Over-MAP: Structural Attention Mechanism and Automated Semantic Segmentation Ensembled for Uncertainty Prediction
DOI:
https://doi.org/10.1609/aaai.v35i17.17798Keywords:
Computer Vision, Deep Learning, Fine-grained Classification, Attention MechanismsAbstract
Both theoretical and practical problems in deep learning classification require solutions for assessing uncertainty prediction but current state-of-the-art methods in this area are computationally expensive. In this paper, we propose a new confidence measure dubbed Over-MAP that utilizes a measure of overlap between structural attention mechanisms and segmentation methods, that is of particular interest in accurate fine-grained contexts. We show that this classification confidence increases with the degree of overlap. The associated confidence and identification tools are conceptually simple, efficient, and of high practical interest as they allow for weeding out misleading examples in training data. Our measure is currently deployed in the real-world on widely used platforms to annotate large-scale data efficiently.Downloads
Published
2021-05-18
How to Cite
Kantor, C. A., Boussioux, L., Rauby, B., & Talbot, H. (2021). Over-MAP: Structural Attention Mechanism and Automated Semantic Segmentation Ensembled for Uncertainty Prediction. Proceedings of the AAAI Conference on Artificial Intelligence, 35(17), 15316-15322. https://doi.org/10.1609/aaai.v35i17.17798
Issue
Section
IAAI Technical Track on Emerging Applications of AI