions, high DCG values will be obtained. On the
other hand, when the most relevant elements are far from the
top positions, the value of the DCG is worse.

We can define the IDCGp as the DCGp of the ideal rank-
ing. The ideal risk ranking is the ordered set of worksites
sorted by their relevance in descending order.

Finally, we introduce the normalized DCG (NDCG)
(Wang et al. 2013) which is calculated as

NDCGp =
DCGp

IDCGp
. (3)

The NDCG value is 0 when the built ranking does not con-
tain relevant elements and 1 in case that the built ranking
quality is equivalent to the ideal ranking one. In this work,
all the mining worksites of the different regional offices are
considered in the metric calculation, so the parameter p is
equal to the cardinality of the mining set.

The procedure for evaluating the models in a dataset con-
sists of iterating through each of the regional offices and se-
quentially prioritizing the different year–months for the cor-
responding subset of mining work sites. This way, the eval-
uation framework simulates the work of the mining inspec-
tions coordinator of a regional office, who selects the critical

worksites that must be inspected each month in a given re-
gional office. Finally, for each regional office, we compute
the mean NDCG of every year–month group.

Experience-Based Model Experiments
The experience-based model, depicted in algorithm 1, se-
quentially orders a set of mining worksites according to pre-
viously selected features using the organization’s experts’
knowledge and experience. This model doesn’t need to be
trained to prioritize mining worksites. Therefore, it is pos-
sible to directly evaluate its performance on the testing split
of the tabular dataset. The results of the experience-based
model are displayed in Table 2.

Baselines
We train and evaluate two classes of baseline models to
properly assess the proposed multitask model. On the one
hand, we train two separate tree models implemented in the
scikit-learn library (Buitinck et al. 2013) on each task: re-
gression and classification. On the other hand, we train two
single–task neural networks for each task. Essentially, these
neural models are architecturally identical to the multitask
model except that we only consider one task-specific head
after the shared hidden layer. To build a risk ranking using
a regressor, we sort the mining worksites set by descending
order using the model’s output.

Results of both the decision trees and neural networks
baselines are shown in Table 2. We note that with simple
models, such as a decision tree regressor and a single–task
neural network classifier, we’re able to increase the quality
of the rankings by an average of 93.8% and 114.4%, respec-
tively.

Multitask Model Experiments
The multitask model shared hidden-layer size was 50 neu-
rons. The classifier head was implemented as a fully con-
nected layer of size 50 activated by a tanh function followed
by a layer of dimension two activated by a softmax func-
tion. Furthermore, the regression head was implemented as
another fully connected layer of size 50 activated by a tanh
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Regional office Experience–based
model

Decision tree
regressor

Decision tree
classifier

NN
regressor

NN
classifier

Multitask
model

Arica 0.23 0.96 0.66 0.55 1.00 1.00
Tarapacá 0.32 0.58 0.53 0.36 0.62 0.66
Antofagasta 0.33 0.64 0.48 0.75 0.76 0.77
Atacama 0.27 0.66 0.49 0.50 0.85 0.95
Coquimbo 0.21 0.83 0.41 0.46 0.87 0.97
Centro 0.20 0.68 0.39 0.62 0.69 0.70
O’Higgins 0.19 0.86 0.50 0.98 1.00 1.00
Maule 0.77 0.50 0.63 0.41 0.54 0.57
Sur 0.21 0.41 0.39 0.29 0.60 0.66
Magallanes 0.87 0.85 0.70 0.64 0.79 0.68

Mean NDCG 0.36 0.70 0.52 0.56 0.77 0.80
% improvement 93.8% 43.7% 54.6% 114.4% 121.2%

Table 2: Mean NDCG score of different models on the dataset’s test split. Higher values are better.

function followed by a single-dimensional layer with no ac-
tivation function.

The network was trained using a stochastic gradient de-
scent algorithm with a batch size equal to 32 over 200
epochs. The best results were obtained with an initial learn-
ing rate equal to 0.001 and a hyperparameter λ = 0.99. At
the end of each training epoch, the model was evaluated on
the validation dataset. Finally, the model that minimized the
loss on the validation set was selected for the final evaluation
of the testing split.

The results obtained by the multitasking model are ob-
served in Table 2. Our multitask model outperforms ev-
ery baseline average performance and achieves an average
performance increase of 121.2% with respect to the model
based on experience.

We note that there are two regional officeswhere all the
machine learning models fail to outperform the experience-
based model. An in-depth analysis of the particular charac-
teristics of these regions causing this behavior is necessary
to deploy these models in operation.

Conclusions
In this paper, we reported our results when dealing with
the prediction of mining accident risks in the Chilean con-
text. The main contribution of this paper is a neural network
trained in a multitask learning setup that predicts mining
worksite risk. This neural network should eventually replace
the current expert’s model, to support the agency’s decision
making processes with the data available on its databases.

The mining worksites risk rankings built by our multitask-
trained neural network’s scores achieve a 121.2% NDCG
performance improvement over the rankings based on the
expert’s model. This is an important result that should even-
tually lead to a reduction in accidents.

However, these results are by no means final. On the
one hand, we are interacting with mining companies, gov-
ernment agencies, and communities to try to enhance the
amount of data available and, therefore, to be able to ad-
dress more ambitious goals involving casual inference of the

causes of accidents, or more accurate predictions. We also
plan to incorporate exogenous variables related to weather,
market price, production rates, etc. that could indicate pos-
sible modifications of the regular operation regimes of the
mining worksites.

On the other hand, in the future there should be efforts to
add explainable attributes to our proposed model. The pres-
ence of these attributes would positively impact the organi-
zation’s change management tactics and were no t the main
focus of this work.

Another important aspect that remains unaddressed is
how to generate the inspection schedule. This problem can
be posed as a Traveling Salesperson Problem with priorities,
where these priorities are the estimated risk or probability of
an accident. This implies that, potentially, there would not a
unique optimal schedule but a set of trade-off solutions, and
therefore, becoming a multi-objective optimization problem.

This neural network can be progressively ensembled with
or eventually replace the current experience-based model,
to support the agency’s decision making processes leverag-
ing data they already have. Assimilating a novel technology
takes an arduous path in a conservative industry like min-
ing, even more, if it has to do with accident prevention. The
novel models being proposed are currently under assessment
and it is expected that they start to be used after being ac-
cepted by the different stakeholders. So far, the outcome of
this work has been welcomed by Sernageomin, with public
high praises from the service’s direction (Minerı́a Chilena
2020).

The datasets and source code of our experiments is avail-
able online at https://github.com/Inria-Chile/mining-risk-
multitasking-model.
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