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Abstract

In recent years, a large number of photovoltaic (PV) systems
have been added to the electrical grid as well as installed as
off-grid systems. The trend suggests that the deployment of
PV systems will continue to rise in the future. Thus, accurate
forecasting of PV performance is critical for the reliability
of PV systems. Due to the complex non-linear variability in
power output of the PV systems, forecasting PV power is a
non-trivial task. This variability affects the stability and plan-
ning of a power system network, and accurate forecasting of
the performance of the PV system can reduce the uncertainty
caused during PV operation. In this work, we leverage spa-
tial and temporal coherence among the power plants for PV
power forecasting. Our approach is motivated by the obser-
vation that power plants in a region undergo similar environ-
mental exposure. Thus, one power plant’s performance can
help improve the forecast of other power plants’ power values
in the region. We utilize the relationship between PV plants
to build a spatiotemporal graph neural network (st-GNN) and
train machine learning models to forecast the PV power. The
computational experiments on large-scale data from a net-
work of 316 systems show that spatiotemporal forecasting of
PV power performs significantly better than a model that only
applies temporal convolution to isolated systems or nodes.
Furthermore, the longer the future forecast time, the differ-
ence between the spatiotemporal forecasting and the isolated
system forecast when only temporal convolution is applied
increases further.

Introduction

Due to the rapid increase in installation of commercial PV
power plants having 25 years or longer lifetimes, the oper-
ation and planning for their reliable performance is a cru-
cial challenge (Yang, French, and Bruckman 2019). Ensur-
ing reliable performance includes monitoring the slow loss
of electricity output and effectively planning based on the
PV power output. We can achieve the required reliability
when we accurately forecast power output.

To our knowledge, no work using st-GNNs is published
for forecasting PV power output. However, st-GNNs have
been used successfully in addressing other forecasting prob-
lems such as traffic forecasting (Guo et al. 2019; Yu, Yin,
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and Zhu 2018; Diao et al. 2019). Researchers’ advantage
in using st-GNNs for forecasting traffic variables is that the
traffic features at a particular intersection are correlated with
the nearby traffic intersections, thus resembling the spatial
and temporal coherence, which can help improve the predic-
tion of future values. Similarly, in PV power forecasting, the
PV power plants located in the same region will have similar
power output patterns due to commonalities in weather and
solar irradiance. Thus, a GNN model in which nodes of the
graph represents power plants and pair of nodes in the same
region are connected such that connected power plants are
useful in improving the power forecasting accuracy.

Related Work

A large number of studies have been published on fore-
casting PV power timeseries using various methods (Wu
et al. 2020; Sobri, Koohi-Kamali, and Rahim 2018; Das
et al. 2018). ARIMA, a conventional statistical method, is
typically used to solve these kinds of problems. To make
the statistical models reliable against non-stationary and
highly nonlinear timeseries, recent forecasting approaches
exploit neural network models (Cococcioni, D’ Andrea, and
Lazzerini 2012; Nespoli et al. 2019). The multi-layer per-
ceptron artificial neural network (ANN) is more robust to
non-linearity and sharp dips or rises in values. Radial ba-
sis function used in a neural network approach modeled
the PV modules’ electrical characteristics (Bonanno et al.
2012). The recurrent neural network (RNN) is a technique
widely used in timeseries modeling, and it has been used
in PV power output correction with high accuracy (Yona
et al. 2013). Classification of timeseries into cloudy, rainy,
and clear sky is an another improvement to enhance the ac-
curacy of the learning model (Shi et al. 2012; Yang, Thatte,
and Xie 2015).

Another set of approaches relies on functions and equa-
tions from physical models, clarifying the association be-
tween measurement values and environmental factors (Das
et al. 2018). Numerical Weather Prediction (NWP) mod-
els are another approach for forecasting PV power out-
put (Larson, Nonnenmacher, and Coimbra 2016). Some re-
search on forecasting power generation uses ensemble ap-
proaches of the methods mentioned above. The hybrid mod-
els try to maximize the benefits of different models and min-



imize their limitations (Wu, Chen, and Abdul Rahman 2014;
Gigoni et al. 2018). For example, hybrid models work bet-
ter when a specific period of the year may cause more error
depending on solar irradiance variability. Similarly, hybrid
models perform better when some geographical locations
have more fluctuating weather conditions leading to higher
variability in solar irradiance.

The major limitation of all the existing PV forecasting
models is that they only use the data from one single sys-
tem at a time, while ignoring the information or the data
recorded by the neighboring PV plants. The spatiotempo-
ral graph neural network (st-GNN) based forecasting mod-
els have the potential to leverage temporal and spatial coher-
ence among PV systems for the forecasting models. In graph
theory, a graph is a structure in which individual pairs of ob-
jects or entities are related in some manner. A spatiotempo-
ral graph is a structure that constitutes a temporal sequence
of individual entities and interactions between them over a
time period. In recent years, Graph Neural Network (GNN)
techniques are starting to be widely used for use cases where
signals from the neighboring nodes can be used to predict a
particular node’s values. GNNs are a generalized form of
a structured two-dimension Convolutional Neural Network
(CNN), which has successfully been used in the classifica-
tion and regression models where the input data is struc-
tured, such as images (Alex Krizhevsky, Ilya Sutskever, and
Hinton 2012; Lawrence et al. 1997; LeCun et al. 1989).
CNNs have been successfully used to classify and quantify
the degradation of PV cells exposed to harsh exposure con-
ditions using electroluminescent images (Karimi et al. 2019,
2020). In the generalized form, each pixel in CNN can be
represented as a node in the GNN. Several advances in GNN
models have been proposed; some of the widely used GNN
models are (Niepert, Ahmed, and Kutzkov 2016; Kipf and
Welling 2017; Hamilton, Ying, and Leskovec 2017).

Dataset

The dataset consists of power timeseries of 316 PV systems
represented by points on the map shown in Figure 1. The
dataset’s time interval is 5 minutes, and the length is two
years, amounting to 210,240 datapoints for each timeseries.
Some of the weather sensor data from the power plants are
of 15 minute time intervals, so they are imputed with a cubic
spline to increase data frequency to 5 minutes. There were
few systems with one minute time interval datasets, and we
sampled those to 5 minutes interval. The missing values of
less than one hour were imputed using a linear fit model,
and for gaps longer than 1 hour were imputed with month-
by-month PV power prediction method (Curran et al. 2019).
The dataset is partitioned into training, validation, and test-
ing set as 690, 20, and 20 days respectively.

Architecture of st-Graph Neural Network

In this section, we will first describe a method to build a
graph of otherwise isolated PV systems.

Graph is a prerequisite for the design of st-GNN model.
The design of the GNN architecture is guided by the train-
ing method by which model will learn. There are sev-
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Figure 1: The distribution of PV systems across the United
States and the graph model used to represent the relation-
ships between the PV systems. (a) All PV systems in our
dataset are shown by red circles on the map. (b, ¢c) Graph
showing the proximity of PV systems in which edges are in-
cluded between PV systems that are proximate according to
a low/moderate proximity threshold (e = 0, ¢ = 0.5) is ap-
plied.

eral variants of GNN such as graph generative networks,
graph auto-encoders, graph recurrent neural networks, spa-
tial graph neural network, and spectral graph neural network.
The spectral graph neural network applies graph convolution
in spectral domain (Kipf and Welling 2017), and the st-GNN
model described below is inspired by it.

PV Network Representation

Building a graph of PV systems is equivalent to assigning
edges between the nodes. We use Gaussian kernel (Shuman
et al. 2013) and a threshold value to assign edges. The value
of the kernel function varies in between O and 1, and the
threshold cutoff (e.) will determine the density or sparsity
of a graph. The aim is to find the optimal neighborhood
of a PV system or, in other words, find a value of €. such
that the GNN model gives the highest forecasting accuracy.
For a pair of PV systems “z” and “y” represented by two
nodes on a graph, we calculate the distance between them.
Let lat, and lon, represent latitude and longitude of node
x respectively. Then for nodes “z” and “y”, the distance

between them is calculated by the haversine formula for a



sphere (Goodwin 1905) Equation 1 and 2, similar to the law
of cosines equation:

a = sin*((lat, — lat,)/2)+cos(lat,)cos(lat,)
sin®((lon, — lon,)/2)

d=2x R x arcsin(v/a) 2

where R = 6371 is the radius of the earth. After the distance
is calculated between all pair of nodes, according to Equa-
tion 3, nodes which are closer will have high W; ; value. For
an edge to exist between two nodes the W; ; between them
should be higher than e. The reason for choosing distance as
a metric for edge detection is that we know from the liter-
ature that the climate zone has one of the strongest effect
on PV power output(Bonkaney, Madougou, and Adamou
2017). The nodes in a neighborhood will have similar cli-
mate zones thus their power output also has similar patterns
and will be connected.

exp( — 7‘1“52’”2),1'#]' and
. . N2
exp( — 761”2(;"]) ) >=€
otherwise

ey

Wi; = 3

0;

where, o is normalizing constant and e constants which con-
trols the sparsity of the graph. The threshold value of € is
called threshold cutoff (¢..). The value of € varies between 0
and 1. Figure 1 (b) represents the graph for ¢, = 0 while Fig-
ure 1 (c) represents the graph for €. = 0.5 where the nodes
in a region are connected by edges. There are several factors
that affect the optimal value of €, such as dataset, number of
PV plants, and their locations .

st-Graph Neural Network Model

GNN s have been proposed to extend deep learning for graph
analysis (Wu et al. 2020; Hamilton, Ying, and Leskovec
2017). GNN takes an input feature representation F’
(X, A),where X is an n-dimensional feature matrix (each
row is a feature vector for each node in a graph), and A is
the graph’s adjacency matrix. The goal is to transform F into
a proper vector representation that minimizes a loss function
L specified by downstream tasks. The GNN model is made
up of convolutional layers and temporal layers. The convo-
lutional layers in the GNN adopt a neighborhood aggrega-
tion architecture to learn a discriminative vector representa-
tion A(v) for each node v (called “node embedding”) across
multiple transformation layers. The new layer h¢(v) takes a
node embedding h*~1(v) (h°(v) is X (v) from input feature
matrix) and updates its embedding h!(v) by aggregating the
embeddings from its neighbors:

h'(v) < n concat(h'~*(v), agg(h' = (v') 1 vr € J\/(v))()4)

where, 7 is a non-linear activation function.

In the spectral domain, the graph convolution of filter
kernel g with signal x is represented as (Kipf and Welling
2017):

gxx=Ug(AN)U 5)

where, ULz is a Fourier transform of z, U is a matrix of
eigenvectors of normalized graph Laplacian matrix A =
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I-D 2AD =, Eigen decomposition of A = UAUT, such
that A is diagonal matrix of eigenvalues. Since calculating
U is an expensive operation, Equation 5 can written as its
approximate by Equation 6 (Hammond, Vandergheynst, and
Gribonval 2011).

K—-1
graz~ Y gTu(A)x 6)
k=0

where A = /\2’ A — Iy, g € RE is a coefficient

of Ty (x) (polynomial of order k), such that, T (A)(xz) =

%kal(A)(J}) — Tk,Q(A)(.’L'), T()(A) = Z, and T1 (A)
Ax. In the above equation, the value of K shows the filters
are localized up to K hops from the node and K is the size
of the kernel for graph convolution.

The temporal convolution layers are 1-D convolutions
with a one dimensional kernel filter followed by a sigmoid
gated linear unit to provide non linearity. The sigmoid func-
tion chooses the relevant elements from the input for captur-
ing complex structure and variances in the timeseries. The
graph neural network shown in Figure 2 is a series of graph
convolutional layers and temporal convolutional layers on
timeseries which gives a building block of learning frame-
work called spatiotemporal block (Yu, Yin, and Zhu 2018;
Gehring et al. 2017), to capture the spatial and temporal
dynamic behavior of each PV system. The spatiotemporal
block is a technique which can extract the most useful tem-
poral features and capture the most appropriate spatial fea-
tures concurrently (Yu, Yin, and Zhu 2018). The representa-
tion of st-GNN architecture for training and forecasting the
PV model is shown in Figure 2. We use L2 loss function as
an objective function so that loss should be minimized over
the period of time.

The network has a series of three blocks, two spatiotem-
poral (ST) blocks, and the third block is an output layer
block. Each ST block has a spatial layer sandwiched be-
tween two temporal convolutional layers. The output block
has two temporal layers connected in series, followed by a
fully connected output layer. The GNN model’s input data
dimension is RT*VXC "where H is the number of previ-
ous data points of the timeseries used in the model, N is the
total number of PV systems and C' is the number of chan-
nels in the input. The output of the model is of the form
RMXN \where M is the number of future time points for
which model will forecast.

The TensorFlow?2 (Abadi et al. 2016) library was used for
building the GNN model and the model was trained and
tested on Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz,
48 GB memory, 12 CPU cores, and 12 GB Nvidia GeForce
RTX 2080 GPU card.

Local Solar Time Alignment

Local solar time is a term which corresponds to time accord-
ing to the position of the sun in the sky relative to a specific
position on the ground such that local solar noon always hap-
pens when the sun is directly overhead (see Figure 3 (a)).
On the other hand, “’clock time” is the standardized/artificial
time that we use in our day-to-day life to standardize our
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Figure 2: Architecture of spatiotemporal graph neural network. The dimension of input layer is H x N xC, where H is the
number of previous data points or time lags in timeseries. If 2 hours of previous data points are used and the frequency is 5
minutes then the value of H becomes 24. N is number of PV systems or nodes in a graph (316 PV systems) and C' is number

of channels in the input dataset.
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Figure 3: (a) Illustration of movement of sun in a day from
sunrise to sunset. Solar noon is defined as the time when
the sun is directly over the head at any specific location.
(b)Figure shows the P,,, values of a two sample of PV sys-
tems for a day. (i) Plot of the timeseries of two PV systems
before local solar noon alignment. (ii) Plot of the timeseries
of two PV systems after local solar noon alignment.

time measurements. In clock time, nearby locations use the
same time so the sun is not always at the top for all locations
at noon time. This leads to different power timeseries curves
to have peak at different clock times as shown in Figure 3
(b) (i). Clock time variation brings asynchronicity among
the timeseries which affects the accuracy of prediction mod-
els.

The plots in Figure 3 (b) show an example of timeseries
of two PV systems before and after local solar noon align-
ment. It can be seen in Figure 3 (b)(i), the timeseries peaks
at some time after the 12 o’clock. Since both the PV sys-
tems are located in different areas, but in the same timezone,
they peak at different clock times. The local solar time align-
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Figure 4: Schematic representation of the data workflow.
The figure shows various data sources, and a program pe-
riodically executed by a cron job collects the datasets from
these sources into the Hadoop cluster. rcradletools and py-
cradletools are two packages developed internally to provide
the functionality to interact with HBase and perform data
processing tasks in the R or Python environment, respec-
tively.

ment as shown in Figure 3 (b)(ii) makes all timeseries peak
at 12 o’clock which brings synchronicity across the time-
series. This approach induces a more linearity among the
timeseries of the different PV systems.

Proposed Application Deployment

The path to application deployment involves two major
steps: 1) Data management system, 2) Machine learning
modeling and deployment.

Data Management: This step includes data acquisi-
tion, processing, and storage similar to the steps presented
in our earlier work (Arash Khalilnejad et al. 2020). For
data acquisition, the majority of data for this work comes
from various commercial PV power plant companies, PV
research sites, and weather data comes from SolarGIS. We



collect these datasets using web APIs, secure shell FTP, or
receive them as CSV files over the cloud as encrypted zip
files. The data from different sources have different formats,
so the data sets are extracted using particular file parsers,
which are scheduled to run as cron jobs. As soon as the data
is collected, the first task is to anonymize the proprietary
information and save the anonymized data in the Hadoop
cluster, shown as a schematic representation in Figure 4.
In the data processing step, timeseries from the HDFS are
read and passed through validation, tidying, and uniform
structuring. Numerical fields are checked for missing val-
ues or anomalies and assigned the quality score. The time-
series having a large number of missing values or anomalies
receive a low-quality score. Low score timeseries are then
passed through data imputation functions to improve data
quality. Finally, all the PV power timeseries that receives
high quality the score is ingested into HBase. Metadata of
the PV systems are generated based on their properties and
are also saved in HBase. Data in HBase are stored in a cell
such that the value in a cell is uniquely identified by row,
column family, column qualifier, and timestamp. Thus, ev-
ery cell is freighted with a large overhead, and the problem
becomes more intense when there are millions of rows. So,
the database should be designed such that each cell contains
a large amount of data compared to its unique identifier, and
in our design, we keep one month of data as a string in a
cell. Once the data is ingested in the database, we query the
timeseries with over two years of data and are in the same
timeperiod. For this work, we received 316 PV timeseries
located across different regions in the U.S.

Machine Learning Modeling and Deployment: The
project’s goal is to build and deploy ML models that can en-
hance PV power forecasting for commercial power plants.
Acquisition and processing of real-time data at regular in-
tervals are critical for power forecasting, so the deployment
of a production pipeline will need to have an integrated and
automated connection with the data management and infer-
ence modules. Data from HBase will be retrieved using py-
cradletools, a python package developed internally provid-
ing an interface between the data management system and
inference models. All the data analytics and ML training will
happen on the high performance cluster (HPC) side, causing
inherent lag from the real-time, so we aim for a near real-
time solution. Having more features such as temperature and
irradiance can enhance the performance of the forecasting
model. We will add more channels corresponding to each
feature in the production models. The deployed ML models
will be based on the proposed st-GNN model’s architecture
presented in the above section. The ML models’ forecasting
will be saved in a result table, and the results will be shared
with the power plants using a cloud-based APL

Results

In this section, we will present the results of our st-GNN
models. We compare the spatiotemporal model with 1-D
temporal convolution model and show that spatiotemporal
models outperfoms models having only temporal convolu-
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MAPE for 316 systems
s-t convolution temporal convolution
Forecast €.=0.375 €.=1.0
(minute) mean sd mean sd
120 11.01 5.04 18.98 5.15
105 9.31 4.36 15.63 4.57
90 8.39 3.87 13.62 4.07
75 7.67 3.36 11.78 3.54
60 7.24 2.87 10.12 2.96
45 6.28 2.61 8.42 2.45
30 4.68 2.48 6.65 2.13
15 2.75 2.37 3.92 2.01

Table 1: Mean and standard deviation of MAPE values for
temporal convolution (standalone) vs spatiotemporal convo-
lution for PV systems with optimum ¢, for st-GNN network.

Forecast 77 systems 316 systems

(minute) mean sd mean sd
120 12.92 4.33 11.01 5.04
105 11.68 4.16 9.31 4.36
90 10.77 3.97 8.39 3.87
75 10.37 3.77 7.67 3.36
60 9.87 3.30 7.24 2.87
45 9.23 3.12 6.28 2.61
30 7.96 3.62 4.68 2.48
15 5.16 3.32 2.75 2.37

Table 2: Mean and standard deviation of MAPE value for
forecasting 77 PV systems and 316 PV systems for optimum
value of ¢, for 15 minutes to 120 minutes.

tion. The results of the GNN models are computed on 20
days of the test dataset. Mean absolute percentage error
(MAPE) is calculated for each PV system using their ob-
served value from the test data and forecasted value from
the models. Table 1 compares the accuracy of the model for
the spatiotemporal model (e, = 0.375 or nodes in the neigh-
borhood of the network are optimally connected) with the
network when the nodes are isolated and only 1-D convo-
lution, or temporal convolution is applied. Table 2 compare
the two models when there are 316 PV systems and when
only 77 PV systems were selected to show that the model
performs better when there are more PV systems in the net-
work. The tables show mean and standard deviation (sd) of
MAPE values. The variability of the results can be ascer-
tained by the violin/boxplots of Figure 5. The width of the
violin plot shows the density of data points. Box plots inside
the violin plots show median lines of MAPE score for 316
PV systems, and the height of boxes shows the range from
first quartile to third quartile.

Plots in Figure 5 (a-d) shows that the optimum value of
the network sparsity can be found empirically by varying
the value of €. in the range of [0-1]. Consider Figure 5 (a), it
shows 9 violin plots, corresponding to 9 different values of



€. between 0 and 1. Each violin plot represents the MAPE
values of 316 PV systems at a time point of 15 minutes in
the future calculated for a specific value of €. It is observed
that the optimum value of €. for this model is 0.375, which
is a value between 0 and 1. In Figure 5, we also observe that
the difference between the error values of an optimum spa-
tiotemporal network (e, = 0.375) and only temporal net-
work (e, = 1) increases as the forecast time in future in-
creased from 15 minutes to 120 minutes.

Figure 6 illustrates the MAPE results for the power pre-
diction when the number of previous data points (/) used in
the model is varied between 24 (2 hours) to 72 data points (6
hours) with the interval of 12 data points (1 hour). Figure 6
(a) shows the results of MAPE when the forecast future time
is 15 minutes and Figure 6 (b) shows the MAPE value when
the future time is 120 minutes.

Discussion

In this work, we leverage the st-GNN technique based on the
motivation that spatial and temporal coherence among PV
power plants can help improve forecasting. The local solar
noon alignment method improved the power plants’ tempo-
ral coherence by shifting all timeseries to local solar time.
Solar noon alignment improves the model performance be-
cause it reduces the non-linearity among PV time-series. The
result in Figure 5 shows the forecast values from 15 minutes
to 120 minutes and €. from O to 1 for one-channel st-GNN
model. The ¢, = 0.375 is an optimum value which con-
sistently gives the highest accuracy for the model or least
MAPE values. The optimum value of €. = 0.375 suggests
that neither a graph with all pairs of nodes connected nor
the ones having no edges are best, but a partially connected
graph, in between the two extremes, gives the best perfor-
mance. In other words, the signals from the nearby power
plants are useful in predicting future values of a particular
system, but not all PV systems are useful. In Figure 5, the
difference between MAPE values of st-GNN network with
isolated nodes (e, = 1) and an optimal value of €. increases,
indicating that the effect of spatiotemporal coherence is es-
pecially significant when predicting the values longer in the
future. In the plots of Figure 6, we show the prediction val-
ues from the st-GNN models where time lag varies from 24
points (2 hours) up to 72 points (6 hours). Figure 6 (a) shows
power forecast at 15 minutes & Figure 6 (b) shows the re-
sults for 120 minutes in the future. The prediction error or
MAPE value shows little improvement after increasing the
number of time lags from 24 points(2 hours) to 72 points (6
hours); this suggests that for more accurate results, time lag
of 2 hours can be increased. We also observe that the MAPE
are less scattered when we increase the number of time lags
in the model.

Table 2 shows that increasing the number of PV plants
helps improve the overall accuracy of the model by low-
ering the MAPE values. In Table 1, we see that the spa-
tiotemporally coherent st-GNN model outperforms the st-
GNN model in which the nodes are isolated.
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Figure 5: The four plots show performance of st-GNN fore-
casting models. Mean absolute percentage error (MAPE) on
y-axis when predicting future values (a) 15 minutes to (d)
120 minutes. The x-axis corresponds to threshold cutoff e
value while building the graph of PV system locations, ep-
silon value of 0 indicates all nodes are connected and epsilon
value of 1 indicates no edge exists in the graph and only tem-
poral convolution is applied.

Conclusion

In this work, we have demonstrated the advantage of st-
GNN network models that uses spatial and temporal coher-
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Figure 6: The plots show performance of spatiotemporal
forecasting models when the number of time lags are in-
creased from 24 (2 hours) to 72 (6 hours). (a) shows the plot
when forecasting 15 minutes in the future and (b) shows the
plot when forecasting 120 minutes in the future.

ence over the network in comparison to models in which
only temporal or 1-D convolution is applied. Local solar
time alignment improves the temporal coherence among the
timeseries as the peak of the timeseries for every system
occurs at 12 o’clock. The effect of spatiotemporal coher-
ence is more evident when the future forecast time is longer,
i.e., 120 minutes. Increasing the number of PV systems im-
proved the overall accuracy of the systems, suggesting that
increasing the nodes in the network contributes information
that improves the overall accuracy of the model. The Error or
the models’ MAPE decreases from 19% in an isolated net-
work to 11% for an optimally connected network having e,
equals 0.375, when forecasted for 120 minutes in the future.
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