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Abstract

Manufacturing companies rely on technical drawings to de-
velop new designs or adapt designs to customer preferences.
The database of historical and novel technical drawings thus
represents the knowledge that is core to their operations. With
current methods, however, utilizing these drawings is mostly
a manual and time consuming effort. In this work, we present
a software tool that knows how to interpret various parts of
the drawing and can translate this information to allow for
automatic reasoning and machine learning on top of such a
large database of technical drawings. For example, to find er-
roneous designs, to learn about patterns present in success-
ful designs, etc. To achieve this, we propose a method that
automatically learns a parser capable of interpreting techni-
cal drawings, using only limited expert interaction. The pro-
posed method makes use of both neural methods and sym-
bolic methods. Neural methods to interpret visual images
and recognize parts of two-dimensional drawings. Symbolic
methods to deal with the relational structure and understand
the data encapsulated in complex tables present in the techni-
cal drawing. Furthermore, the output can be used, for exam-
ple, to build a similarity based search algorithm. We show-
case one deployed tool that is used to help engineers find rel-
evant, previous designs more easily as they can now query
the database using a partial design instead of through limited
and tedious keyword searches. A partial design can be a part
of the two-dimensional drawing, part of a table, part of the
contained textual information, or combinations thereof.

Introduction
Technical drawings are the main method in engineering to
visually communicate how a machine or component func-
tions or is constructed. They are the result of a design pro-
cess starting from a set of specifications that the final product
needs to comply with. This design process follows a number
of strict and soft rules (e.g., material choice as a function of
temperature). Figure 1 shows a typical example containing
both a 2D and 3D visualisation of the object, and a material
list in tabular form specifying parts and properties. These
drawings are laid out according to generally applied con-
ventions, and engineering companies have a large database
of previous designs, potentially going back decades.
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These databases are often underutilized because previ-
ous designs can only be searched for by title or by using
a limited set of textual annotations. Ideally, however, such a
database can also be used to: (1) given a technical drawing,
find other relevant drawings in a large database of previous
designs; and (2) given a partial description or drawing, find
designs that would complete the partial design. In this work
we present an approach that can extract the knowledge in a
technical drawing and thus improve the search capabilities
significantly to achieve the aforementioned tasks and assist
engineers during the design process.

In order to fully benefit from technical drawings, we need
to extract their tabular as well as their visual information,
and translate it to a representation that can be handled by au-
tomated systems. Furthermore, such a system should be able
to deal with both recent digital drawings and historical ana-
log drawings. The latter is important because a great amount
of information is captured in legacy drawings. Ideally, ex-
tracting the information can be done using a parser, which is
a small computer program. The main challenge is that writ-
ing and maintaining such a parser is time-consuming and
costly. Furthermore, it is error prone since an expert has to
explain subtle rules to an analyst or a programmer. The ap-
proach we present here will learn such parsers directly from
expert annotations on the original drawing and allow its out-
put to be used in automated tasks such as searching relevant
designs.

Providing these annotations is a trivial task for domain
experts. The number of drawings that require annotation is
mainly dependent on the number of variations or templates
that need to be recognized. Fortunately, since all technical
drawings within an organisation are expected to be (loosely)
based on a limited set of templates, the number of drawings
that need to be annotated is also limited.

We present a hybrid approach that utilizes both neural
methods and reasoning-based methods. This combination
is necessary to capture the full range of information avail-
able in a drawing and provided by experts. Neural meth-
ods (e.g., deep convolutional neural networks) are used be-
cause they are the state-of-the-art in image recognition al-
gorithms. Despite successes in image recognition, however,
automatic analysis and processing of engineering drawings
is still far from being complete (Moreno-Garcı́a, Elyan, and
Jayne 2018). This is in part because neural methods require
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Figure 1: A technical drawing with highlights indicating the
2D CAD drawing and the tabular data

Figure 2: Overview of the technical drawing similarity pro-
posal system.

large amounts of training data. While such data are not al-
ways available, an expert might be capable of summariz-
ing part of the knowledge in just a few abstract concepts.
To exploit this expert knowledge, we also utilize reasoning-
based methods such as inductive logic programming (ILP)
(De Raedt et al. 2008). Such a hybrid approach that com-
bines data-driven methods with knowledge-driven methods
is gaining in popularity since real-world tasks such as pars-
ing technical designs tend to require Hybrid AI (Manhaeve
et al. 2018; Mao et al. 2019). We have developed and de-
ployed this system for learning to parse and search technical
designs.

Its modular design is explained in more detail in the fol-
lowing sections. This work presents five contributions that
enabled us to surpass the state-of-the-art in parsing tech-
nical designs: First, we introduce the use of ILP to learn
parsers from both data and expert knowledge to interpret
technical drawings. Second, we introduce a novel bootstrap-
ping learning strategy for ILP that speeds up learning and
increases accuracy. Third, we propose the use of a siamese

deep learning architecture to meaningfully summarize CAD
drawings. Fourth, we introduce a similarity measure to find
related technical drawings in a large database. Finally, the
efficacy of this method is demonstrated in a number of ex-
periments on a real-world data set. As seen in Figure 2, these
contributions are reflected in the modular structure of our
implementation.

Identify Elements in a Technical Drawing
The first action is to identify the different elements in a draw-
ing, thus tables and CAD drawings. To design and test the
system, we have access to 5000 archived technical drawings
that need interpreting. Archived technical drawings are dig-
itized to varying degrees. Because of this, we consider the
case where the technical drawing is represented as a bitmap
image (≈ 3300×2300 pixels)

Segment the Image
Segmenting the design into its different elements is achieved
using conventional computer vision methods. The image is
partitioned into its main segments using DBSCAN with ε =
30 and minimum points set to 0.001% of total pixels, thus
≈ 75 points (Ester et al. 1996). Since a technical drawing
employs white space to distinguish central layout elements,
such a density-based method is highly effective. No errors
were observed in the segmentation of the drawings.

Recognize Image Segments
Next, the system recognizes what each image segment rep-
resents by classifying them as one of three possible classes:
‘tables’, ‘two-dimensional CAD drawings’, and ‘irrelevant’
segments. Since the classes are visually distinct high pre-
dictive accuracy can be achieved with a small CNN classi-
fier. This classifier is constructed using the PyTorch library
(Paszke et al. 2017) and consists out of three convolution
layers and three fully connected layers. It was trained against
318 randomly selected technical drawings that were anno-
tated by an expert, for a total of 3000 image segments (318
tables, 372 CAD drawings, 2310 irrelevant segments). No
classification errors were made on a randomly selected test
set of 53 technical drawings containing 500 segments.

In case a table is recognized, we additionally identify the
cells by applying a contour detection algorithm provided by
the OpenCV library (Suzuki and Abe 1985). All cells are
then passed to the parser learning-module. In case a two-
dimensional CAD drawing is recognized, the image data is
passed on to the CAD property extraction-module.

Extract Properties in Tables
The data contained in a technical drawing is laid out in a
manner that facilitates human interpretation. Tabular data in
particular tends to be organised both spatially and through
explicit annotation. Common examples of spatial structuring
involve assigning related cells to common rows or columns,
while positioning unrelated cells further from one another.
Particularly useful are cells that contain unambiguous key-
words such as attribute names. These are helpful to gain in-
sight in the structure of a table. They serve as anchors to cells
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that are less distinctive but can easily be described relative
to them.

The application at hand does not only require us to parse
a table, but also demands that we learn how to interpret its
spatial organisation. A small computer program is required
to parse these custom drawings. Programming and maintain-
ing a parser for each type of drawing is not only an expen-
sive and time consuming task, but also error-prone. First, the
structure of such technical drawings needs to be explained
to a non-expert, i.e. a programmer, who interprets the in-
structions. Second, the tables are typically not simple rect-
angular tables. They thus require a non-trivial parser that is
difficult to understand. Third, a design can deviate slightly
or change over time requiring periodic maintenance and po-
tentially leading to software erosion. Ideally these programs
would be derived directly from the expert’s knowledge, and
be easily updated when new designs appear. This is possi-
ble by means of machine learning techniques that learn pro-
grams from examples. The examples in this setting are ob-
tained by annotating technical drawings, a task that is trivial
for a domain expert.

The highly relational nature of tabular data and the ease
with which tables can be sensibly navigated by visiting ad-
jacent cells suggests the use of Inductive Logic Program-
ming (ILP). ILP systems are particularly suitable for learn-
ing small programs from a limited amount of complex input
data. When learning the programs covered in this work us-
ing ILP, we benefitted in particular from the ability to learn
recursive definitions (e.g., row n+1 is defined by row n) and
reuse learned target labels (e.g., first learning what a header
row is helps to define what a content row is).

Learn Parsers Using Inductive Logic Programming
ILP learns a logic program, which consists of a set of def-
inite clauses. Each definite clause can be interpreted as a
rule. A clause is of the form: h(a,X) : - b1(a,X), b2(X).
where h(a,X), b1(a,X), and b2(X) are literals whose ar-
guments can either be constants (a) or logical variables (X).
Constants are denoted using lowercase letters or numbers,
while variables are uppercase letters. Disjunction is repre-
sented using ‘;’ and conjunction using ‘,’.

An ILP system learns a set of definite clauses from rela-
tional data. Given background knowledge B, positive exam-
ples E+ and negative examples E−, it attempts to construct
a program H consisting of definite clauses such that B ∧H
entail all, or as many as possible, examples inE+, and none,
or as few as possible of those in E−.

We thus need to supply three types of inputs. First, a set of
training examples E, containing the properties that identify
a cell:
– Cell text: The textual contents of each cell. Tesseract 4.0

is used to recognize cell contents (Smith 2007).
– Cell location: The cell’s bounding box information (i.e.

(x,y) coordinates and cell width and height).
Second, a label for each cell (e.g., author, bill of materi-

als, quantity). A cell can be annotated with multiple labels
(e.g., a cell can be a quantity in the bill of materials). De-
pending on which target label we want to learn, we split the
set of examples E in a tuple (E+, E−) where E+ contains

the examples associated with a cell that has the target label
and E− those examples that do not. For standard ILP, the
learning task is defined for one target label, so we repeat the
standard ILP task for each label in the set of labels.

Third, we can provide background knowledgeB that con-
tains generally applicable knowledge for the problem at
hand and remains unchanged across examples. In this case
we provide:
– Relative cell positions. Relations capturing which cells

are adjacent to each other, and in which direction (hori-
zontally or vertically) based on their bounding boxes.

– Numerical order. The successor relationship. Although
not essential, it is useful for learning concise, recursive
rules.
The output of ILP, the program H , is a set of defi-

nite clauses like ‘author(A) : - cell contains(A, drawn).’
which can be read as the rule ‘Cell A contains the author if
it contains the word drawn’.

Improved Learning with Bootstrapping
The ease with which an effective parser can be learned is
expected to vary across target labels. We propose a boot-
strapping extension that supports the construction of sophis-
ticated programs by allowing them to employ the simpler
ones in their definition. This is loosely inspired by the ideas
raised by Dechter et al. (2013), but applied to the ILP setting.

This corresponds to a variation of the previously dis-
cussed ILP set-up where a dependency graph G is used. The
nodes in this directed acyclic graph each represent a pos-
sible target label and the edges represent dependencies be-
tween those labels. A dependency indicates that one target
label might have a natural description in function of another.
Our method automatically constructs a sensible dependency
graph. First, standard ILP is applied to learn programs for
each target. Then, targets are ranked according to, first, as-
cending F1 score on the training data and, second, the size of
the program in number of literals. Each target in the ranking
then has all subsequent targets as its dependencies. Finally,
ILP with bootstrapping learns targets in the order specified
by a correct evaluation order of G, and extends the back-
ground knowledge B for each target with the programs con-
structed to parse its dependent target labels. When learning
program H using bootstrapping to capture a particular tar-
get label l, we define its extended background knowledge
B′ = B ∧ (

∧
i∈descendants(G,l)Hi), where Hi is the pro-

gram trained for target label i.

Experiment Set-Up
The ILP system Aleph (Srinivasan 2001) is used to learn
possibly recursive programs that parse the chosen targets
from the tabular data, ranging from the document’s author
and its approval date to the attributes covered in the materi-
als table and its indexed components.

To collect training and testing data, i.e. a set of fully la-
beled technical drawings, we built a data labeling tool with
a web-based graphical interface to support domain experts
in labeling drawings. Using this tool, 30 technical drawings
with on average 50 cells were labeled with 14 different la-
bels. For each target label, examples that contain that label
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(a) A table excerpt from a technical drawing.
Its header and materials are highlighted.

% M a t e r i a l s h y p o t h e s i s
m a t e r i a l s (A, B) :−

z e r o (A) ,
above be low (B , C) ,
h e a d e r (C ) .

m a t e r i a l s (A, B) :−
s uc c (C ,A) ,
above be low (B ,D) ,
m a t e r i a l s (C ,D ) .

% Header h y p o t h e s i s
h e a d e r (A) :−

above be low (A, B) ,
c e l l c o n t a i n s (B, ‘ LIST ’ ) .

(b) header/1 covers any cell located directly above a cell containing
the word ‘LIST’. materials/2 parses the indexed parts of the mate-
rials table. Its first argument is the index and its second argument
represents the cell. materials/2 consists of two clauses. The first
clause anchors the table by considering row 0 to consist of the cells
above the header. It employs header/1 in its definition. The second,
recursive clause indicates that the index is incremented whenever a
row is located above another.

Figure 3: Figure a provides an illustration of the materials
table and its header. Listing b shows the associated program
learned using bootstrapping.

label ILP GBM
F1 F1 incorrect drawings

description 1 0.9164 20%
material 1 0.9355 20%
index 1 0.9749 7%
number 1 0.9749 7%
quantity 1 0.9926 7%
materialspec 1 1 0%
all labels 36.7%

Table 1: Comparison of the performance of our proposed
approach versus a gradient boosting model in identifying the
columns of the bill of materials.

form its positive example set, while negative examples are
automatically derived by taking the complement of all pos-
sible examples for that target with its positive example set.

When inducing programs, we employed a proof depth of
12, a clause length of 5, and an upper bound of 60,000 on
the number of nodes that could be explored during clause
learning.

Learned Parser Programs versus Patterns
To verify that learning programs instead of patterns is prefer-
able for this task, we compared ILP with Gradient Boost-
ing Machines (GBM) and Multilayer perceptrons (MLP).
GBM came out best performing. GBM is a state-of-the-art
machine learning model with a strong track record in real-
world use cases (Anghel et al. 2018). Table 1 compares the
performance of ILP with bootstrapping against that of GBM
when learning models to recognize the columns in the bill
of materials. The models were trained using leave-one-out
cross-validation. GBM (multiclass classification using XG-

Figure 4: F1 score of programs learning materials/2. Min/-
max shading indicates the range of performance between the
best and worst-performing program over 5 repetitions.

Boost against the contents and location of a cell and its
neighbours) achieves high performance, yet – unlike our
proposed method – fails at fully capturing the target con-
cepts. When taking all the relevant column labels in consid-
eration, GBM only interprets 19 out of 30 technical draw-
ings entirely correctly. The errors GBM introduces carry a
high cost, as any error drastically alters our model of a de-
sign. Allowing such errors to persist would undermine the
trustworthiness of any patterns or conclusions drawn in the
subsequent steps. Because of this, immense manual effort
would be required to double-check the correctness of the
classified cells. The poorest results for GBM are observed
on the description column. This column is positioned
in the middle of the bill of materials, and contains diverse
contents across technical drawings. Here in particular, the
ability to learn a recursive definition proves essential.

We do find that GBM has an easier time learning some
columns over others. The materialspec column con-
tains a unique vocabulary compared to other cells, and is
positioned on the side of the table, making it particularly
recognisable. Similarly, the index and quantity column
are unique since theirs are the only cells that contain single
integers. Furthermore, these two columns can easily be dis-
tinguished from one another, since contrary to quantity,
there are no cells to the left of index. Nevertheless we find
that even for highly recognisable cells such as these, classi-
fication errors can slip in on models trained using GBM.

Learning Using Bootstrapping
Learning perfect parsers for simple labels such as author or
approval date, and even more complex ones like the columns
of the bill of materials, can be achieved by both standard ILP
and the bootstrap method with only a few training examples.
More interesting is to look at the most complicated label, the
indexed components (materials/2 in Figure 3a). Figure
4 visualizes the performance between the standard ILP set-
ting and our proposed bootstrapping extension on this la-
bel. Here, the training set consists of up to 10 drawings
(randomly selected over 5 repetitions), while performance is
evaluated against a test set of 20 drawings. The results show
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Figure 5: Difference in average program size (number of
literals) between standard ILP and ILP with bootstrapping
across programs induced on 14 labels. 10 repetitions on a
training set of 20 labeled drawings.

that it only takes a few annotated designs for the bootstrap-
ping method to learn a perfect parser, while the standard ILP
approach fails to do so. Furthermore, it highlights how ILP
with bootstrapping compared to Standard ILP is less sen-
sitive to overfitting when presented with additional training
data. This robustness of ILP with bootstrapping lends itself
well to incremental learning.

The best performing program constructed using standard
ILP in Figure 4 consists of 14 clauses and yields 17 false
negatives. Bootstrap learning, however, succeeds at learn-
ing a completely accurate, concise program whenever more
than three technical drawings are provided in the training set.
The poor performance observed in some experiments when
using only a few drawings is due to poor generalization po-
tential. More specific, in these drawings the materials tables
provided for training each consisted of only a single row in
addition to the header, causing there to be no pressure on
the inductive learner to add the recursive rule necessary to
capture the rows of larger tables.

A comparison of program size between Standard ILP
and ILP with bootstrapping across all investigated labels is
shown in Figure 5.

Extract Properties from CAD 2D Visualisation
Some aspects of a design can only be communicated by shar-
ing a visual depiction. This concerns for example the sub-
tleties of component shapes, and the exact manner of their
assembly. These features can prove essential in distinguish-
ing designs that have identical tabular information (e.g., ma-
terial choices), and as such can be vital to construct a com-
prehensive representation of the technical drawing. A tech-
nical drawing tends to contain both a 2D and 3D depiction.
We consider the 2-dimensional CAD drawing as the most

suitable target for visual analysis as the profile view offers a
clear, uncluttered view of the design.

Learn Key Identifiers from Unlabeled Data
Many of the visual features of interest are only present in
the CAD drawing and cannot be linked to features in the
table or in the meta-data. This means we cannot apply stan-
dard supervised learning because there are no labels avail-
able. However, this is not a problem since our interest lays
in the identifying features of designs rather than their type.
The goal will thus be to learn a limited set of features that are
expressive enough to uniquely identify designs, can general-
ize over different designs, and remain unaffected by transla-
tions or rotations. We can thus use self-supervised learning
to train our models using proven supervised methods (Misra
and van der Maaten 2020)

We propose to transform the problem to a binary classi-
fication task that captures these requirements. Given a pair
of 2-dimensional CAD drawings, a classifier with a limita-
tion on the numbers of features is trained to predict whether
the pair represents the same design or not. If the classifier
achieves high accuracy on this task we consider the set of
learned features to fit the requirements and we will use this
set of features in a next step to summarize each design.

The data set for these input pairs is constructed as follows.
For each of the 2-dimensional CAD drawings, we generate
10 variations by applying arbitrary flips, rotations and trans-
lations. We consider this image set consisting of 11 images
to be representative for each design. The data for the ‘same’
class is then formed by considering every pairing within
each image set, while the ‘different’ class is constructed by
sampling an equal number of pairs across image sets. This
ensures the resulting data set is balanced.

CNN Architecture
Neural networks are widely known for their capability
of capturing complex and non-obvious properties of the
data they are trained with. Convolutional Neural Networks
(CNNs) are a category of neural networks of particular in-
terest, as they have seen wide adoption in image recognition
and classification. They are classifiers whose key character-
istic is their usage of convolutional layers. An input image
is passed through a series of such layers. Each layer consists
of convolved features (i.e., the neurons) by applying a ker-
nel on parts of its input. While the features captured in early
layers are limited to angled edges and simple blobs, they be-
come increasingly more complex as the layers deepen, until
they are capable of describing domain-specific elements.

Convolutional neural networks have a proven capacity to
learn complex features (i.e., representation learning). The
challenge is to identify those that match our requirements.
Notably, we find that the classification task outlined in the
previous section can directly be integrated in a CNN archi-
tecture, allowing it to learn features that are optimized to
score well on the classification task.

Figure 6 shows our siamese CNN architecture. The
ResNet-50 (He et al. 2016) architecture is used to perform
the various convolutions. Since the features identified in the
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Figure 6: The ResNet-50 block maps the 2048 inputs of its
final fully connected (FC) layer to a layer of size 64. This
layer represents the derived visual features of interest.

pre-trained model are tailored to a wide set of common set-
tings, while ours is very domain-specific, we re-train only
the last layer to tailor the derived features to our data. While
the output layer of ResNet-50 has size 1000, we map it to
a layer of size 64. This layer corresponds to the features
that will be used to visually identify a design. The rest of
the architecture is constructed in order to effectively classify
the input image pairs into one of the two possible classes:
‘same’, or ‘different’. Note that the same ResNet-50 network
is used to encode both images.

Experimental Results
In order to prove useful, the CNN has to be attentive of fea-
tures of varying detail, as the visual differences can vary
from striking to intensely subtle. Our classifier achieves a
96.8% accuracy (training set: 68,507 pairs, validation set:
34,253 pairs, test set: 68,507 pairs).

t-Distributed Stochastic Neighbor Embedding (t-SNE)
We can now apply the CNN network to all drawings in the
database and construct a feature vector from the 64 relevant
features, thus the neurons in the last layer of our ResNet-
50 model. Figure 8 shows a t-SNE visualisation of the fea-
tures vectors for each of the drawings in our dataset. The
data points are colored according to an expert labeling which
groups designs according to properties deemed to have a
high visual impact. This labeling has two values with high
representation, and the visualisation clearly separates them
in distinct, non-overlapping clusters. Since our interest lies
in the detection of novel features, being able to identify a
pre-existing one is not actually our goal. However, since a
failure to visually distinguish between these types would fal-
sify our hypothesis that we are extracting meaningful visual
data, this result does inspire confidence that informative fea-
tures are found.

Gradient-weighted Class Activation Mapping (Grad-
CAM) This belief is strengthened further when analyzing
the behaviour of the CNN using Grad-CAM (Selvaraju et al.

Figure 7: A Grad-CAM visualization. Warmer areas corre-
spond to regions that play a more significant role in the acti-
vation of a derived feature. Here, each image depicts a fea-
ture whose attention is concentrated on a particular key com-
ponent of the design.

(a) perplexity 20 (b) perplexity 100

Figure 8: t-SNE visualisation over 2 components for varying
values of perplexity.

2017). Grad-CAM provides a coarse localization map of the
important regions in the image. We find that our derived fea-
tures focus their attention on image regions that correspond
to meaningful properties in our application domain. Figure
7 visualizes a selection of the derived features activating in
the presence of a particular key component.

Identifying Relevant Designs
We now have access to the design properties contained in
both the tabular data and the visual depiction. In order
to leverage these results when suggesting relevant designs,
we first impose a similarity measure on them separately,
and then combine the resulting similarity measures using a
weighted geometric mean.

Tabular Data Similarity
Due to its highly relational nature, it is not feasible to di-
rectly apply a conventional similarity measure to the tab-
ular data. Instead, we first propositionalize the data using
Frequent pattern (FP) mining (Kramer, Lavrač, and Flach
2001).
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% A d e s i g n w i t h a p a r t w i t h ‘ d o ub l e ’ and ‘ n i c k e l ’
m a t e r i a l s ( PartRow ,A) , c e l l c o n t a i n s (A, d o u b l e ) ,
m a t e r i a l s ( PartRow , C) , c e l l c o n t a i n s (C , n i c k e l ) .

% A d e s i g n w i t h a ‘ s p r i n g ’ made o u t o f ‘ c o b a l t ’
m a t e r i a l s ( PartRow ,A) , c e l l c o n t a i n s (A, c o b a l t ) ,
m a t e r i a l s ( PartRow , C) , p a r t d e s c r i p t i o n (C) ,
c e l l c o n t a i n s (C , s p r i n g ) .

% A d e s i g n w i t h ‘ j a c k e t ’ , ‘ s p a c e r ’ , and ‘ S p r i n g ’ .
p a r t d e s c r i p t i o n (A) , c e l l c o n t a i n s (A, j a c k e t ) ,
p a r t d e s c r i p t i o n (B) , c e l l c o n t a i n s (B , s p a c e r ) ,
p a r t d e s c r i p t i o n (C) , c e l l c o n t a i n s (C , s p r i n g )

Listing 1: Three frequent patterns mined using WARMR

We perform FP mining using WARMR (Dehaspe and
Toivonen 1999) on the extracted tabular data. We focus
on retrieving patterns that occur in ≥ 10% of the draw-
ings. Listing 1 shows a sample of the 9120 patterns we
mined. Each technical drawing is then represented as a bi-
nary vector indicating which patterns are applicable. Given
such a vector representation, closely related designs can be
identified by performing a ranking using the complement
of its normalized Hamming distance to all other designs.
Given two drawings represented as binary vectors X and Y,
simtabular(X,Y ) = 1− 1

n

∑n
i=1 |Xi − Yi|.

Visual Similarity
Previously we discussed how the final fully connected layer
of our ResNet-50 architecture captures key visual proper-
tiesusing a layer of size 64. All the features in this layer
are continuous. Since features of visually similar objects are
expected to have similar values, cosine similarity against
this set of derived features is used to determine similarity.
Given two drawings represented as feature vectors X and Y,
simvisual(X,Y ) = X·Y

||X||2·||Y ||2 .

Ranking Designs by Similarity to a Given Design
Tabular data similarity and visual similarity are combined

using the weighted geometric mean
∏
i

(
xwi
i

)1/∑i wi

. The
use of a geometric mean ensures that the resulting similar-
ity is not biased towards a particular one of its constituent
similarity measures due to the distribution of their values,
but rather accounts only for the relative changes to each
score across designs. The use of a weighted mean makes the
inherent trade-off between potentially conflicting measures
explicit.

Here, we use this convex combination solely to com-
bine tabular data similarity and visual similarity. This trade-
off can be captured in a single parameter α such that
similarity = (simtabular)

α · (simvisual)
1−α.

In doing so, users can easily impose their own biases and
preferences to influence the ranking. In our implementation
we use α = 0.5. Figure 9 shows some of the ranked designs
given a particular technical drawing.

simtabular = 1
1 − 3

simtabular = 1
4

avg simtabular ≈ 0.93
5 − 8

avg simtabular ≈ 0.83
9 − 10

simtabular ≈ 0.67
50

simtabular ≈ 0.63
250

simtabular ≈ 0.61
500

simvisual ≈ 1 simvisual ≈ 0.995 avg simvisual ≈ 0.999

avg simvisual ≈ 0.98 simvisual ≈ 0.95 simvisual ≈ 0.94

(a)
(b)

(c)

Given design

simvisual ≈ 0.91

Figure 9: Selected designs annotated with a rank indicat-
ing their similarity to the highlighted design (α = 0.5).
Subtle though significant differences are seemingly picked
up, while insignificant though sizable differences in shading
seem to have little to no effect. The feature highlighted in
(a) contrasts with its less rounded depiction in the original,
possibly explaining the difference in its simvisual score. The
ring in (b) appears as a polygon instead of a circle, and the
body of (c) consists of a single contiguous part as opposed
to multiple elements separated by a diagonal.

Ranking Designs by Similarity to a Given Partial
Design

The ability to identify similar designs is particularly useful
when applied to a design under construction. If such a design
displays high similarity to existing ones, the most similar
ones can provide the engineer with possible completions.

We consider a partial design to be represented as a tech-
nical drawing containing a number of empty cells. During
property extraction, the cell text of empty cells is repre-
sented using logical variables. If a visual depiction of the de-
sign is available, simvisual can be computed as usual. If it is
omitted, the similarity measure is restricted to its simtabular

term.

As a consequence of allowing the inclusion of empty
cells, some of the patterns employed by the feature vector
used to construct simtabular might not have a proper instan-
tiation on the partial design. Given T the set of all properties
of the partial technical drawing, we distinguish three situa-
tions:
– True. A feature is true on the partial design when each of

the literals in its conjunction have a corresponding match
in T that does not require the instantiation of any logical
variable in T.

– False. A feature is false on the partial design if at least one
of the literals in its conjunction fails to find a correspond-
ing match in T.

– Unknown. Any feature for which it is not known whether
it is True or False.

simtabular against a given partial design can then be com-
puted by utilizing feature vectors that are filtered to contain
only those features that were True or False on the partial
design.
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Related Work
Digitisation of Technical Drawings
Two recent papers cover the domain of document digitisa-
tion. First, Staar et al. (2018) shows significant progress digi-
tising general PDF and bitmap documents. Second, Moreno-
Garcı́a, Elyan, and Jayne (2018) provides an overview of all
recent trends on digitising engineering drawings in partic-
ular. The work of (Staar et al. 2018) focuses on detecting
elements in text documents in general and parses tables but
cannot take easily into account expert knowledge to achieve
near perfect extraction for specific cases or extract informa-
tion embedded in figures.

With regards to shape detection, Moreno-Garcı́a, Elyan,
and Jayne (2018) makes a distinction between specific ap-
proaches focused on identifying shapes that are known in
advance, and holistic approaches where the underlying rules
of the drawing are exploited to split it into parts. Our ap-
proaches for identifying technical drawing elements utilized
a mixture of both. The use of image segmentation and text
detection in “Identify Elements in a Technical Drawing”
falls under the holistic view, while the contour detection
“Recognize Image Segments” is an illustration of a specific
approach. While Moreno-Garcı́a, Elyan, and Jayne (2018)
notes that some frameworks do perform contextualisation,
like recognizing symbols in a technical drawing, but none
parse the full table. Our approach is to our knowledge the
first that enables the construction of a comprehensive, for-
mal representation of a technical drawing by learning an
interpretable parser capable of taking into account expert
knowledge and can identify unique properties in drawings.

Feature Extraction
While established feature extraction methods such as SIFT
(Lowe 2004) and SURF (Bay, Tuytelaars, and Van Gool
2006) are still viable alternatives, CNNs are increasingly the
go-to method when extracting features. Industrial applica-
tions of CNNs are however strongly limited by the cost of
collecting a suitable set of labeled training data (Moreno-
Garcı́a, Elyan, and Jayne 2018). Our approach side-steps this
issue by learning from unlabeled data through the introduc-
tion of a discriminative setting. This approach is comparable
to Exemplar-CNN (Dosovitskiy et al. 2014).

In this work, autoencoders were observed to perform
poorly as a means to capture features. When encoding an
input image to a lower dimensional feature space, an au-
toencoder seeks to capture as much of the input data as pos-
sible with the aim of later on reconstructing the image as
faithfully as possible. Here however, most of the input data
proves to be irrelevant. The exact position and rotation of
the visual depiction of a design is completely irrelevant, and
even though the shading represents a large amount of data,
it is not something that merits encoding. We found that our
proposed, discriminative approach is far more suitable for
identifying notable features.

Inductive Logic Programming Systems
The ILP system Aleph was used for the parser learn-
ing. Related are all the ILP systems that currently de-

fine the state-of-the-art. This includes Tilde (Blockeel and
De Raedt 1997), Aleph (Srinivasan 2001), Metagol (Crop-
per and Muggleton 2016), Progol (Muggleton 1995), and
FOIL(Quinlan and Cameron-Jones 1993).

While Aleph learns from entailment, Tilde learns a rela-
tional decision tree from interpretations. Both systems were
considered, but only Aleph was capable of constructing re-
cursive programs. This allows it to construct concise pro-
grams, making Aleph our system of choice. FOIL is ex-
pected to be similarly suitable. Metagol is also highly ef-
fective at this task, as its metarules allow for a more targeted
search for recursive programs. A downside of this system is
that meta-rules are currently user-defined, imposing an ad-
ditional burden on the user, who in this setting is a domain
expert with no background in ILP. Automatic identification
of metarules is ongoing work (Cropper and Tourret 2018).

Deployment
After deployment - having processed 5000 archived draw-
ings - the tool was used to automatically tag around 1% of
the drawings for removal and clean the data set because they
were unfinished, had overlapping objects, or were scram-
bled.

A workshop was organised during which engineers eval-
uated the effectiveness of the tool and its suggested design
completions. Overall, it was considered to see daily use, sav-
ing at least 15 and possibly more than 30 minutes of time
per use when compared to their previous workflow. Particu-
lar areas of note were its usefulness in exploring the viable
design space, and its role in improving consistency when
converging onto a final design.

Conclusions and Future Work
We introduced an approach to assist an engineer by auto-
matically interpreting technical drawings and allowing for a
flexible search method.

To achieve this we introduced five contributions. First, we
introduced the use of ILP to learn parsers from data and ex-
pert knowledge to interpret a technical drawing and produce
a formal representation. Second, we introduced a novel boot-
strapping learning strategy for ILP. Third, we introduced a
deep learning architecture that learns a meaningful summa-
rization of CAD drawings by identifying unique properties
in drawings. Fourth, we introduced a similarity measure to
find related technical drawings in a large database. Finally,
the efficacy of this method was demonstrated in a number of
experiments on a real-world data set.

Based on this work, additional tasks are now within reach
that would be useful in an automated engineering assistant.
For example, given the interpreted technical drawings, one
can learn constraints or rules that apply to a given set of de-
signs. Such rules can then later be used to automatically ver-
ify novel designs or find anomalous designs by identifying
constraints that are violated.
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