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Abstract

Marine ecosystems directly and indirectly impact human
health, providing benefits such as essential food sources,
coastal protection and biomedical compounds. Monitoring
changes in marine species is important because impacts such
as overfishing, ocean acidification and hypoxic zones can
negatively affect both human and ocean health. The US
west coast supports a diverse assemblage of deep-sea corals
that provide habitats for fish and numerous other inverte-
brates. Currently, National Oceanic Atmospheric Adminis-
tration (NOAA) scientists manually track the health of coral
species using extractive methods. In this paper, we test the
viability of using a machine learning algorithm Convolu-
tional Neural Network (CNN) to automatically classify coral
species, using field-collected coral images in collaboration
with NOAA. We fine tune the hyperparameters of our model
to surpass the human F-score. We also highlight a scalable
opportunity to monitor ocean health automatically while pre-
serving corals.

Introduction
Deep-sea corals are a widespread and diverse group that
provide complex habitats for many other species (Roberts,
Wheeler, and Freiwald 2006). They are distributed in cold
water from 4-12°C and can occur as individual colonies
or in dense aggregations. Deep-sea coral ecosystems have
been shown to be important spawning, nursery and feed-
ing grounds for numerous associated fish species (D’Onghia
2019). Despite their important functional roles, deep-sea
corals are vulnerable to damage caused by fishing and
changing environmental conditions including rising ocean
temperatures and acidity. Monitoring changes in the deep-
sea is challenging but important as the health of the oceans is
inextricably linked to human health. In addition to providing
seafood, the ocean also removes atmospheric CO2 and regu-
lates global temperature, thereby affecting our weather, agri-
culture and water supply. Consequently, monitoring oceans’
health is essential to understanding how environmental
changes will impact humans. Improving ocean monitoring
technology may contribute to the global effort to maintain a
healthy environment for all life. For example, coral imaging
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contributes to the identification and cataloging of species,
enabling scientists to study trends over time in ocean health.

The goal of this study is to design an applied machine
learning (ML) application that leverages Google’s Tensor-
Flow framework to classify coral species for NOAA. The
application uses a fine tuned Inception v3 CNN ML model
to classify species from coral images. We analyze test re-
sults and various TensorFlow parameters to show the signif-
icance of fine tuning the model. This paper will provide a
complete ML solution (using coral classification) to be used
by field scientists. This solution could be extended to de-
tect coral health automatically. An autonomous underwater
drone could capture coral images and send them to a central
database where the images could be analyzed by our appli-
cation. This approach would be a significant step towards the
larger goal of monitoring ocean health automatically.

Starting in 2007 Northwest Fisheries Science Center
(NWFSC) survey scientists began collecting clippings from
corals collected during trawl surveys for genetic analysis
and photos of whole specimens for field identification pur-
poses. These collections have resulted in increased knowl-
edge about the distribution and abundance of corals and sea
pens along the western coast of the U.S. Although this has
resulted in range extensions and discovery of new species,
each encounter needs to be classified by either expert tax-
onomists or by genetic methods. The problem is that this
process takes significant time and resources, resulting in de-
lays in providing timely data on the distribution and health
of these organisms. We aim to develop an automated classi-
fication system which aids the classification process on the
vessel.

Related Work
NWFSC scientists are currently doing manual classification
on coral samples, as shown in Figure 1, based on reference
documents to identify species.

There have been some efforts such as the Video and Im-
age Analytics for Marine Environments (VIAME) to clas-
sify fish and scallops however none to classify coral auto-
matically (Dawkins et al. 2017). Coral classification is dif-
ficult: many types of corals look alike or are only identified
by microscopic characteristics, and some surveys, such as
those that utilize bottom trawls, often only retrieve pieces of
damaged species, making them difficult to identify.
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Figure 1: Sample image of a Paragorgia arborea coral

A study based on imagery from shallow coral reefs by
Caridade and Marçal (2019) used random forest classifica-
tion to classify coral reef substrate types. While most re-
search focuses on shallow reefs, deep-sea corals also provide
several important ecosystem functions and present unique
opportunities to advance ML image processing in low light
environments. Ultimately, this study’s focus is to provide a
framework for a complete end-to-end classification system
for use by non-specialists, as opposed to focusing only on
image classification schemes themselves.

Methodology
ML Model
We used the Inception v3 model because it has been a top
performer in the ImageNet challenge. Major tech compa-
nies use neural nets in their core services, such as Face-
book’s automatic tagging algorithm, Google photo search,
and Amazon product recommendations. As humans, we can
quickly tell objects apart from images in their environment.
A computer, however, has to break images into pixels, where
each pixel has 3 RGB values (red, green and blue) for com-
puter displays to reflect the entire visible spectrum. Via pix-
els, a computer then extracts unique features, starting with
edges and curves, and works its way up to paws or whiskers
through a series of convolutional layers. This evidence com-
pelled us to choose CNN as our classifier. Moreover, we
were encouraged because CNN, inspired by neuroscience,
“shares many properties with the visual system of the brain”
(Liang and Hu 2015).

Transfer Learning with Inception v3
It is rare to have a large enough dataset to train an entire
CNN, so few people train one from scratch. Instead, an ex-
isting pre-trained model, Inception v3, can be leveraged and
retrained using a custom set of images.

A transfer learning process retrains the Inception v3
model’s final layer with the coral images, removing the
last fully-connected layer of the inception v3 model (this is
where the labeling occurs). It then treats previous layers of
the Inception v3 network as a feature extractor for the im-
ages. At the last layer, these features are extracted and fed
into a linear classifier like linear support vector machines
(SVM) or Softmax (used for this study). SVM results are

Figure 2: Overall system design

not easy to interpret, but Softmax helps by simply giving the
probabilities of each label. For example, for an object de-
tected in an image, SVM classifiers would give the scores
[24.2, 0.5, -22.4] whereas Softmax would give [0.9, 0.03,
0.001] which are easier to interpret.

The inception v3 model has 48 layers, based on millions
of images, 1,000 categories, 25 million parameters and 5
billion multiply-add operations. These features enable the
Inception v3 model to classify an image in fractions of a
second. Many other existing models may be leveraged in-
cluding Microsoft’s ResNet, which has 152 layers (104 more
than Inception v3), but a worse error rate (3.46% vs 3.57%).
We chose inception v3 for its accuracy.

Implementation

We used TensorFlow to re-train the CNN Inception v3 model
with custom coral images. This occurs by taking the layer
before the final output layer and training it with custom pho-
tos. With the model generated, a Python application was
developed to classify NWFSC scientists’ uploaded photos,
move them to separate folders labeled by species name, and
to load a database. Another web application has been created
that will output the results of the database in a spreadsheet
for scientific analysis as shown in Figure 2.

Prepare and Clean Data

We received thousands of images through NWFSC’s West
Coast Groundfish Bottom Trawl Survey which is a fish-
centric survey (Keller, Wallace, and Methot 2017). The bot-
tom trawl net used collects fish and many invertebrates in-
cluding a variety of coral species. We worked closely with
scientists to ensure the barcode and label (species name)
were entered accurately into a barcode to species mapping
spreadsheet. Using the spreadsheet, we developed a Python
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Figure 3: Coral image cropping

Species Files Files cleaned
Acanthoptilum gracile 1,800 123
Anthomastus ritteri 810 32
Anthoptilum grandiflorum 3,180 104
Antipatharia 290 16
Bathypathes sp 450 23
Chrysopathes sp 550 12
Deepsea halipteris 1,830 49
Distichoptilum gracile 250 12
Funiculina quadrangularis 330 19
Gorgonacea 360 3
Halipteris sp 1,910 122
Parastenella ramosa 200 20
Pennatulacea 500 14
Plumarella sp 410 41
Ptilosarcus gurneyi 1,220 36
Stachyptilum superbu 200 19
Swiftia simplex 310 16
Swiftia sp 560 13
Umbellula sp 850 13
Total 16,010 687

Table 1: Coral images selected for modeling

program1 to parse through the images (labeled by barcode),
and move the images into folders (labeled by species).
Lastly, we revised the images to species labeling, correcting
hundreds of misclassifications due to human error.

A clean training data set is required for a quality machine
learning model, so we analyzed each image and cropped it
(see Figure 3) to focus on the coral. Some images included
multiple corals, while others included hands of scientists or
were dark, small or blurry. Out of 16,010 images, 687 were
cleaned.

As seen on Table 1, out of 47 total species, 19 were se-
lected for modeling using accuracy and image quality crite-
ria. These 19 species were selected because there were 20+
images of each. Without sufficient training data, the model
will be ineffective.

1github.com/makahmad/coral-ml/blob/master/parse.py

Predicted species
Species X Other species

Actual
species

Species X tp fn
Other species fp tn

Table 2: Evaluation metrics in classification

Creating the Model
The next step is to create the model using the training set,
which involves replacing the final layer of Inception v3 with
the feature extractor for coral. Retraining the Inception v3
model takes about 30 minutes on a laptop, versus creating a
model from scratch, which would take weeks on a powerful
computer.

Many techniques may be used to fine tune the model to
improve success metrics and thus predictions. Beyond man-
ually cropping images, training steps and learning rate pa-
rameters may be fine tuned. Each learning step takes ten
random images from the training set and uses the final layer
to get predictions. By comparing the predictions with actual
labels (species names), the final layer’s weights are updated
via back-propagation. The learning rate controls the num-
ber of updates to the final layer during training. Generally
(but not always), the smaller the learning rate, the longer the
training time and more precise the model.

Classification Program
With the model created, we created a Python application2

that classifies unlabeled images and pushes the results into
an SQLite database. A benefit of this model is the “ranked”
series of species predictions for each image. For example,
an image may predict the genus Halipteris with 80% chance.
The same image may also predict which Halipteris species
with likelihood of 10% chance. These data are saved for
each image, beneficial to meeting our goal of creating a coral
species recommendation engine for scientists.

Web Application
The final component of the system is a web application3 in-
stalled on NOAA servers to present the results of the predic-
tions to the scientists in a practical manner. The application
uses a lightweight Python framework called Weppy and it
reads from the SQLite database and returns the results to a
table created by the JavaScript framework Datatables. Users
will see data on a browser, similar to a spreadsheet. Compo-
nents are open source, free to use without license.

Results and Error Tuning
For a given species of coral X, a true positive (tp) result
occurs when the classifier examines a coral sample and cor-
rectly identifies the species as X. If the classifier identifies
the sample as species X when the sample is of a different
species, then that is a false positive (fp) result.

If the classifier identifies the sample as any species other
than X when the sample was of species X, then that is a

2github.com/makahmad/coral-ml/blob/master/cnn classify.py
3github.com/makahmad/coral-ml/blob/master/coral app.py
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Figure 4: Accuracy graph of model with 500 training steps
learning rate of 0.01

Figure 5: Cross entropy graph of model with 500 training
steps learning rate of 0.01

false negative (fn). If the classifier identifies the sample as
any species other than X when the sample was not of species
X, then that is a true negative (tn). Table 2 summarizes these
definitions.

F-score is a method to measure accuracy. It is the
weighted average of precision (p) and recall (r), where
precision is “the fraction of all positive predictions that
are true positives while recall is the fraction of all ac-
tual positives that are predicted positive” (Lipton, Elkan,
and Narayanaswamy 2014). Precision and recall can be ex-
pressed as:

p =
tp

tp+ fp
(1)

r =
tp

tp+ fn
(2)

while the F-score (F ) can be expressed as:

F = 2 ∗ r ∗ p
r + p

(3)

When manually classifying corals, the F-Score is 70%,
obtained from NWFSC scientists. A goal of this paper is to
surpass the human F-Score. Numerous tests were conducted;
the top three are documented below.

Test Model 0 [prior to data clean up]
Prior to doing any training data cleanup (cropping, deleting
blurred images, validating training data), the accuracy and
cross entropy (loss) as shown are worse than our test runs
with data cleanup built in (see Figures 4 and 5). Models were
trained on 80% of our images and tested on the remaining
20%.

The average final F-Score for all species is 69.4%. This
was close to our project goal of 70%, but we knew it could
be improved.

Figure 6: Accuracy graph of model with 4000 training steps
learning rate of 0.01

Figure 7: Cross entropy graph of model with 4000 training
steps learning rate of 0.01

Test Model 1
In this model, we used 4,000 training steps with a learning
rate of 0.01. The validation and training accuracy exhibited
(see Figure 6) overfitting (though training data accuracy was
higher, and the validation data accuracy curve was flatter).

The cross entropy curves had a downward (as expected)
trend (see Figure 7); however, the validation loss could still
be improved.

The average F-Score, as seen on Figure 8, for all species
is 84%; however, by tweaking more parameters it can be
improved. The F-score ranged from 100% to a low of 40%
for Pennatulacea.

Test Model 2
In this model, we used 8,000 training steps with a learn-
ing rate of 0.001. Similar to test model 1, the validation
and training accuracy curves exhibited overfitting while the
cross entropy curves had a downward trend with room for
improvement for validation loss.

The average F-Score for all species was 89%; however, by
tweaking parameters, it could still be improved. The F-score
ranged from 100% to a low of 30% (again due to Pennatu-
lacea).

Test Model 3
In this model, we again used 8,000 training steps with a
learning rate of 0.001. We did well in our previous mod-
els, however the order Pennatulacea skewed our model be-
cause we believe the thin shape of these corals (see Figure
9) caused them to blend with the background. Additionally,
since Pennatulacea contains species that are labeled in other
folders, it likely created conflicts preventing accurate pre-
diction. These folders, created from survey data, were set at
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Figure 8: F-score chart of model with 4,000 training steps learning rate of 0.01

Figure 9: Image of Anthoptilum grandiflorum

varied taxonomic levels of accuracy, due to the difficulty of
identifying these corals in the field. If we wanted to include
Pennatulacea, an interactive learning process like multi-task
learning can be utilized. We would take an even more re-
fined approach where we predict pixels, which is common
in image segmentation.

The validation and training accuracy curves exhibit that
there is still overfitting; however, validation accuracy is bet-
ter than the previous two tests (see Figure 10). The cross
entropy has a downward trend (see Figure 11), as expected,
with a much improved final loss of only 1.3 (compared to
1.4 and 1.6 in previous tests).

The average final F-Score (see Figure 12) for all species
is 96%, greatly exceeding this project’s goal of 70% (human
achieved F-Score). The F-score ranged from 100% to 65%.
When applied to images of corals in the field, the program
will provide the score and probability of the closest match-
ing species in the model. The highest scores are obtained
when certain species are excluded, when those species are
included scores are below 50-60%. Preventing overfitting
should also be considered, using dropout and early stopping
to observe any improvement in scores.

Figure 10: Accuracy graph of model with 8,000 training
steps learning rate of 0.001 without Pennatulacea

Figure 11: Cross entropy graph of model with 8,000 training
steps learning rate of 0.001 without Pennatulacea

Limitations and Challenges
There were many challenges in this study. Timeline pres-
sures reduced the amount of time spent organizing, label-
ing, and cropping thousands of training images. Some im-
ages were misclassified, others blurry, some species did not
present a sufficient number of images to create a model.
Other species were subject to taxonomic changes over the
course of collections 2007-2017. Moreover, we were lim-
ited by the images from the back decks of 70 foot fishing
vessels, which had major inconsistencies with the photogra-
phy environment (background/lighting/focus/size).

Other challenges included iterations in fine tuning model
parameters. In addition to the TensorFlow learning rate and
training steps, the following parameters were tuned to reach
optimal F-score:
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Figure 12: F-score chart of model with 8,000 training steps learning rate of 0.001 without Pennatulacea

• Testing Percentage: what percentage of images to use as
a test set

• Validation Percentage: what percentage of images to use
as a validation set

• Test Batch Size: how many images to test at a time

Other parameters not utilized in this project:

• Flip Left Right: whether to randomly flip half of the
training images horizontally

• Random Crop: a percentage determining how much of a
margin to randomly crop off the training images

• Random Scale: a percentage determining how much to
randomly scale up the size of the training images

• Random Brightness: a percentage determining how
much to randomly multiply the training image input pix-
els up or down by

• Eval Step Interval: how often to evaluate the training re-
sults

From the above list of non-utilized parameters, it would
be worthwhile experimenting with random crop, scale, and
brightness to reach near 100% accuracy. These parameters
might also be helpful when expanding to additional species.

Automation Opportunity
This paper proves that we can leverage image classification
techniques to accurately identify coral species purely from
images. We are currently doing further research on images
collected via remotely operated vehicles (ROVs) to auto-
mate gathering of high quality images of live coral, elimi-
nating the coral research scientists’ dilemma of analysis vs
destruction. We are also exploring the application of these
methods on imagery collected by commercial autonomous
underwater vehicles (AUVs) which do not require a tether
and a support ship. Preliminary results, using imagery col-
lected with underwater cameras, show a 12% deterioration
in our model’s accuracy. Our hypothesis is that improve-
ment in underwater imaging will drastically improve our
model’s accuracy. Once we tune our model to the results of
the ROVs, we can move on to AUVs. Although there are

some challenges to the widespread use of underwater vehi-
cles to carry out surveys, they have become a game-changer
(Petillot et al. 2019).

Furthermore, we are extending our species classifier to be-
come a multi-label classifier that can identify species and,
more importantly, the health of the coral. The model would
have to be trained using healthy vs unhealthy (such as corals
with patches of dead tissue) coral images to extend our
classifier. Providing this data to NOAA scientists and other
global scientists in real time will allow for swift decision
making, improving ocean health.

Conclusion
Transfer learning through ImageNet Inception v3 can be
used to identify species of coral. This solution can be ex-
tended to a multi-label classifier to detect coral health. Fur-
ther study using Inception v4 may yield a more efficient and
accurate classifier. Then, using ROVs and AUVs, we can
create an automatic pipeline of images globally, captured
and stored in a central database. Lastly, we could leverage
visualization tools (Tableau, Looker, etc.) to share insights
from this central database, allowing scientists to make criti-
cal environmental decisions swiftly. Our proposed approach
of capturing images automatically with ROVs and AUVs,
storing them centrally, processing them through our multi-
label (species and health) classifier, and presenting them to
scientists could be a significant step on the path to the au-
tomation of ocean health monitoring.
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