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Abstract

Global warming is the greatest threat facing our planet, and
is causing environmental disturbance at an unprecedented
scale. We are strongly positioned to leverage the advance-
ments of Artificial Intelligence (AI) and Machine Learning
(ML) which provide humanity, for the first time in history,
an analysis and decision making tool at massive scale. Strong
evidence supports that global warming is contributing to ma-
rine ecosystem decline, including eelgrass habitat. Eelgrass
is affected by an opportunistic marine pathogen and infec-
tions are likely exacerbated by rising ocean temperatures.
The necessary disease analysis required to inform conserva-
tion priorities is incredibly laborious, and acts as a significant
bottleneck for research. To this end, we developed EeLISA
(Eelgrass Lesion Image Segmentation Application). EeLISA
enables ecologist experts to train a segmentation module to
perform this crucial analysis at human level accuracy, while
minimizing their labeling time and integrating into their exist-
ing workflow. EeLISA has been deployed for over 16 months,
and has facilitated the preparation of four manuscripts includ-
ing a critical eelgrass study ranging from Southern California
to Alaska. These studies, utilizing EeLISA, have led to scien-
tific insight and discovery in marine disease ecology.

Introduction
Humanity has forged a new age known as the Anthropocene,
marked by unprecedented influence of human activity on cli-
mate and the environment. Studying the damage to earth’s
ecosystems presents a massive challenge, as it requires col-
lecting vast amounts of samples and fine-grained analysis.
A major limitation of ecological studies is the expertise re-
quired to complete the necessary fieldwork and subsequent
analysis. Consequently, the human bandwidth to do these
crucial studies is very limited.

However, recent advances in AI have demonstrated a re-
markable ability to perform analysis at or above human
level [Huang et al. 2017; Chen et al. 2017], even when the
task requires expert level knowledge [Lin, RoyChowdhury,
and Maji 2015]. Furthermore, once an AI system has been
trained to perform at expert level accuracy, it can be shared
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Figure 1: Example of a healthy eelgrass bed.

and scaled to fit demand all across the world, allowing for
huge leaps in the democratization of human knowledge and
insight.

One application that can benefit from AI are seagrasses,
one of the world’s most productive ecosystems composed
of the only flowering plants in the marine environment.
These complex ecosystems provide essential services for our
planet, such as the sequestration of consequential amounts
of carbon, actively mitigating the effects of anthropogenic
climate change [Waycott et al. 2009]. Eelgrass (Zostera ma-
rina) is one of the most widespread seagrass species, form-
ing extensive meadows throughout the temperate Northern
Hemisphere [Moore et al. 2006]. However, eelgrass is sus-
ceptible to Eelgrass Wasting Disease (EWD), which has his-
torically caused precipitous decline, and is threatening to do
the same now [Lefcheck et al. 2017; Groner et al. 2016].

In order to assess EWD, ecologists analyze relevant dis-
ease metrics of prevalence and severity. Prevalence is a basic
measure of whether or not the plant is afflicted by EWD,
and is determined by the absence or presence of EWD-
associated lesions. Severity yields the extent of the infec-
tion, and is calculated by the ratio of lesioned tissue to total
tissue. Using these two metrics, ecologists characterize eel-
grass bed health. With auxiliary measurements of environ-
mental conditions (i.e. temperature, salinity, pH), ecologists
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Biome Area (ha) Value (USD/ha/year)
Open Ocean 33,200 660
Coastal 3,102 8,944
Seagrass/Algae Beds 234 28,916
Terrestrial Forests 4,261 3,800
Terrestrial Grass 4,418 4,166

Table 1: Summary of different ocean and terrestrial flora in
terms of acreage as well as an evaluation of the economic
value of the eco-services (including carbon sequestration)
they provide on a per area basis, where ha is hectare. Ta-
ble/Data from [Costanza et al. 2014] for year 2011. Note
Seagrass/Algae Beds are a sub category to coastal.

can begin to identify the complex drivers of the disease in
the field.

Despite the global significance of eelgrass ecosystems and
the myriad services they provide, the methods by which
EWD is studied are time intensive and not widely stan-
dardized between groups. These limitations in methods pose
challenges for studying this disease on greater spatial scales
and impede robust investigation of disease drivers. Over-
coming these limitations and better understanding the dy-
namics of EWD will assist in informing management deci-
sions to reduce eelgrass declines.

Specifically, the most standardized method to measure
EWD involves the manual segmentation of diseased and
healthy tissue in digital scans of eelgrass blades. This pro-
cess of manual tissue annotation is extremely tedious and
can take upwards of 30 minutes for a single eelgrass blade
digital scan. This process is a massive bottleneck in the anal-
ysis pipeline, and effectively inhibits widespread analysis.

To address this issue, we developed the Eelgrass Lesion
Image Segmentation App (EeLISA). This system uses deep
learning methods to automatically annotate healthy and le-
sioned tissue, while minimizing the amount of time required
by experts to do labeling, and integrating into their estab-
lished workflow. This workflow provides an intuitive mech-
anism for the users to verify the output of our methods. This
system was used by experts to simultaneously generate the
training data needed to train large segmentation convolu-
tional neural network (CNN) architectures, and generate the
analysis data the ecologists needed to further their studies.

The EeLISA system has been deployed for over 16
months, and has been used to analyse thousands of eelgrass
blades at human level accuracy. This has allowed ecologists
to test hypotheses about drivers of climate change along a
latitudinal gradient. Additionally, the EeLISA system has
led to scientific discovery and insight by facilitating rapid
disease analysis across multiple years and sites, and has led
to four manuscripts currently in preparation/in review. Fur-
ther, this system is currently being utilized in a large NSF
funded study of EWD, with 32 sample sites spanning the
entire West Coast of the United States, from Southern Cal-
ifornia to Alaska. Looking to the future, EeLISA has even
greater application potential given the sheer extent of this
essential marine habitat. Eelgrass dominates the coasts of

the Temperate North Atlantic, the Mediterranean, and the
Temperate North Pacific, highlighting the untapped, global
potential of this application and further legitimizing its prac-
ticality and future use [Moore et al. 2006].

Eelgrass
Importance of Eelgrass
Eelgrass is one of the most widespread seagrass species,
dominating the Northern Hemisphere. Its meadows are eco-
logically and economically important habitat, and provide
shoreline protection, high value nutrient cycling, and glob-
ally significant carbon sequestration [Waycott et al. 2009].
Seagrasses are one of the most significant carbon sinks on
the planet, burying carbon 35x faster than tropical rain-
forests [Mcleod et al. 2011; Macreadie et al. 2014]. Mon-
etary valuations for seagrass eco-services are estimated at
$28,916/ha/yr [Costanza et al. 2014], much greater than that
of coastal biomes, terrestrial forests, or grasses (see Table
1).

Eelgrass Wasting Disease
Eelgrass Wasting Disease (EWD) is caused by a pathogenic
protist, Labyrinthula zosterae (Lz), and has been implicated
in drastic declines of eelgrass habitat [Waycott et al. 2009].
In the 1930s, eelgrass beds along the Atlantic coasts of North
America and Europe experienced a severe EWD outbreak
that decimated over 90 percent of their population. This led
to a major disruption of coastal food chains, and of global
carbon sequestration [Renn 1936; Short, Ibelings, and Den
Hartog 1988]. Unfortunately, eelgrass beds on both the At-
lantic and Pacific Coasts of North America have shown de-
clines in recent years [Lefcheck et al. 2017], and may be
partially attributed to EWD.

Effect of Sea Temperature Rise
Strong evidence supports that marine heat waves – a direct
result of global warming – threaten eelgrass beds [Smale
et al. 2019]. Outbreaks of EWD in temperate systems are
associated with increased temperatures, with highest dis-
ease prevalence recorded from surveys during the warmest
months of the year [Bockelmann et al. 2013]. In experimen-
tal trials, the causative agent of EWD exhibited faster growth
at elevated temperatures in vitro, while causing larger le-
sions in vivo [Dawkins et al. 2018]. Furthermore, a mod-
elling study simulated eelgrass bed reductions mediated by
EWD during warm periods [Bull, Kenyon, and Cook 2012].

Study of EWD and Analysis Bottleneck
There is still much to study about the mechanics and fac-
tors of EWD spread. With more studies, at larger scales,
ecologists hope to build up a map of current disease lev-
els, as well as understand what underlying factors contribute
to higher disease spread, and higher disease severity. How-
ever, the measuring of eelgrass blades for disease metrics
is an extremely tedious task that presents many challenges,
and has gone through many iterations. To standardize EWD
analysis researchers began to create digital images of their
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Figure 2: Four eelgrass scans from sites in San Juan Islands,
WA.

eelgrass blades, placing them between clear, plastic trans-
parency papers and scanning them (see Figure 2 for exam-
ples). With these digital scans they then use image process-
ing software to carefully segment the amount of lesioned and
healthy tissue to get precise measurements of prevalence and
severity. This practice gave much more precise results, and
also allowed for a way to track scans and review how they
were measured at later dates. However, this process is dis-
ruptively laborious; completing disease analysis on a single
scan containing 1-10 blades conservatively takes 30 minutes
to complete. Further, there remained the issue of consistency
amongst researchers in terms of measuring disease areas. A
single eelgrass survey generates approximately 100 scans,
requiring at least 50 hours of manual disease analysis. Fur-
ther, the task is complicated enough that it must be done by
domain experts and cannot be outsourced to the general pub-
lic. Often 1-2 experts are left to do all 50 hours of analysis,
meaning that the tedium and fatigue also led to inconsisten-
cies in labeling methods.

The massive amount of time required to do the measure-
ment of the disease metrics significantly limits research on
larger spatial and temporal scales. Unfortunately, the data
from larger scale studies is exactly what researchers need to
make better predictive models of disease and its contributing
factors, and to then put in place preventative measures.

Opportunity for AI
This bottleneck represents a perfect application for modern
ML methods to provide automatic analysis of the disease
metrics. A trained machine learning model would allow re-
searchers a way to get consistent and accurate disease met-
rics at remarkable speed, and enable critical, large-scale re-
search. To this end we develop an application that would
ultimately allow the researchers to input eelgrass scans and
receive as output all the relevant disease metrics they need,
organized in their proper subdivisions. To do this, we first

needed to build up a labeled data set. However, given the ex-
treme amount of time it takes to analyze even a single scan,
we had to build a system that would allow researchers to
produce the analysis data they still needed, while collecting
the labels we needed to train our algorithms. We also wanted
our system to aid in the labeling process and to allow ecolo-
gists a method to check the output of our models. The details
of our system are discussed in the following section.

EeLISA System
Goal of System
The ultimate goal of the EeLISA system is to develop an
AI system that can accurately, and at scale analyze eelgrass
blades, segment the healthy and lesioned tissue, and then
calculate and output disease metrics. However, because of
the sensitivity of the data, it is necessary to have the output
of our segmentation module be able to be checked and edited
if necessary.

Further, because the annotation time can be upwards of
30 minutes for a single scan, it is necessary for our system
to not get in the way of ongoing research. That is, our system
can not increase labeling time, and has to output the data the
ecology researchers require. To address this we developed
the EeLISA system which accomplishes all of these tasks,
while minimizing expert labeling time. The system is com-
posed of three main components which are described below.

Components
Segmentation CNN Module The role or task of the seg-
mentation module is to take as input an eelgrass scan, and to
produce a classification per pixel. That is, given an image X
and mask Y:

X ∈ RH×W×M Y ∈ R+H×W×N

where M is the number of color channels in the image (in
this case RGB), and N is the number of classes, and H and

Figure 3: Schematic of CNN module. Using a fully convo-
lution framework, our CNN module (center), takes as input
an eelgrass scan (left) and produces a segmentation mask
(right). Grey indicates background, green indicates healthy
tissue, and red indicates diseased tissue. CNN schematic was
generated via [LeNail 2019].
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Figure 4: Schematic of EeLISA workflow. Scans are passed to EeLISA which generates predictions/segmentations of diseased
and healthy area. Expert users can then check these predictions and correct them if necessary. Segmentations masks are then
processed by an analysis script to export relevant data in an ordered manner for further study. Additionally, the corrected
masks are then used to further train the segmentation model within EeLISA. In this way, EeLISA allows experts to obtain
disease metrics in a timely fashion, while generating a labeled data set for a segmentation algorithm to train on. Once a data
set of appropriate size is generated, the algorithm is able to predict with human level accuracy and users need only to verify
potentially problematic scans.

W are the height and width of the image respectively, the
segmentation module’s task is to learn the following map-
ping:

f : X→ Y

The final prediction of the segmentation module is given
by argmaxY.

Specifically in the EeLISA system the segmentation mod-
ule used was different variations of fully convolutional net-
works (FCNs) [Long, Shelhamer, and Darrell 2015]. The ba-
sic architecture is an encoding segment of convolutional and
max-pooling layers that extracts features from the image and
projects it into a low dimensional feature space. Then a de-
coding architecture that uses transpose convolutional layers
to up-sample the embedding space back to the original im-
age size, with as many channels as there are classes, provid-
ing a probability distribution over each class for each pixel.
The final class is assigned by taking the class with the largest
probability. A schematic of a FCN with an input eelgrass
scan and output segmentation mask can be seen in Figure
3. More details about the specific architectures and methods
are shared in the Machine Learning Methods section.

Labeling/Web Application Module The role of the web
application module is to display the predictions of the seg-
mentation module to the expert user, and allow them to ver-
ify or edit the predictions. The labeling module was written
as a web application to make it accessible from any personal
device, and enable the user to complete their labeling work
remotely. The model is hosted on Amazon Web Services and
could be accessed via any web browser. When navigating to
the module, the user would be shown the directory structure
that was given to EeLISA, where they could then navigate
to the specific scans they wanted to inspect. When opening a
particular scan, the user would see the image of the original
scan, overlaid with transparent, colored polygons indicating
the predictions of the segmentation module, with the color
of the polygons indicating the classification. They can then
edit the polygons, delete them entirely or add new ones, and
indicate when they are done editing or verifying all the scans
in a particular batch. A screenshot of the web application can
be seen in Figure 5. The web application was built on top of
the open source software available on GitHub1. Details of

1https://github.com/Hitachi-Automotive-And-Industry-
Lab/semantic-segmentation-editor/releases/tag/1.2.0
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Figure 5: Screenshot of Web Application Module. A Sam-
ple scan is displayed with EeLISA’s prediction overlaid as
editable polygon masks.

the implementation are discussed in later sections.

Analysis Module The analysis module’s task was to take
the batch of images, and resulting expert verified or cor-
rected segmentation masks, and produce a CSV file contain-
ing the disease metrics required by researchers. Specifically
given a segmentation mask the module would calculate the
diseased area and healthy area for each eelgrass blade, and
report the resulting severity and prevalence disease metrics.
The analysis module automatically organizes the output data
according to relevant meta-data such as date, site location
and further subdivisions. The ecologists can then easily use
the meta-data tagged disease metrics as input to their own
analysis.

Workflow
The general workflow of EeLISA is as follows. The segmen-
tation module starts completely untrained and randomly ini-
tialized. The expert user selects a batch of eelgrass scans that
they would like to analyze and calculate disease metrics for
and uploads them to the EeLISA system. First, EeLISA runs
the batch of scans through the segmentation module, and the
segmentation masks are predicted. The scans and resulting
masks are then uploaded to the server running the labeling
module. The expert user will then go through each scan and
corresponding label, and either verify that it is correct, or
make the necessary edits to the segmentation masks. Ini-
tially, all predictions require editing since the segmentation
module has not yet been trained. The corrected or verified
labels are then downloaded, and sent to the analysis module,
where the relevant disease metrics are calculated and sent
to the expert user in the form of a CSV file. The corrected
or labeled masks are also sent to the segmentation module,
where they are then used to train the model.

Then the workflow repeats, with the user choosing the
next batch of scans they would like to process. However,
because the segmentation module has now been trained on
some data, its predictions are more accurate, which in turn
means the expert user will need less time to correct the pre-
dictions. Which means that they will be able to get their out-
put analysis faster, but also that the segmentation module
will have more data to train with faster. This cycle repeats as

Number Training Scans 789 (≈75%)
Number Testing Scans 247 (≈25%)
Scan Size 512×512×3
Label Size 512×512×1
Classes 3

Class 0 Background
Class 1 Healthy Tissue
Class 2 Lesioned Tissue

Table 2: Summary of eelgrass data set.

a positive feedback loop. A schematic of this workflow can
be seen in Figure 4.

After working through many batches of scans (see detail
in next section) the segmentation module had a sufficient
data set to reach human level accuracy. In the next sections
we describe the data set, as well as our ML methods on this
data set.

Innovative Use of AI Technology
The AI technology used in EeLISA is deep segmentation
neural networks and we believe EeLISA is an innovative
use of this technology for two main reasons. The first is
that, to our knowledge, this is the first AI system to provide
rapid, fine-grained (per single blade) metrics of marine dis-
ease levels. That is, this is a novel and important use-case for
AI segmentation methods. Secondly, the method by which
the segmentation module is integrated into the existing work
flow of the ecologists, and provides a positive feedback loop
to lessen labeling time, while not necessarily conceptually
novel, is certainly novel in a deployed application in this do-
main.

To further explain how the AI technology was developed,
in this section we focus on the technical details for the train-
ing and testing of the deep learning based segmentation
module, and the data used to train it.

Data Set
While the EeLISA system is an ongoing system, and more
training data is being produced, the initial data set built with
EeLISA will be the focus here. The data set consists of 1,036
scans. Of those scans we have designated 789 of them as the
training set and 247 as the test set, representing an approxi-
mate 75/25 percent split for training and testing.

Each scan and mask has been scaled to be 512x512 pix-
els. The scans have the three standard RGB color channels,
and the masks have a single channel, where each pixel is as-
signed an integer of value zero, one or two. Zero indicates
the background class, one indicates healthy tissue, and two
indicates lesioned tissue. A summary of the data set can be
found in Table 2.

Data Pre-Processing
We augment the training set in the following way: for each
image and mask pair we introduce two random rotations, flip
the image on both the x and y axis, slide the image in two
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directions with random magnitudes, zoom and crop two ran-
dom portions of the image, and lastly do three random elastic
deformations of varying random severity. Given the starting
789 labeled scans and these transformations we have a total
of 9468 labeled scans. As this data set is relatively small,
these augmentations are crucial to boost the model’s ability
to generalize to new eelgrass scans, and in particular to gen-
eralize to eelgrass scans from new geographical locations.
Following the augmentations, we then take the mean and
standard deviation of each color channel for all 9468 scans,
and before each image is passed to our model we subtract the
mean values and divide by the standard deviation to ensure
that each color channel has a zero mean and unit variance.

Of the 9468 labeled scans, we withhold 947 scans as a
validation set. In summation, there are 8521 scans we use
for training, 947 we use as a hold out validation set, and 247
scans that we use as a test set.

Machine Learning Methods
Models We use the following models: UNet [Ronneberger,
P.Fischer, and Brox 2015], Deeplab V3 [Chen et al. 2017],
and Tiramisu [Jégou et al. 2017]. In general, these models
were all picked because they are extensions of the FCNs
[Long, Shelhamer, and Darrell 2015] mentioned in previ-
ous sections. UNet is the most basic extension of the orig-
inal FCN; UNet uses all convolutional layers, but extends
the work by developing the down scaling and up scaling ‘U’
shape. The Tiramisu network is also an extension of the orig-
inal FCN, as it is essentially a much deeper version of the
traditional UNet, and uses ‘DenseBlocks’ borrowed from the
DenseNet architecture [Huang et al. 2017]. DeepLab is also
an extension of the FCN as it follows the basic architecture
of UNet (except with an interchangeable backbone architec-
ture), and further includes improvements like atrous convo-
lutional layers which makes it a particularly powerful archi-
tecture. Specifically, the UNet model was picked because of
its demonstrated success on medical data sets with few la-
bels. DeepLab V3 was picked because of its altrous convolu-
tional layers which we intuitively felt would be able to han-
dle the different sizing scale of the lesions. Further, DeepLab
V3 and Tiramisu were picked because of their demonstrated
success on large scale data sets such as [Cordts et al. 2016].

Loss Functions We found empirically that a combined
loss function of equal weighting yielded the best results.
Specifically given the following definitions, where N is the
number of classes, Ỹ is the prediction of our model and Y is
the true label, Yi and Ỹi represents a binary matrix that is 1
at each entry that is of class i and 0 elsewhere, the Dice loss
is as follows:

LD(Ỹ , Y ) =
N∑
i=0

2|Ỹi ∩ Yi|
|Ỹi|+ |Yi|

Cross Entropy is as follows:

LCE(Ỹ , Y ) = −
N∑
i=0

Yi log Ỹi

We used the following loss:
LTotal = LD + LCE

Optimizers We experimented with many different op-
timizers including: RMSProp, ADAM optimizer [Kingma
and Ba 2015], and Stochastic Gradient Descent. We found
empirically that the ADAM optimizer produced the best re-
sults, and all models were trained with a learning rate of
.0001, a β1 of .5 and a β2 of .999, and the learning rate was
lowered as the loss value of the validation set plateaued.

Batch Size Due to GPU memory limitations, the batch
size of UNet and DeepLab are set to 8, whereas the batch
size for Tiramisu is set to 2.

Implementation The training process was implemented
using Python 3.7 and PyTorch, and was run on a Ubuntu
based machine with two Intel Xeon Skylake processor with
36 cores, as well as 5 NVIDIA Tesla V100 GPU.

Metrics
While the Dice Score and Cross Entropy were the two loss
functions used to optimize our models, we judged the crite-
ria over seven different metrics. All metrics are listed below
with a brief description for how they were calculated for a
single scan. These single calculations were then averaged
for each scan in the training or test set. Let N be the number
of classes, Ỹ be the predicted segmentation mask, and Y be
the true segmentation label and Yi and Ỹi represents a binary
matrix that is 1 at each entry that is of class i and 0 else-
where. Additionally sum(...) counts the number of instances
of the expression being satisfied. For example sum(Ỹ = 2)
is the number of pixels that have been classified as class two
in the predicted segmentation mask.

Mean Dice Score Mean Dice Score is a standard metric
for segmentation algorithms. It calculates the mean value
for how much each class’ segmentation overlaps with the
ground truth. It was calculated as follows:

1

N

N∑
i=0

2|Ỹi ∩ Yi|
|Ỹi|+ |Yi|

Mean Jaccard Score Mean Jaccard Score is a standard
metric for segmentation algorithms. While it is very similar
to the Dice Score, it can emphasize different kinds of losses.
It was calculated as follows:

1

N

N∑
i=0

|Ỹi ∩ Yi|
|Ỹi ∪ Yi|

Mean Sensitivity Score Sensitivity is a measure of how
likely a given model is to detect a class and we averaged this
value over all classes. It was calculated as follows:

1

N

N∑
i=0

|Ỹi = 1 ∩ Yi = 1|
|Yi = 1|

Mean Specificity Score Specificity is a measure of how
likely a given model is to correctly predict a class is not
present, should it not be there, we averaged this value over
all classes, as follows:

1

N

N∑
i=0

|Ỹi = 0 ∩ Yi = 0|
|Yi = 0|
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Figure 6: Results on validation set per epoch, line indicates mean value, whereas shaded region is standard deviation of runs.

Architecture Dice Score Jaccard Score Sensitivity Specificity Severity Absolute Severity Prevalence

UNet .917 +/-0.006 .874 +/-0.006 .937 +/-0.009 .992 +/-0.000 .075 +/-0.213 .554 +/-0.046 96.032 +/-0.865
DeepLab .920 +/-0.001 .877 +/-0.001 .943 +/-0.006 .993 +/-0.001 .246 +/-0.132 .572 +/-0.038 97.328 +/-0.549
Tiramisu .904 +/-0.000 .861 +/-0.001 .946 +/-0.004 .991 +/-0.000 .446 +/-0.171 .692 +/-0.075 93.441 +/-0.472

Table 3: Values of all metrics on test set. Reported as mean value of runs, +/- standard deviation of runs.

Severity Score Severity score is a metric specific to this
task, and it is useful for ecologists to determine how severe
an EWD infection is. It is calculated as the ratio of diseased
tissue to total tissue. The closer this value is to 1, the more
advanced the EWD infection is on the eelgrass blade, and
vice versa. It was calculated as follows:

sum(Ỹ = 2)

sum(Ỹ = 1) + sum(Ỹ = 2)

− sum(Y = 2)

sum(Y = 1) + sum(Y = 2)

Absolute Severity Score Because the Severity score is av-
eraged over all samples in a particular set, it is possible for
over estimations and under estimations of disease to cancel
out. Therefore it is also useful to look at the absolute severity
error, calculated as follows:

| sum(Ỹ = 2)

sum(Ỹ = 1) + sum(Ỹ = 2)

− sum(Y = 2)

sum(Y = 1) + sum(Y = 2)
|

Prevalence Score This metric is also specific to this task,
and is based on whether particular blade has any diseased
tissue at all. It is thus a binary classification and is calculated
as follows:

sum(min(1, sum(Ỹ = 2)) = min(1, sum(Y = 2)))

Experimental Setup
We train each network for a total of 40 epochs, where one
epoch consists of training on the entire training set once,
and accuracy metrics are reported on the validation set. At
the end of 40 epochs, the version of the model that gives the
best results on the validation set is then used to predict once
on the test set. For each network the same experiment is run
5 times.

Results
The results of the models on the validation set for four of
our seven metrics are shown in Figure 6: Dice Score, Jac-
card Score, Severity Error and Prevalence Accuracy. The
opaque line for each represents the mean value of the five
runs, whereas the shaded region is the standard deviation of
the runs. For the validation set it can be seen that UNet and
DeepLab outperformed Tiramisu on the Dice and Jaccard
metrics, and the eelgrass specific metric of prevalence ac-
curacy. However for severity error, there was no significant
difference between the three.

In Table 3 we have listed the results on the test set for
these models for each of the seven metrics we calculated.
The number listed represents the mean value of the 5 runs,
with the± indicating the standard deviation of the 5 runs, to
3 significant digits, with the best performance highlighted.

As can be seen in the table, DeepLab demonstrated the
best results in 4/7 of the metrics. However, UNet demon-
strated the best results in the two most important metrics for
this domain Severity and Absolute Severity.

EeLISA as a Deployed AI System
Application Use
Given that the UNet model gave the best performance on
the most important metrics for this domain, Severity and
Absolute Severity, we use the trained UNet model in our
active deployment of the EeLISA system. The EeLISA sys-
tem has been live and been in continuous use by ecology
researchers for over 16 months. During this period EeLISA
has been fully available as a web service, and hosts thou-
sands of eelgrass scans. The segmentation and analysis mod-
ules are mostly used in bursts when new eelgrass scans are
made and need to be processed. The web application is used
more frequently to visualize and inspect uploaded data. Ad-
ditionally, the web application is frequently used as a more
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intuitive way to visualize and organize all of the data that
has been collected.

Payoff

Enabling Scientific Discovery and Insight Thanks to the
rapid and consistent analysis of EeLISA, ecologists were
able to quantify disease and demography before, during, and
after a marine heat wave, and have determined that EWD
is indeed sensitive to warming temperatures. These find-
ings are pivotal in understanding mechanisms underlying
eelgrass declines, and prove that EeLISA has practical and
important ecological applications. The use of EeLISA has
led to four manuscripts, three currently in preparation, one
that has been submitted. All four manuscripts are based on
large scale studies, either temporally or geographically or
both, that are only possible given the massive speedup pro-
vided by EeLISA.

Enabling New Research Since the deployment of the
EeLISA system, ecologists have been able to collect and
analyze data on a massive scale. The EeLISA system was
used to analyze the data of multi-year, multi-site study of
EWD along the San Juan Islands in northwestern Washing-
ton State. Further, EeLISA is the sole tool being used to ana-
lyze eelgrass scans in a new multi-university NSF study. The
study is being done over the course of three years, and each
year collects over 3500 eelgrass samples from 32 sites rang-
ing from Southern California to Alaska. An EWD study of
this size is completely unprecedented and is only made pos-
sible by the rapid analysis facilitated by the EeLISA system.

Massive Speed Up It is a conservative estimate that earlier
methods to measure disease metrics would take 30 minutes
per each scan. Just the first year of data for the NSF project
contains 694 scans. It would require approximately 347
hours of manual analysis to label this entire set. Fur-
ther, this task cannot be outsourced to non-domain experts
or community scientists, because of its complexity; it had
to be done by ecological experts. The same data was ana-
lyzed, measured, and cataloged in an output CSV file by
EeLISA in roughly 5 minutes. This means EeLISA can
perform the analysis more than 5000 times faster than
traditional methods. Additionally, with more GPUs avail-
able this analysis speed could improve even further.

Consistency Additionally, while the training process for
the EeLISA system is stochastic, once the model is trained
all internal model parameters are frozen and the system be-
comes deterministic. This means for the same input, EeL-
ISA will always produce precisely the same output. This
is a significant benefit over human labeling as two differ-
ent experts might label the scan slightly differently due to
personal judgement or labeling error, and even the same ex-
pert may label differently depending on how long they have
been labeling. This makes it more difficult to compare dis-
ease metrics that are coming from multiple different experts,
and from a large range of time. However, with EeLISA each
measurement can be trusted to be perfectly consistent.

Deployment Architecture and Maintenance
The web server is based off open source code1. It is writ-
ten using the Meteor and Node.js frameworks, and is writ-
ten in JavaScript. It is hosted via an Amazon Web Services
(AWS) T2 Large instance with two cores, 8 GB of mem-
ory and 200 GB of expandable storage. The segmentation
and analysis module are written in Python 3.7, and primarily
use the modules PyTorch, Scipy, and Numpy to provide the
ML and analysis functionality. The segmentation and analy-
sis modules are run on a private Ubuntu based machine with
two Intel Xeon Skylake processors with a total of 36 cores
with a total of 376 GB of memory, as well as 5 NVIDIA
Tesla V100 GPU with a combined GPU memory pool of 80
GB.

The segmentation module requires maintenance in the
form of re-training, which happens every time there is a
batch of new data. During this process the new data is added
in the same 75/25 train/test split to the main training and
testing data, and the model is re-trained. The newly trained
weights are check-pointed and saved for future use. The web
application and analysis module require very sporadic main-
tenance, and are only updated when a new feature is re-
quested.

Lessons Learned
We quickly learned to leverage on available labeling tools1,
as originally we developed our own, but it lacked certain key
functionality. Additionally, we learned how critical it was to
integrate our solution into the established workflow of the
ecologists, in order for our solution to really be practical.
We also learned the importance of considering the success
of our trained models through multiple objective/metrics.
Lastly, we learned how powerful AI/ML can be in these do-
mains and how it can empower researchers to do studies at
unmatched scale.

Related Works
EWD Monitoring
In [Lefcheck et al. 2017] the authors used 31 years of man-
ually annotated aerial imagery to track the area of eelgrass
beds in the Chesapeake Bay. In [Groner et al. 2014, 2016]
the authors collected eelgrass blade samples in a field study,
whereby samples were measured and visually inspected for
lesions indicating EWD. If a lesion was visually identified it
was measured to quantify disease levels. In [Dawkins et al.
2018] the authors would quantify the disease using images
and image processing software.

Annotation Systems
Many segmentation annotation frameworks exist [Russell
et al. 2008; Lin et al. 2014]. Additionally, there has been
much work in using trained models to perform semi-
automatic annotation to speed up labeling [Castrejon et al.
2017; Yu et al. 2020].

Computer Vision in Ecology
Most efforts utilizing ML to study eelgrass is based on de-
tection from aerial or satellite imagery [Islam et al. 2019;
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Traganos and Reinartz 2018]. Additionally, [Moniruzzaman
et al. 2019] released a public detection data set for seagrass
in an aquarium setting. Outside of eelgrass there are several
public segmentation and classification data sets for plants
[Minervini et al. 2016; Scharr et al. 2014; Horn et al. 2017].

Semi-Supervised Learning
The feedback process of this method (i.e. the network pro-
ducing outputs that are then used as training data) is a simi-
lar setting to semi-supervised learning, which has been well
studied [Grandvalet and Bengio 2004; Lee 2013; Chapelle,
Scholkopf, and Zien, Eds. 2009]. While our feedback pro-
cess is most similar to the setting in [Lee 2013], it differs
in that we consider the ideal situation where an expert an-
notator corrects the miss-classified pixels, and we leverage
on the verified correct predictions. In this way, we use semi-
supervised learning to limit labeling time, instead of to lever-
age on unlabeled data.

Conclusion
Global warming is a massive problem facing humanity, and
it is affecting nearly every aspect of our lives. While it can
feel overwhelming, ML is an important and powerful tool
to combat it. While stopping the causes of global warming
is extremely important, it is also extremely important to be
able to carefully measure the effects it has already had on our
ecosystems so that we can introduce preventative measures.
Eelgrass is a critical marine habitat that is being affected
by EWD, and is likely accelerated by global warming. In
this work we have introduced the EeLISA system that al-
lows ecologists to rapidly calculate disease metrics for eel-
grass scans. We are pleased that EeLISA has been in use
by ecological researchers for over 16 months, and has led
to scientific discovery and insight highlighted in four sep-
arate manuscripts, and to the ability to do EWD research
at unprecedented scales. We feel EeLISA presents a great
example of how AI can be used symbiotically with human
researchers to allow humanity to study and understand the
natural world like never before.
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