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Abstract

Solar flares are caused by magnetic eruptions in active re-
gions (ARs) on the surface of the sun. These events can have
significant impacts on human activity, many of which can
be mitigated with enough advance warning from good fore-
casts. To date, machine learning-based flare-prediction meth-
ods have employed physics-based attributes of the AR im-
ages as features; more recently, there has been some work that
uses features deduced automatically by deep learning meth-
ods (such as convolutional neural networks). We describe a
suite of novel shape-based features extracted from magne-
togram images of the Sun using the tools of computational
topology and computational geometry. We evaluate these fea-
tures in the context of a multi-layer perceptron (MLP) neu-
ral network and compare their performance against the tra-
ditional physics-based attributes. We show that these abstract
shape-based features outperform the features chosen by the
human experts, and that a combination of the two feature sets
improves the forecasting capability even further.

Introduction

Solar flares are caused by rearrangement of magnetic field
lines in active regions (ARs) on the surface of the Sun. These
bright flashes arise from the collision of accelerated charged
particles with the lower solar atmosphere. The coronal mass
ejections (CMEs) that can accompany these events can have
a significant impact on a range of human activity: damag-
ing spacecraft, creating radiation hazards for astronauts, in-
terfering with GPS, and causing power grid failures, among
other things. Lloyd’s has estimated that a power outage from
an event associated with a powerful solar flare could produce
an economic cost of 0.6 to 2.6 trillion dollars (Maynard,
Smith, and Gonzalez 2013). Many of these losses could be
mitigated with enough advance accurate warning of impend-
ing solar flares and the accompanying CMEs through actions
such as switching to higher frequency radio for over-the-
horizon communications with international airline flights,
preparing satellites in orbit for safe-mode operations, and
bringing additional generation capacity online to balance
power grids against possible geomagnetically induced cur-
rent disturbances. Since we currently lack these accurate ad-
vanced warnings, research into how to create them is a high
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priority.

Strategies for flare forecasting rest on the fact that the
complexity of the magnetic field in an AR is known to be rel-
evant to solar-flare occurrence. Figure 1 shows three obser-
vations at different times of the line-of-sight (LOS) magnetic
field—called a magnetogram—observed from the sunspot
AR 12673 as it evolved from a simple configuration as seen
in panel (a) to more complex configurations seen in panels
(b) and (c). The white and dark regions represent the LOS
magnetic field exiting and entering the Sun’s surface (termed
positive and negative polarity, respectively). This particular
AR produced a powerful flare within 24 hours of the com-
plex mixed-polarity state observed in panel (b).

It is no surprise that these kinds of magnetic field ob-
servations have played a central role in machine learning-
based forecasting models for solar flares. Typically, this has
involved the use of features that solar-physics experts con-
sider to be revelant to solar flaring, such as the magnetic field
or electric current strength, current helicity, magnetic shear,
and the like.! Recently, there has been a push to use convo-
lutional neural networks (CNNSs) to automatically learn la-
tent features that are statistically correlated to the occurence
of a solar flare. In this work, we take a wholly different
approach, defining a novel feature set based purely on the
shapes of the structures in the magnetogram. We formally
quantify the complexity of an active region by using com-
putational geometry and computational topology techniques
on the radial component of the photospheric magnetic field,
focusing specifically on the proximity and interaction of the
polarities, as well as the components and holes in sub-level
thresholded versions of the magnetogram image. Following
a brief review of ML-based flare forecasting work and a de-
scription of the data, we present the results of a comparative
study about the efficacy of these features in a multi-layer
perceptron model.

In operational space weather forecasting offices, human
forecasters currently use the McIntosh (McIntosh 1990) or
Hale (Hale et al. 1919) classification systems to categorize
active regions into various classes; they then determine the
statistical 24-hour flaring probability derived from histor-

"Please refer to Table 1 of Deshmukh et al. (2020) for a com-
plete list and to Bobra et al. (2014) for details about the associated
calculations.
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Figure 1: Three observations of line-of-sight magnetograms of sunspot #AR 12673, which produced multiple major (M-class
and X-class) flares as it crossed the disk of the Sun in September 2017: (a) at 0000 UT on 9/1, (b) at 0900 UT on 9/5, about 24
hours before producing an X-class solar flare, and (c) at 1000 UT on 9/7, around the time of an M-class flare.

ical records (Crown 2012). Over the past decade, signifi-
cant effort has been devoted to machine-learning solutions
to this problem, including support vector machines (SVM)
(Bobra and Couvidat 2015; Boucheron, Al-Ghraibah, and
McAteer 2015; Nishizuka et al. 2017; Yang et al. 2013;
Yuan et al. 2010), multi-layer perceptron (MLP) models
(Nishizuka et al. 2018), Bayesian networks (Yu et al. 2010),
logistic regression (Yuan et al. 2010), LASSO regression
(Campi et al. 2019), linear classifiers (Jonas et al. 2018),
fuzzy C-means (Benvenuto et al. 2018) and random forests
(Campi et al. 2019; Nishizuka et al. 2017). Recently, the
ML-based flare forecasting community has turned to deep
learning methods for automatically extracting important fea-
tures from raw image data that are relevant for flare-based
classification (Chen et al. 2019; Huang et al. 2018; Park
et al. 2018; Zheng, Li, and Wang 2019). The work cited in
this paragraph is only a representative subset of ongoing re-
search in this active field; for a more complete bibliography,
please refer to Deshmukh et al. (2020).

In this paper, we use magnetograms from the Helio-
seismic and Magnetic Imager (HMI) instrument onboard
NASA’s Solar Dynamics Observatory (SDO), which has
been deployed since 2010. Rectangular cutouts of each AR
on the disk of the sun in each of these images, termed
Spaceweather HMI Active Region Patches (SHARPs)—
three examples of which make up Figure 1—are available
to download from the Joint Space Operations Center web-
site (jsoc.stanford.edu/). The metadata that accompa-
nies each SHARP record contains values for the physics-
based features mentioned above: i.e., the attributes that do-
main experts consider meaningful for the physics of the sys-
tem. The dataset for the study reported in this paper, which
covers the period from 2010-2016 at a one-hour cadence,
focuses specifically on the radial magnetic field component
from these images because of its role in magnetic reconnec-
tion.

The active regions in this dataset—which contains about
2.6 million data records, each approximately 2 MB in size,
totaling 5 TB of data—are known to have produced about
1250 major flares within 24 hours of the image time (Schri-
jver 2016). We use the NOAA Geostationary Operational
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Environment Satellite (GOES) X-ray Spectrometer (XRS)
flare catalog to identify these events and label the associated
SHARP with a 1 if it produced a major flare—one whose
peak flux in the 1-8 A range is greater than 10~°W/m?—in
the 24 hours following the time of the sample, and 0 other-
wise. Next, we discard all the magnetogram images that con-
tain invalid pixel data (NaN values). The resulting data set
included 3691 active regions, of which 141 produced at least
one major flare as they crossed the Sun’s disk and 3550 did
not. This corresponded to 438, 539 total magnetograms, of
which 5538 and 432821, respectively, were labeled as flar-
ing and non-flaring.

A large positive/negative imbalance like this (78:1) is
an obvious challenge in a binary classification machine-
learning problem, as described at more length below. An-
other issue is that multiple images are available from a sin-
gle AR during the run-up to a particular flare. To avoid ar-
tificially boosting our model accuracy by, for example, test-
ing on an image that is one hour earlier than, and thus very
similar to, an image in the training set, we perform an addi-
tional check each time we split the data into training (70%)
and testing (30%) sets to ensure that all the magnetogram
images belonging to a given AR are grouped together and
placed either in the training or the testing set. 10 different
random seeds are used for shuffling the data to generate 10
training/testing set combinations.

Shape-based Featurization of Active Regions

As in many machine-learning problems, the choice of
features is critical here. Quantitative comparison studies
show that none of the methods described above that use
physics-based features extracted from magnetic field data
are significantly more skilled—and indeed are typically less
skilled—than current human-in-the-loop operational fore-
casts (Barnes et al. 2016; Leka et al. 2019a,b). In other
words, while the physics-based attributes are no doubt im-
portant, they may not necessarily form an effective feature
set for solar-flare forecasting.

The novelty of our work is our approach to the feature-
engineering task from a mathematical standpoint, rather than
a physics-based one. Specifically, we use computational



topology and computational geometry to extract features
that are based purely on the shapes of the regions in the mag-
netograms. The underlying conjecture is that this is a useful
way to capture the complexity of these regions—which is
known to be related to flaring. As preliminary evidence in
favor of that conjecture, we show that shape-based features
outperform the traditional physics-based features in the con-
text of a multi-layer perceptron model, yielding a better 24-
hour prediction accuracy.

Note that our objective in this work is not to directly com-
pare our forecasting model with other methods, but to pri-
marily convince the reader of the importance of shape-based
features for solar flare forecasting.

Computational Geometry

To compute geometry-based features from each magne-
togram, we first remove noise by filtering out pixels whose
magnetic flux magnitude is below 200 G, then aggregate the
resulting pixels into clusters if they touch along any side or
corner. We then determine the number and area of each clus-
ter, discarding all whose area is less than 10% of the max-
imum cluster area. We perform these operations separately
for the positive (> 200 () and negative (< —200 () fields.

We then compute an interaction factor (IF) between all
positive/negative polarity pairs, defined in a manner similar
to the so-called Ising Energy used by Florios et al. (2018)
(introduced first in Ahmed et al., 2010):

Bpos X Bneg

2 .
mn

IF = )

r
where B, and B4 are the sums of the flux over the re-
spective components and 7,,;, is the smallest distance be-
tween them. A high IF' value is an indication of strong,
opposite-polarity regions in close proximity—an ideal con-
figuration for a flare. Following this reasoning, we choose
the pair with the highest I F' value and derive a number of
secondary features from it, such as the center of mass dis-
tance between the two clusters. Extraction of the most in-
teracting pair on an example magnetogram is shown in Fig-
ure 2. Together with the values used in the computation of
I F—the magnetic flux of the positive and negative clusters,
the center of mass distance between them, the smallest dis-
tance between them, the interaction factor, etc.—these make
up the 16-element feature vector that quantifies the interac-
tion of the opposite polarity regions. The feature extraction
process together with the final list of geometry-based fea-
tures is summarized in Algorithm 1.2

Computational Topology

Computational topology, also known as topological data
analysis (TDA) (Ghrist 2008; Kaczynski, Mischaikow, and
Mrozek 2004; Zomorodian 2012), operationalizes the ab-
stract mathematical theory of shape to allow its use with
real-world data. These methods, which have been used to
advantage in applications ranging from biological aggrega-
tion models (Topaz, Ziegelmeier, and Halverson 2015) to the

ZPlease refer to Table 2 of Deshmukh et al. (2020) for a com-
plete description.
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Figure 2: Process for determining the most interacting pos-
tive/negative cluster pair in geometry-based feature extrac-
tion. From a sample magnetogram shown in panel (a), pos-
itive (blue) and negative (yellow) clusters of a sufficiently
large size are extracted (panel b); from these, the most in-
teracting cluster pair is determined via calculations of the
magnetic flux in each of the paired regions (panel c).

large-scale structure of the universe (Xu et al. 2019), provide
a useful strategy for extracting and codifying the spatial rich-
ness of magnetograms like the ones shown in Figure 1.

The homology of an object formally quantifies its shape
using the Betti numbers: the number of components (53),
holes (1), voids (52), and so on. When one has a smooth,
well-defined object, the textbook formulation of homology
addresses this quantification, but real-world data—a finite
collection of points or a set of pixels—does not really have
a “shape.” TDA handles this by filling in the gaps between
the data points with different types of simplices. The sim-
plest way to do this maps well to pixellated images; one can
create a manifold from a selected set of pixels in an image
by replacing each one by a cubical simplex—a square piece
complete with its vertices and edges. This leads to the no-
tion of connectedness amongst discrete pixels: a pair of pix-
els are said to be “connected” if their corresponding cubical
simplices share an edge or a vertex. Such connections lead
to the formation of different connected components, holes,
etc.

In images where the pixel values range over some inter-
val, it can be useful to combine this idea with thresholding.
Figure 3 demonstrates the process of generating a cubical
complex for a range of threshold values .



Algorithm 1 Geometry-based Feature Extraction

for each SHARPs magnetogram image do

Compute the interaction factor IF (Eqn. 1).

1:
2
3
4.
5:
6.
7 end for
8

9

Cap magnitude of all pixels to 200G from below, preserving the sign of each pixel.
Find positive and negative flux clusters in the magnetogram.

Remove clusters with area less than 10% of the maximum cluster size.

for each pair of positive and negative clusters { Bp,s, Bpeg } do

Determine the pair with the maximum IF; call it the most interacting pair (MIP): { Bpos, Bpeg }™*".
Extract 16 geometry-based features: total positive and negative clusters in the magnetogram (2), areas of the largest

positive and negative cluster (2), total magnetic fluxes of the largest positive and negative cluster (2), IF (1), MIP center
of mass distance (1), MIP smallest distance (1), ratio of the MIP center of mass distance to the MIP smallest distance (1),
total magnetic fluxes of the MIP clusters (2), areas of the MIP clusters (2) and total flux densities of the MIP clusters (2).

10: end for

Algorithm 2 Topology-based Feature Extraction

1: for each SHARPs magnetogram image do
2:

3:

4: end for

Compute ; persistence diagrams using a cubical complex algorithm for positive and negative flux values.
Count the number of “live” 8; holes for 20 flux values in the range [—5000G, 5000G].

(Bo, B1) = (0,0) (Bo, B1) = (1,0)

(a) Example Image (b) t=0 (c) t=1
(Bo, B1) = (4,1) (Bo, B1) = (1,5) (Bo, B1) = (1,0)
(d) t=2 (e) t=3 (f) t=4
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Figure 3: Computational topology: (a) Image-based dataset.
(b)-(f) Cubical complex of that dataset for five values of sub-
level thresholding (¢ = [0, 1, 2, 3, 4]). For each complex, the
threshold ¢ and the (S, 81) counts are mentioned. (g): 51
Persistence diagram.
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When the threshold is low, as in Figure 3(b), none of the
pixels are in the complex (3p = 0) and it has no holes
(81 = 0). As t is raised and lower-value pixels enter the
computation, the complex develops a small connected com-
ponent at the top right (5 1). Four different compo-
nents can be observed in Figure 3(d) for a threshold ¢t = 2;
at t = 3, all the components become merged together. In
addition to the formation of components, two-dimensional
“holes” are also formed when edges from various cubical
simplices form a loop in the complex that is not filled by
a cubical simplex (dark regions surrounded by green edges
on all sides). We can see the presence of one and five holes,
respectively, for{ = 2 and ¢t = 3.

This formation and merging of the various components
and holes with changing threshold captures the shape of the
set in a very nuanced way. The idea of persistence, first in-
troduced in Edelsbrunner, Letscher, and Zomorodian (2000)
(and independently by Robins, 2002), is that tracking that
evolution allows one to deduce important information about
the underlying shape that is sampled by these points. To cap-
ture all of this rich information, one can use a single plot
called a persistence diagram (Edelsbrunner, Letscher, and
Zomorodian 2000). Most components, for example, have
birth and death parameter values, where they appear and dis-
appear, respectively, from the construction. A [3y-persistence
diagram has a point at (tpir¢h, tdeatn) for each component,
while a 31 -persistence diagram (PD) does the same for all
the holes. The 3; PD for our toy image example is shown
in Figure 3(g). Multiplicity of different holes with the same
(tvirths tdeatn) 1 represented by color; the single hole that
formed at ¢ = 2 and died at ¢ = 3 is represented in blue,
whereas the five holes corresponding to (3,4) are colored
red.

The [, persistence diagram is the basis for our topology-
based feature set. For each magnetogram, we first generate



separate PDs for the positive and negative polarities. Figure
4 shows (31 PDs for the positive flux field in the series of
magnetograms in Figure 1. The increase in the complexity
of the AR between 2017-09-01 00:00:00 UT and 2017-09-
05 09:00:00 UT is reflected in the patterns in the PDs: Figure
4(b) (24 hours prior to a flare) contains a far larger number of
off-diagonal holes—i.e., those that persist for larger ranges
of t—than Figure 4(a), which is a newly formed AR.

This visual evidence supports our claim that PDs can ef-
fectively quantify the growing complexity of a magnetogram
during the lead-up to a flare. The next step is to deter-
mine whether that observation translates to discriminative
power in the context of a machine-learning method. This re-
quires one more step: vectorization of the persistence dia-
grams into a set of features. For this, we use a very sim-
ple method, choosing a set of 20 flux values in the interval
[-5000G, 5000G], and counting the number of holes that
are “live” in the PDs at each of these flux values. Repeating
this operation separately for the positive and negative po-
larities, we obtain 20 entries for our topology-based feature
set. The feature extraction process is briefly summarized in
Algorithm 2.

While our persistence diagram vectorization approach is
relatively simple, there has been a significant effort over the
last few years to more efficiently vectorize persistence dia-
grams for using them with ML models (Adams et al. 2017;
Bubenik 2015; Carriere et al. 2019; Carriere, Cuturi, and
Oudot 2017; Kusano, Fukumizu, and Hiraoka 2016). We
plan to incorporate some of these techniques in future work
to improve our solar flare prediction model.

Machine Learning Model

As a testbed for evaluating the different feature sets, we de-
sign a standard feedforward neural network using PYTORCH
with six densely connected layers. The input layer size is
variable depending on the size of the feature set; the out-
put layer contains two neurons corresponding to the two
classes—flaring and non-flaring. The four intermediate lay-
ers contain 36, 24, 16 and 8 neurons respectively, when
counting from the direction of the input to the output layer.
To prevent over-fitting, a Ridge Regression regularization
with a penalty factor is used at each layer that limits the Lo
sum of all the weights. At each hidden layer, a ReLU acti-
vation is used, with a softmax activation applied to the final
layer. We use an Adagrad optimizer for updating the model
weights during the back propagation. A batch size of 128 is
used in the gradient descent. The loss function used for opti-
mization is a weighted binary cross-entropy error; since the
dataset is imbalanced, a weight greater than 1 is associated
with the flaring class to penalize a flare misprediction more
than a non-flare misprediction. Finally, the model is trained
over 15 epochs before evaluation.

Hyperparameter Tuning

For each feature set combination, we tune a number of im-
portant model hyperparameters— the learning rate, the Lo
penalty regularization factor, the cross-entropy weight ratio
and the learning rate decay—to ensure that the model is op-
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timized for the corresponding feature set and the comparison
is fair. Our tuning algorithm is as follows:

1. Select 40 different hyperparameter combinations using
the python bayesopt library (Martinez-Cantin 2014),
which employs a Gaussian process-based Bayesian sam-
pling approach.

Use a five-fold cross-validation approach to determine
the performance of each hyperparameter combination
by evaluating the average validation True Skill Statistic
(TSS) metric score (Woodcock 1976) across the five folds.

Select the hyperparameter combination with the highest
score and use it to train the model on the full training set,
then evaluate this model on the test set.

This procedure is followed for all 10 training set/testing
set splits of the magnetogram data described earlier. We
use the ray . tune library (Liaw et al. 2018) to parallelize
the effort of this computationally intensive task. With this
setup, each tuning experiment for a single training-test com-
bination and a single feature set takes about 5 hours on an
NVIDIA Titan RTX GPU.

Results

To determine whether these geometry- and topology-based
feature sets improve upon, or synergize with, the commonly
used physics-based SHARPs feature sets described in the
third paragraph of the introduction, we follow the procedure
described in the previous section for each feature set in iso-
lation, as well as in various combinations with the other sets.

To evaluate the results, we employ a number of standard
metrics from the prediction literature: accuracy, precision,
recall, True Skill Statistic (TSS), Heidke Skill Score (HSS),
and frequency bias (FB). These metrics, which assess cor-
rectness in different ways, are derived from the entries of the
contingency table generated by comparing the model fore-
cast against the ground truth—True Positives (TP), False
Positives (FP), False Negatives (FN) and True Negatives
(TN). A description of these metrics can be found in Crown
(2012) and Leka et al. (2019a). In the context of this prob-
lem, a flaring magnetogram is considered as a positive while
a non-flaring magnetogram is considered a negative. For an
imbalanced dataset like this, the standard accuracy metric is
not very useful: a simple model that always predicted “no-
flare” would have a high accuracy of 98.7%. The True Skill
Statistic (TSS) score addresses this, striking an explicit bal-
ance between correctly forecasting the positive and negative
samples in a highly-imbalanced dataset. TSS scores range
from [—1, 1], where a score of 0 indicates the model doing
as well as an “always no-flare” forecast or a chance-based
forecast. The Heidke Skill Score (HSS) is another normal-
ized metric used in this literature that takes values in the
range of [—o0, 1] and reports a score of 0 for a chance-based
forecast. Frequency bias (FB) measures the degree of over-
forecasting (F'B > 1) or underforecasting (F'B < 1) in the
model.

The results of these evaluation experiments, which are
summarized in Table 1, show that the geometry features
do almost as well as, or slightly better than, the SHARPs
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well before the major flare that was generated by this active region at 0910 UT on 6 September 2017.

Accuracy Precision Recall FB TSS HSS

Perfect score 1 1 1 1 1 1
SHARPs (19) 0.84 +£0.02 0.06£0.01 0874005 13.84£1.93 0.70+0.01 0.09+0.02
Geometry (16) 0.82+0.01 0.06£0.01 0.89+0.04 1489+1.15 0.71+£0.04 0.09+0.01
Topology (20) 0.86 +£0.02 0.08£0.01 090+0.02 1220£1.96 0.75+0.03 0.12+0.02
SHARPs + Geometry (35) 0.84 +=0.02 0.07£0.01 0.89+0.05 13.24+198 0.73£0.03 0.11 +0.01
SHARPs + Topology (39) 0.86 +0.01 0.08 £0.01 0.89+0.03 11.55+1.06 0.75+0.03 0.12+0.01
All three sets (55) 0.86 +0.01 0.08+£0.01 0874004 11.77£127 0.74+0.03 0.11=+£0.01

Table 1: Performance of the various feature sets. Numbers in paranthesis indicate the number of elements in the input feature
vector. For all the metrics except for frequency bias (FB), higher is better.

features, whereas the topology features outperform the
SHARPs features by a significant margin, as assessed by
the TSS score (= 0.05). Combining the shape-based fea-
tures with the physics-based features reveals some useful
synergies: all of the pairwise-combined feature sets out-
perform the individual feature sets. The size of the im-
provement varies: the effect is somewhat stronger when
geometry-based features are involved. Interestingly, com-
bining all three feature sets does slightly worse than the
SHARPs-topology combination: that is, simply using more
features does not guarantee better performance, a trend that
has been noted in the flare-forecasting literature, e.g. Jonas
et al. (2018). These improvement trends are visible across
all of the metrics in the table.

To summarize: the shape-based features outperform
and/or supplement the predictive power of the SHARPs fea-
tures. In the context of our MLP model, this is a particularly
striking result: abstract shape-based features automatically
extracted from the magnetic field of an active region do as
well or even better than handcrafted features viewed by ex-
perts as relevant to the physics of an active region and the
flaring process.

A look at the other metrics in Table 1 shows that tuning
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the model for the TSS can impact some of the other met-
rics. A value of F'B > 1—i.e., low scores for precision and
high scores for recall—indicates a high percentage of false
positives (FP) and a low percentage of false negatives (FN).
That is, our model is essentially an overforecasting model: it
sacrifices false alarms (FP) in order to lower missed events
(FN). This is a trend observed in other flare-prediction mod-
els in the literature, such as DeepFlareNet (Nishizuka et al.
2018). Via further investigation, we found that this is the
consequence of tuning the binary cross-entropy loss func-
tion weight. As a consequence of tuning for the TSS met-
ric, this parameter takes on high values (> 150), causing the
model to err on the side of correctly forecasting the flaring
magnetograms. With our hyperparameter tuning framework,
it is possible to optimize for some other metric based on the
priorities of the forecaster.

Deployment

Deployment is a major aim for us, since this research is pro-
ceeding in the Space Weather Technology Research and Ed-
ucation Center, an organization that has a strong focus on
transitioning research models and tools to operations. Both
NOAA’s Space Weather Prediction Center (a division of the



National Weather Service) and NASA’s Community Coor-
dinated Modeling Center have capabilities for comparative
validation of various space weather forecasting tools. We
will submit our final model for comparison against other
solar flare forecasting systems to one or both of these gov-
ernment organizations for comparative validation. As in ter-
restrial weather forecasting, it is ultimately up to the Na-
tional Weather Service which tools they choose to deploy,
and those judgments are based not only on quantitative met-
ric comparisons but on ease of use in their human-in-the-
loop operational forecasting environment. We are also in dis-
cussions with the UK Met Office for evaluation and deploy-
ment of several forecasting innovations including this solar
flare prediction model.

As an initial step for deployment, we compared our model
with the operational flare-forecasting models evaluated in
Leka et al. (2019a). We used a dataset similar to the one
used in that paper (training set: 2010-2015, testing set: 2016-
2017), trained our shape-based model using topological and
SHARPs feature sets, and limited our comparison to the
M1.0+/24hr flare forecasting problem (see the top panel of
Figure 5, Leka et al., 2019a). When tuned on the TSS met-
ric, our proposed shape-based model returns a TSS score
of 0.78, outperforming all the existing operational systems
(TSS = [0-0.5]). However, our model produces a high FB
score of 20.62 (i.e., overforecasting), and performs poorly
on other metrics such as accuracy (0.89). In comparison, the
existing forecasting systems report an FB score in the range
of [0-1.5] and an accuracy of approximately 0.95 (excluding
a single outlier). Optimizing our shape-based model on the
precision metric, on the other hand, reduces the false pos-
itives to 0, improving the accuracy (0.995) and FB (0.30)
and making them on par with or better than the operational
forecasting models. This comes at the cost of a lowered TSS
score (0.30).

Conclusions

In this work, we introduced novel shape-based features
constructed using tools from computational geometry and
computational topology. We successfully demonstrated their
higher forecasting capability when compared to the physics-
based features that are traditionally used in the context of
a multi-layer perceptron model. This is an important result
for ML-based solar flare forecasting research, and a stronger
result than many other feature comparison approaches—
for example Chen et al. (2019), which showed that CNN
autoencoder-extracted features from magnetograms did as
well as SHARPs-based features.

Our future directions will focus on alternative modeling
approaches, improved feature engineering, and metric opti-
mization strategies. More specifically, this will include val-
idating our results with alternative ML models (LSTMs,
SVMs), improved featurization/vectorization of persistence
diagrams, performing multivariate feature ranking to un-
derstand feature relevance with solar flares and finally, in-
vestigating optimization trade-offs over the different met-
rics using our hyperparameter tuning framework. The fea-
ture engineering methodology in this work will eventually
be integrated into a hybrid solar flare forecasting model that
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will use CNN-extracted features from solar magnetic and at-
mopsheric data in combination with the physics- and shape-
based features.
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