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Abstract
Scholarly digital libraries provide access to scientific publi-
cations and comprise useful resources for researchers. Cite-
SeerX is one such digital library search engine that provides
access to more than 10 million academic documents. We pro-
pose a novel search-driven approach to build and maintain a
large collection of homepages that can be used as seed URLs
in any digital library including CiteSeerX to crawl scientific
documents. Precisely, we integrate Web search and classifica-
tion in a unified approach to discover new homepages: first,
we use publicly-available author names and research paper
titles as queries to a Web search engine to find relevant con-
tent, and then we identify the correct homepages from the
search results using a powerful deep learning classifier based
on Convolutional Neural Networks. Moreover, we use Self-
Training in order to reduce the labeling effort and to utilize
the unlabeled data to train the efficient researcher homepage
classifier. Our experiments on a large scale dataset highlight
the effectiveness of our approach, and position Web search
as an effective method for acquiring authors’ homepages. We
show the development and deployment of the proposed ap-
proach in CiteSeerX and the maintenance requirements.

Introduction
CiteSeerX is a scientific literature digital library and search
engine that focuses primarily on the literature in computer
and information science. CiteSeerX aims to improve the dis-
semination of scientific literature and to provide improve-
ments in functionality, usability, availability, cost, compre-
hensiveness, efficiency, and timeliness in the access of sci-
entific and scholarly knowledge. Besides search capabili-
ties, CiteSeerX provides access to over 10 million academic
documents (metadata information along with the full doc-
uments), which have been used in many applications such
as expert search (Balog and De Rijke 2007), author name
disambiguation (Kim et al. 2018; Khabsa, Treeratpituk, and
Giles 2014), keyphrase extraction (Patel et al. 2020; Pa-
tel and Caragea 2019; Alzaidy, Caragea, and Giles 2019;
Gollapalli and Caragea 2014; Caragea et al. 2014; Florescu
and Caragea 2017), citation indexing (Giles, Bollacker, and
Lawrence 1998), topic classification (Lu and Getoor 2003;
Caragea, Bulgarov, and Mihalcea 2015), and collaboration
network formation (Chen et al. 2011).
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In order to enlarge its document collection, CiteSeerX
maintains whitelists / blacklists of URLs and lists of re-
searchers’ homepages to direct the crawl for documents.
Thus, maintaining comprehensive, up-to-date collections of
researchers’ homepages is an essential component in Cite-
SeerX. However, this task is very challenging since not only
do new authors emerge, but also existing authors may stop
publishing or may change affiliations, resulting in outdated
(4XX error) or invalid URLs. An analysis of a subset of
13, 239 homepages available in DBLP revealed that ≈ 42%
of them were outdated within a time span of three years. This
represents about half of the original homepages in the set.
Given this challenge, how can we automatically augment
and maintain accurate lists of researchers’ homepages?

One approach would be to crawl academic websites (e.g.,
from a university domain) and use a machine learning clas-
sifier to predict whether a website accessed during the crawl
is an author homepage or not (Gollapalli et al. 2013). How-
ever, this approach: (1) is still inefficient (e.g., in terms of
bandwidth and storage resources) since only a small frac-
tion of the websites hosted in an academic domain are au-
thor homepages (with many websites corresponding to de-
partments, courses, groups, etc), and (2) misses homepages
from research industry labs, which do not belong to the aca-
demic domain (e.g., ∼51% of the homepages in our dataset
are not from the .edu domain). An alternative, more efficient
approach, is to use a broader Web search for author discov-
ery together with an accurate homepage classifier.

To this end, in this paper, we propose a novel search-then-
classify approach to find researchers homepages on the Web
and identify them with powerful deep learning models. Our
approach is inspired from the way humans search for schol-
arly information on the Web. Precisely, humans may directly
employ an author name as a query, or may issue a “navi-
gational query” (Broder 2002) comprising of representative
keywords (or paper titles) of the author, if the author’s name
(or the correct spelling) is not known. Using hints from the
titles, snippets and the URL strings, human searchers are of-
ten able to locate the correct homepage from the Web search
results, e.g., by navigating from the paper URL to the index
of the homepage where the paper is located. To illustrate
this process, Figure 1 shows an example of a Web search
using the Bing search engine for the title of a paper pub-
lished in WWW 2008. In the figure, the link shown in hosted
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Figure 1: An anecdotal search example using paper title search. Green highlighted response is located on the first author’s
homepage. Newly discovered authors are highlighted by a red color.

on the homepage of the first author of the searched paper,
while the links shown in red point to newly discovered au-
thors. For the paper title search, the homepage of the first
author of the searched paper can be accurately retrieved by
navigating from the paper’s URL to the index of the home-
page (see the first result of the figure). Interestingly, notice
that homepages belonging to seven other authors (different
from the authors of the searched paper) can be discovered
through the title search. We posit that this is because sci-
entific paper titles comprise a large fraction of keywords
(Litvak and Last 2008), and hence, the words in paper titles
serve as excellent keywords to formulate queries that can re-
trieve topically-related research papers, which are likely to
be hosted on researchers’ homepages. Indeed, according to
previous studies, researchers provide access to their papers
(whenever possible) to improve their visibility and citation
count, making researcher homepages a likely hub for locat-
ing research papers (Lawrence 2001; Gollapalli et al. 2015).

Our search-then-classify approach specifically captures
the above aspects by first “issuing” a query to find rele-
vant content from the Web, and subsequently using a home-
page classification module to identify homepages from the
retrieved content (i.e., from the Web search results). Identi-
fying homepages “in the wild” is very challenging since they
have different structures and content and the URLs where
they are hosted are very diverse and new URLs appear over
time (e.g., many researchers use now github for their home-
pages, which was unlikely 5 or 10 years ago). Using author
names and paper titles as queries, together with a homepage
classifier, we are able to discover not only homepages of
intended authors (e.g., those searched directly by name or
those of the searched titles), but also homepages of other au-
thors who work on semantically-related topics. We use deep
learning models to learn powerful representations of URLs
and page content. Moreover, we explore self training (Mc-

Closky, Charniak, and Johnson 2006) in order to reduce the
human effort needed to label the data by exploiting unla-
beled data for the homepage classification task.

In summary, our contributions are as follows:

• We propose a search-driven homepage finding approach
that uses author names and paper titles to find researcher
homepages. To our knowledge, we are the first to use “pa-
per titles” as queries to discover researcher homepages.
Furthermore, we explore Convolutional Neural Networks
(CNNs) for author homepage identification,1 which is a
crucial component in our approach.

• We conduct a thorough evaluation of the CNN models
trained on both URLs and page content, and show sig-
nificant improvements in performance over baselines and
prior works. Furthermore, we show that self training can
improve the performance of the classifier with the small
amount of labeled data along with the unlabeled data.

• We perform a large-scale experiment using author names
and paper titles from Computer Science as queries, and
show the effectiveness of our approach in discovering a
large number of homepages. Finally, as part of our contri-
butions, all resulting datasets for author homepage iden-
tification and homepage discovery will be made available
to further research in this area.2We show the development
and deployment requirements of our proposed approach
in CiteSeerX and the maintenance requirements.

Related Work
Work related to our proposed search-driven homepage clas-
sification approach follows in several categories, including

1We use author homepage classification or identification inter-
changeably in this paper.

2https://www.cs.uic.edu/∼cornelia/datasets/homepage discovery
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standard supervised learning (based on feature engineering)
and graph-based approaches, semi-supervised learning ap-
proaches that can leverage unlabeled data and complemen-
tary sets of features (or views), deep learning approaches to
text classification and focused crawling approaches. We dis-
cuss the most relevant works in each of these categories in
the remaining of this section.

Supervised and Graph-based Approaches. Homepage
finding is well-studied in information retrieval. The home-
page finding track in TREC 2001 resulted in various ma-
chine learning systems for finding homepages (Xi et al.
2002; Upstill, Craswell, and Hawking 2003; Wang and
Oyama 2006). Author/researcher homepage identification is
a type of homepage finding task, which has been studied
extensively in the context of digital libraries such as Cite-
Seer (Li et al. 2006) and ArnetMiner (Tang et al. 2008).
Among works focusing specifically on researcher home-
pages, both Tang et al. (2007) and Gollapalli et al. (2013)
treated homepage finding as a binary classification task and
used various URL and webpage content features for classi-
fication. Ranking methods were also explored for homepage
finding using the top terms obtained from topic models (Gol-
lapalli, Mitra, and Giles 2011). Qi and Davison (2009) used
HTML structure-based features and content-based features
for classifying webpages. Wang and Oyama (2006) stud-
ied the problem of collecting researcher homepages for
Japanese websites using on-page and anchor text features.
Ye et al. (2012) also focused on finding high quality re-
searcher homepages. Kang et al. (2011) used the last name
of a given author followed by a title of one of his/her publi-
cation as a query to a search engine to locate a publication
list of the author.

Semi-supervised Learning Approaches. For a given
webpage, both URL and the HTML content can be used
for classifying the webpage. Multi-view learning is usually
considered as maximizing the unanimity between different
views (Long, Yu, and Zhang 2008; Christoudias, Urtasun,
and Darrell 2012). Co-training (usually with two views) is
a type of multi-view learning. Gollapalli et al. (2013) pro-
posed an algorithm for “learning a conforming pair of clas-
sifiers” that imitates co-training by using the URL and the
HTML content as two different views. Jing et al. (2017)
addressed the webpage classification problem using a dis-
criminant common space by learning a multi-view shared
transformation in a semi-supervised way. Self training (Mc-
Closky, Charniak, and Johnson 2006) uses labeled and unla-
beled data usually with a single view to improve the classi-
fier performance.

Deep Learning Approaches. Despite the effectiveness of
feature engineering used in traditional machine learning, this
is a labor intensive task and sometimes fails to extract all
the discriminative information from the data (Goodfellow,
Bengio, and Courville 2016). Existing models for homepage
classification/identification generally use hand-engineered
features extracted from URLs and page content (Gollapalli
et al. 2015; Tang, Zhang, and Yao 2007). However, improved
semantic representations can be obtained directly from the
data using deep learning, and can help avoid problems re-
lated to feature engineering. For example, Kim (2014) used

Path 1: Author Name Query
Eric T. Baumgartner filetype:html
Path 2: Paper Title Query
Solving Time-Dependent Planning Problems. filetype:pdf

Table 1: Example of author name and paper title queries.

Convolutional Neural Networks for representation learning
for sentence classification and achieved remarkable results.
The author used one convolutional/pooling layer (consist-
ing of filters of three different sizes), together with a word
embedding layer that encodes tokens in the input sequence
and experimented with several variants of word embed-
dings, including fixed pre-trained vectors, or randomly ini-
tialized word vectors later tuned for a specific task. Zhao et
al. (2019) used neural network based homepage identifier to
find a homepage of a given researcher within a set of HTML
pages which are retrieved for a given researcher name as a
query. In contrast, inspired from Kim (2014), we use CNNs
for representation learning for homepage classification and
aim to identify homepages of semantically-related authors
(not just the targeted author) for a given query.

Focused Crawling. Focused crawling was introduced by
Chakrabarti et al. (1999) to deal with the information over-
load on the Web in order to build specialized collections fo-
cused on specific topics. Zhuang et al. (2005) demonstrated
the feasibility of using author homepages as alternative re-
sources to collect research papers that are missing from an
academic digital library. Garcia et al. (2017) proposed a
framework to gather publication list of different researchers
by using author names as queries to a web search engine.

As opposed to previous approaches that used researcher
names and their affiliations to locate a given researcher’s
homepage, we focus on researcher homepage discovery and
propose an approach that mimics how people skim through
the search results to discover homepages on the Web.

Task and Application Description
Task Description Our task is to automatically discover
new researchers’ homepages on the Web, and augment and
maintain up-to-date lists of homepages in open-source dig-
ital libraries to enable effective and efficient crawls for
collecting documents. To address this task, we propose a
search-then-classify approach for discovering researchers’
homepages from the Web that mimics the search process
adopted by humans. Author names and paper titles, freely
available on the Web for specific subject disciplines are used
to form suitable queries in our approach. Specifically, Path
1 starts with queries for authors names, while Path 2 starts
with queries for paper titles. To identify researchers’ home-
pages, pages retrieved on either path are classified with a
CNN model. Table 1 shows examples of queries issued in
Path 1 (author names) and Path 2 (paper titles), respectively.

Application Description Our implementation of the
search-then-classify framework represents a critical part to-
wards a sustainable CiteSeerX, in that it maintains and aug-
ments up-to-date lists of researchers’ homepages found on
the Web. Given the infeasibility of collecting the entire con-
tent on the Web, our search-then-classify framework aims

15148



to minimize the use of network bandwidth and hardware
resources by selectively crawling only pages relevant to a
(specified) set of topics.

Innovative Use of AI Technology
Convolutional Neural Networks A key component in our
framework is a classification module that identifies whether
a retrieved webpage is a homepage or not. Inspired by Kim
(Kim 2014), we use Convolutional Neural Networks for rep-
resentation learning of URLs and page content. Convolu-
tional Neural Networks (CNNs) (LeCun et al. 1998) are a
special kind of neural networks to process grid-like struc-
tured data, including sequence or time series data. CNNs are
associated with the idea of a “moving filter.” Thus, in our
approach, we explore a CNN based classifier for identifying
homepages from the retrieved results in both search paths.

The CNN architecture used in our experiments is shown
in Figure 2, and is comprised of mainly three layers: a word
embedding layer, a convolutional layer followed by max
pooling, and a fully connected layer for the classification.
The embedding layer for tuning task specific word embed-
dings is initialized to a random vector corresponding to the
input sequence. A convolutional layer consists of multiple
filters of different sizes (e.g., sizes 3 and 4, respectively)
that generate multiple feature maps (e.g., 300) for each filter
size. Pooling is usually used after the convolutional layer
to reduce the dimensionality (i.e., number of parameters)
and prevent overfitting. The common practice for text is to
extract the most important feature within each feature map
(Collobert et al. 2011), called 1-max pooling. In our archi-
tecture, 1-max pooling is applied over each feature map and
the maximum values from each filter are selected. These
maximum values are then concatenated and used as input
to a fully connected layer for the classification task (home-
page versus not-homepage). We minimize a sigmoid (or bi-
nary) cross-entropy loss function using Adam optimizer to
correctly predict the class label. If yi is the true label and
p(yi) is the predicted label, then the cross-entropy loss func-
tion (L) for N examples is calculated as:

L = − 1

N

N∑
i=1

yi.log(p(yi)) + (1− yi).log(1− p(yi)) (1)

We investigate two types of representations derived us-
ing CNN: (1) word based HTML content; and (2) word
based URL. As can be seen from Figure 2, we explore the
CNN models individually on either URL or page content, or
jointly on both URL and page content. The URLs and corre-
sponding pages (content) are those obtained as the result of
our search for author name and paper title queries.

For the word based HTML model, we consider the first
1000 words from the HTML content of each page (given
that the average length of HTMLs in the homepage class in
our dataset is 982, and most of the homepage characteristics
often appear in the beginning of a page). Furthermore, we
remove stop words and digits, and consider words appear-
ing in at least 10 documents. For the URL based model, we
tokenize the URLs with ‘/’ as a delimiter, and form the vo-
cabulary from all unigrams that appear in WordNet (Miller

Actual URL www.cc.gatech.edu/∼mnaik7/pubs/popl16.pdf

Candidate
URLs

www.cc.gatech.edu/∼mnaik7/pubs/
www.cc.gatech.edu/∼mnaik7/
www.cc.gatech.edu/

Table 2: Example URLs and candidate URLs.

1995). Consistent with Gollapalli et al. (2013), for words
that do not appear in WordNet, we add URL string pat-
terns to the vocabulary, including underscored or hyphen-
ated words, words with the ‘∼’ sign, alphanumeric words,
and long words (i.e., words with more than 30 characters).
These patterns can help to filter out course pages, announce-
ments, calendars, etc. For this model, we consider words ap-
pearing in at least 3 URLs.
Semi-supervised Teacher-Student Model As discussed
in the Introduction, one major challenge in identifying
homepages is that the URLs where homepages can be hosted
change over time. In order to reduce the human effort for
data annotation, we investigate self-training in a Teacher-
Student fashion to utilize the unlabeled data together with
already labeled data. The model works in four steps in an it-
erative manner (Figure 3): (1) labeled data is used to train
a teacher model; (2) the teacher model is used on unla-
beled data to generate pseudo labels; (3) the student model
is trained using both labeled data and pseudo labeled data
(unlabeled data); (4) iterate the process by putting back the
student as a teacher to generate new pseudo labels for train-
ing new student model. We considered examples which are
predicted positive or negative with the probability ≥ 0.8 and
≤ 0.2, respectively. In our case, we used data balancing
while using pseudo labeled data and sampled same number
of examples as the training set with equally sampling from
each slot of 0.05 range. As an example, for the positively la-
beled data using the teacher model we sample equally from
0.8 to 0.85, 0.85 to 0.90, and so on. The backbone of our
model is the CNN on both page content and URL.

Generating Candidate URLs
Note that for each query, a set of URLs are retrieved. We dis-
card responses from a list of 25 domains such as “Research-
Gate”, “LinkedIn”, etc. Candidate homepage URLs for each
retrieved URL in Path 2 are generated by first splitting the
URL on “/” and then removing the last part of the URL, it-
eratively, until the domain is reached. In the candidate set of
URLs, we keep only the URLs for which we are able to ob-
tain the corresponding HTML. Examples of candidate URLs
for a paper title search is shown in Table 2. For Path 1, we
use retrieved search results for the candidate URLs.

Datasets
We now describe the datasets that we use in the evaluation
of the CNN homepage classifier and our overall approach.

DBLP Dataset
The WebKB dataset collected in 1997 has been previously
used for homepage classification (Gollapalli et al. 2013).
However, due to continuous changes in the information con-
tent on academic websites, this dataset has become outdated.
For example, academic websites today contain invited talks,
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Figure 2: Illustration of our CNN architecture used for homepage classification.

Figure 3: Teacher-Student architecture of
self training.

newsletters, job postings, and other events that do not occur
in WebKB. In addition, the WebKB dataset does not con-
tain homepages from industry lab researchers. To address
the above limitations and in order to enable the exploration
of deep learning for author homepage identification, we con-
structed a labeled dataset for this task as follows.

We obtained a list of author names and their homepages
from DBLP in 2015. After data processing, we found that
the original DBLP list had a repetition of 21 homepages and
contained some URLs that were easily identified as non-
homepages, specifically, 56 URLs from Wikipedia, 2 from
DBLP and 1 from Springer. After removing repetitions and
pages linking to Wikipedia, DBLP, and Springer, we ended
up with a list of 13, 239 homepages. We further refined the
original DBLP list by removing all outdated URLs, 5, 596
in total (HTTP 4xx client errors, non-valid homepages, or
redirects to the default university/company page). We ended
up with a list of 7, 643 author names and their homepages.
We used the author names as queries to the Bing search
API and retrieved the top-10 results for each query, obtain-
ing 76, 375 search responses from Bing in total. From the
Bing responses, we filtered out pages from the list of 25
domains such as “ResearchGate,” “LinkedIn,” “Wikipedia,”
“YouTube”, etc. After removing such pages, and the over-
lap with the original DBLP set of homepages, we ended
up with 20, 229 Bing responses. We manually inspected the
set of 27, 872 URLs (7, 643 DBLP URLs + 20, 229 Bing
URLs) for the labeling task, using three Amazon Mechanical
Turk (AMT) workers and two undergraduate students, who
were trained in an iterative fashion and worked closely with
the researchers. Whenever there was agreement between the
three AMT workers, we labeled the example accordingly
(as homepage or non-homepage). When there was disagree-
ment, the data was labeled further by the undergraduate stu-
dents, and if a decision could not be reached, the final ad-
judication was made by one of the researchers. During the
labeling task, we removed outdated and non-English pages.
At the end of the annotation task, we found 8, 529 posi-
tive examples (homepages) and 16, 245 negative examples
(non-homepages). After this manual annotation, we found

+ve -ve
(θ ≥ 50) -ve (all)

#Examples 8,529 10,204 16,245
#URLs as a domain 439 1,097 1,156
#URLs with ∼ sign 3,974 113 120
#URLs from ‘.edu’ 4,192 1,304 2,307
#URLs from ‘.com’ 464 5,290 8,929
#URLs containing digit 1,034 5,191 9,130
#Pages with ‘homepage’

word or its synonyms 3,639 2,048 3,759

Max. #characters/URL 158 232 297
Avg. #characters/URL 32 50 52
Max. #words/webpage 86K 530K 530K
Avg. #words/webpage 982 2,011 2,418

Table 3: Datasets characteristics.

that only 5, 851 out of 7, 643 DBLP homepages are valid
(with the others being, e.g., moved to a different page). The
result of this search validates our intuition that we can ob-
tain homepages for the intended authors, but also additional
homepages of related authors (e.g., co-authors).

In the set of negative domains, we observed that there
were hundreds of URLs from domains such as “health-
grades.com”, “ratemyprofessor.com”, etc. Thus, we con-
structed the final dataset by sampling only 50 negative URLs
from a given domain (Threshold θ ≥ 50). For domains with
less than 50 URLs, we used all URLs. The final dataset used
in our experiments contains 18, 733 examples, specifically
8, 529 homepages and 10, 204 non-homepages.
Characteristics of the DBLP Dataset Table 3 contains
the characteristics of the DBLP dataset. As we can see, the
percentage of URLs containing a ∼ sign or being from the
‘.edu’ domain is higher in the positive set as compared to
the two negative sets (specifically, 3, 974 out of 8, 529 URLs
from the positive set contain the ∼ sign). On the other hand,
in both negative sets, the percentage of URLs containing a
digit or from the ‘.com’ domain is higher as compared with
the positive set. Moreover, 43%, 20%, and 23% of webpages
contain the keyword ‘homepage’ or its synonyms such as
personal page, personal site, personal website, etc. in the
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Figure 4: Number of URLs corresponding to homepage from dif-
ferent domains in our DBLP dataset.

positive set, negative set (threshold-50), and negative set
(all), respectively. Also the maximum and average #charac-
ters per URL and #words per webpage are smaller in the
positive set as compared with both negative sets. Figure 4
shows the top-20 domains for the positive set.

CiteSeerX Dataset
Our second dataset, which we used for the large scale evalu-
ation of our overall framework, is compiled from CiteSeerX.
Specifically, we extracted papers published in venues re-
lated to machine learning, information retrieval, and com-
putational linguistics. Overall, we obtained a random set of
10, 000 paper titles and 14, 808 authors (unique names cor-
responding to the selected titles) for the evaluation of our
search-driven approach on a large scale. These venues along
with the number of papers in each venue are as follows: ACL
(1193), IJCAI (1167), COLING (1010), ICRA (827), NIPS
(650), VLDB (613), ICML (564), AAAI (411), CHI (399),
CVPR (371), KDD (366), EACL (333), SIGIR (305), SAC
(296), SDM (242), ICDM (236), CIKM (235), WWW (231),
LREC (226), HLT-NAACL (209), and EMNLP (116).

Experiments and Results
Next, we describe our experiments and results on home-
page classification along with the performance of our overall
search-then-classify framework.

Author Homepage Classification
To evaluate the performance of the CNN models on home-
page classification, and compare them with previous ap-
proaches for this task, we divided our DBLP dataset into
train, validation and test sets. The train, validation, and test
sets have 60%, 20% and 20% examples, respectively. All
the splits are constructed by keeping the original distribu-
tion of the URL set. We use the validation set for parameter
tuning and model selection. We report precision, recall and
F1-score for the positive class and the overall accuracy for
each model on the test set (using the model that performed
best on the validation set). For CNN models, we run the ex-
periments with three different random initialization of the
network weights and we report average values for each mea-
sure. The model that achieved the highest performance on
the test set was chosen for the large scale experiment.

CNN vs. Supervised Models and Co-training We con-
trast the performance of CNNs on different input types

Model Precision Recall F1 Accuracy
CNN-URL 0.91 0.75 0.82 85.11%
CNN-Content 0.89 0.90 0.89 90.38%
CNN-Combined 0.90 0.94 0.92 92.35%
Co-training 0.87 0.86 0.87 87.64%
RF-URL 0.89 0.84 0.87 88.10%
RF-Content 0.83 0.92 0.87 87.35%
RF-Combined 0.85 0.91 0.88 88.55%

Table 4: CNN vs. co-training and supervised models.

(URL, HTML content, and the combination) with the per-
formance of several traditional supervised classifiers (Ran-
dom Forest, Decision Trees, Naı̈ve Bayes, and Support Vec-
tor Machines with a linear kernel), as well as with the perfor-
mance of a semi-supervised co-training classifier for home-
page identification as described in (Gollapalli et al. 2013).

We used the tf-idf vector representations for all input
types (URL and content based) for the traditional supervised
classifiers. We trained the CNN models using mini-batches
of size 64, with a sigmoid cross-entropy loss function and
Adam optimizer with a learning rate of 0.0005. After ex-
perimenting with a large spectrum of parameters for CNNs
on the validation set, the best parameters are as follows: for
CNN-URL, 100 embedding size and 100 filters of size 5;
for CNN-content, 300 embedding size and 100 filters of size
5. For co-training, we obtained the code and unlabeled data
from Gollapalli et al. (2013).3

Table 4 shows the performance on the test set of the CNN
classifiers compared with co-training and supervised Ran-
dom Forest (RF) classifiers. The RF classifiers performed
the best among all the traditional supervised classifiers (and
therefore we only show its results in the table). CNN clas-
sifiers are comparable and in many cases outperform their
traditional supervised counterparts except the URL based
classifier, and also the co-training approach proposed in
(Gollapalli et al. 2013). We can also see that the CNN-
combined, which uses both word-based content and word-
based URL, achieves the highest performance among all
models, in terms of recall and F1-score. For example, CNN-
combined achieves the highest F1 of 0.92, whereas the RF-
combined (URL + content) yields an F1-score of 0.88. We
can also observe that CNN-URL achieves a highest preci-
sion of 0.91.

The Effect of Self-training To see the effectiveness of
self-training, we perform experiments using different por-
tion of the training data along with unlabeled data to
train our homepage classifier (CNN-Combined) using self-
training. For the unlabeled data used in the self-training of
our homepage classifier, we use candidate URLs of Path 1
(author name queries) of our proposed framework. We used
56, 339 HTML pages and URLs as the unlabeled set. We
went up to 5 iterations of self-training, iteratively learning a
teacher-student model. Table 5 shows the results highlight-
ing the effect of self-training on the CNN-Combined clas-
sifier. We can see that the performance of the classifier im-
proves when the labeled data is ≤ 25% (only 2, 811 labeled

3https://sites.google.com/site/sujathadas/home/datasets
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Labeled Precision Recall F1 AccuracyData
Without self training

1% 0.77 0.80 0.78 79.37%
5% 0.88 0.86 0.87 88.33%
10% 0.88 0.89 0.88 89.20%
25% 0.88 0.92 0.90 90.81%
50% 0.89 0.94 0.92 92.06%
100% 0.90 0.94 0.92 92.35%

With self training (uses unlabeled data)
1% 0.83 0.85 0.84 84.96%
5% 0.85 0.91 0.88 88.85%
10% 0.87 0.91 0.89 89.60%
25% 0.87 0.94 0.91 91.06%
50% 0.90 0.93 0.92 92.14%
100% 0.91 0.93 0.92 92.63%

Table 5: The performance of CNN-Combined model with
and without self training.

False Positives
Example Confidence
1. http://users.ics.aalto.fi/eugenc 1.0
2. http://www.nott.ac.uk/∼itzbl/ 1.0
3. http://www.eng.usf.edu/∼rfrisina/ 0.9999
4. http://www.ssrc.ucsc.edu/person/phartel.html 0.9952

False Negatives
Example Confidence
5. http://zh-anse.com 0.9995
6. http://www.brookings.edu/experts/yuq 0.9989
7. https://blog.xot.nl/about-2 0.9858
8. http://freudenbergs.de/bert 0.9805

Table 6: Errors made by CNN-Combined model, along with
model’s confidence values. The blue part in each URL indi-
cates the part of the URL that is used as input to a model.

examples). For example, while using only 1% (112) labeled
examples, the performance of the classifier increased by ≈
8% using self-training from F1 of 0.78 to 0.84. For the error
analysis and the large-scale experiments, we used the CNN-
Combined classifier trained using self-training with 100%
training examples. These results show that self-training can
be very useful when we want to deploy/train the homepage
classifier for other domains where the labeled data is not eas-
ily available, but we can easily collect the unlabeled data
relevant to the task. Also, self-training can be very useful in
order to reduce the human labeling effort, especially given
the changing nature of the URL types/domains where home-
pages can be located.

Error analysis Table 6 shows sampled URLs along with
model’s confidence value where CNN-Combined model
made errors. The blue part of each URL indicates the part
of the URL that is used as an input to a deep learning model.
Most of the false positive examples are pointing to webpages
of a research group/lab or their list of people/members, and
to webpages containing basic information regarding a pro-
fessor or a person. Specifically, URL-1, URL-2 and URL-
3 are pointing to a webpage of a member of the research
group/lab, while URL-4 is pointing to a webpage contain-
ing basic information regarding a professor. Most of the

Queries URLs Candidate CNN-comb. HPs
URLs All Unique

Author names 148,042 56,339 12,093 11,016
Paper titles 75,612 51,451 17,685 12,199
Overlapping - - - 2,622
Total - - - 20,593

Table 7: Homepages from 10, 000 title and 14, 808 author
search responses in a large-scale experiment.

false negative examples are pointing to a homepage contain-
ing very little research-related information, or a homepage
with very different content than that expected on a usual re-
searcher homepage. URL-5 contains very little HTML con-
tent (unlike a typical researcher homepage). URLs 6, 7, and
8 are also homepages with very different content than the
content on a usual researcher homepage.

Large-Scale Experiments
We now evaluate the capability of our search-then-classify
approach to discover author homepages in a large-scale ex-
periment, using the CiteSeerX dataset. To this end, we use
the 14, 808 author names and the 10, 000 paper titles as
search queries on the Bing search API and employ the CNN-
combined homepage classifier to identify homepages from
the top-10 search results of each query. We used only the
top-10 results as they are shown to often be sufficient to re-
trieve the relevant information (Spink and Jansen 2004).

Overall yield. The total number of Bing URL responses
for our author name and paper title queries, the number of
resulting candidate URLs (corresponding to the retrieved
URLs), and the number of predicted homepages (overall
and unique) obtained using the CNN-combined classifier
are shown in Table 7. Individually, for the 14, 808 author
name queries we obtained 148, 042 Bing URL responses
(i.e., URLs pointing to html pages). After filtering out the
easy-to-identify non-homepage commercial URLs, we gen-
erated 56, 339 candidate URLs (see Table 2 for examples
of candidate URLs), out of which 12, 093 are classified as
homepages by our CNN-combined classifier. From this set
of 12, 093 predicted homepages, we obtained 11, 016 unique
author homepages.

For the 10, 000 paper title queries, we obtained 75, 612
Bing URL responses (i.e., URLs pointing to PDF docu-
ments). After filtering out the commercial URLs, we gener-
ated 51, 451 candidate URLs, out of which 17, 685 are clas-
sified as homepages by our CNN-combined classifier. From
this set of 17, 685 predicted homepages, we obtained 12, 199
unique author homepages.

Table 7 shows also the overlap in the two sets of unique
homepages between author name search and paper title
search, which consists of 2, 622 unique homepages. As ex-
pected, this small overlap of homepages between author
name search and paper title search indicates that research
paper titles, formulated as queries, have a great potential
to discover new researcher homepages (in addition to the
homepages of researchers searched specifically). Precisely,
through the paper title search and using the CNN-combined
classifier, we were able to find an additional 9, 577 (=
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Figure 5: Top-20 domains from author and title searches.

12, 199 − 2, 622) unique homepages (as compared to the
author name search). This result also suggests that the two
types of searches complement each other and are capable
to reach different sections of the Web. The total number of
homepages we discover through the author name search and
paper title search in our approach is 20, 593 (= 11, 016 +
12, 199 - 2, 622). This total number of homepages show-
cases the potential of our approach to acquire and maintain
large collections of homepages.

To see where the homepages acquired using our approach
come from (what parts of the Web), we extracted the number
of different domains and ranked them based on the number
of URLs in each domain. Figure 5 shows the top-20 domains
for the 20, 593 homepages. In total, we found 107 domains.
Around 48% of homepages are from the “.edu” domain. The
top-20 domains shown in the figure cover ≈ 89% of total
homepages that we discovered.

To see for how many authors out of 14, 808 authors we
were able to locate the homepages, we used Stanford Named
Entity Recognizer. 4 We used the first appearing name from
the predicted homepage as the owner of the homepage. To
match the author names, we consider a match if we were
able to match first and last name. We recovered homepages
for 5, 815 and 2, 782 intended authors using author names
and paper title queries, respectively. These results also show-
case the potential of paper title queries to locate the home-
pages of other authors than the authors of the queried titles.

Overlap with DBLP author homepages One interest-
ing question that can be raised is the following: “Is our
approach able to discover homepages that are not already
available in some online resource?” That is, starting with
our sets of author names and paper titles, which are inde-
pendent from the author names in the DBLP list of home-
pages, how many homepages can we discover that are not
already in the DBLP list? To answer this question, we com-
pare our overall 15, 203 homepages predicted by the CNN-
combined classifier with the list of known DBLP homepages
(5, 851 homepages). The overlap between the 15, 203 pre-
dicted homepages in our approach and 5, 851 DBLP home-
pages is 1, 882. Hence, remarkably, overall, we are able to
discover 18, 711 = 20, 593 - 1, 882 homepages that are not
present in our DBLP dataset.

4https://nlp.stanford.edu/software/CRF-NER.html

Human Assessment and Validation. Key to our large
scale experiment is to ensure data quality of the discov-
ered homepages. In order to analyze the impact of the sys-
tem effectiveness, we performed human assessment and val-
idation. Specifically, we sampled 600 CNN-predicted home-
pages for human assessment and validation. We asked a hu-
man annotator (the first author of this paper) to determine if
each page provided in the set is a homepage or not. The hu-
man annotator labeled 496 out of 600 URLs as homepages.
In other words, 82.67% URLs from the sampled set were
identified as true homepage. Close inspection of the remain-
ing 104 URLs revealed that, most of those URLs are point-
ing to a group or lab or course page. Furthermore, we noticed
that 266 out of 600 URLs contain a ∼ sign, and 246 URLs
with a ∼ sign were marked as a homepage by the human
annotator.

Development and Deployment

Although CiteSeerX utilizes open source software packages,
many core components are not directly available from open
source repositories and require extensive programming and
testing. The current CiteSeerX codebase inherited little from
its predecessor’s (CiteSeer) for stability and consistency.
The core part of the main web apps were written by Dr. Isaac
Councill and Juan Pablo Fernández-Ramı́rez and many com-
ponents were developed by other graduate students, post-
docs and software engineers, which took at least 3-4 years.
Different components of CiteSeerX are built using several
languages such as JAVA, Python, Perl, Scala, etc. The home-
page classifier component is developed using Python 2.7.
We have used the Amazon AWS service for training the
deep learning-based homepage classifier. The AWS instance
that was used for training the classifier has Intel(R) Xeon(R)
CPU E5-2686 v4 @ 2.30GHz processor, 64GB RAM, and
Tesla V100 SXM2 16GB GPU.

To collect documents, CiteSeerX crawls researchers’
homepages, URLs from the Microsoft Academic Graph and
Google Scholar, and maintains whitelists and blacklists for
crawling. Our framework is integrated in CiteSeerX to con-
tinuously augment and maintain the URLs collection used
for crawling (in order to preserve network bandwidth and
hardware). CiteSeerX also directly incorporates PDFs from
PubMed, arXiv, and digital repositories in a diverse spec-
trum of disciplines such as mathematics, physics, and medi-
cal science. These crawled documents are passed to multiple
AI modules such as document classification, document de-
duplication and citation graph, metadata extraction, header
extraction, citation extraction, etc. The ingestion module
writes all metadata into the database. The PDF documents
are renamed under a document ID (csxDOI) and saved to the
production repository with XML metadata files. The index
data are also updated. During the application development,
we have learned that identifying homepages “in the wild”
is very challenging since they have very diverse structures
and content. Moreover, based on the human annotation task,
identifying author homepages is difficult sometimes even for
human annotators.
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Maintenance
The researcher homepage classifier is developed and main-
tained by one graduate student, whereas the web-crawler
component in CiteSeerX is developed and maintained by
several graduate students. The homepages finding project re-
ceived partial financial support from the National Science
Foundation aimed at a sustainable CiteSeerX. While col-
lecting the documents from homepages (seed URLs), mul-
tiple types of documents can be found on homepages such
as CVs, slides, syllabus, homeworks, etc. which should not
be included in CiteSeerX. Thus we found that a classifier
that distinguishes research articles from other types of doc-
uments, as described in (Caragea et al. 2016), should be
used on the crawled documents. During maintenance, as new
homepages emerge and also existing authors may change af-
filiations or the homepage may get outdated (4XX error), pe-
riodically we need to automatically update the list of home-
pages as well as remove the outdated homepages without
the human effort. The maintenance work includes, but is not
limited to fixing bugs, updating the list of URLs includ-
ing researcher homepages, periodically checking the sys-
tem health, and running the web-crawlers. CiteSeerX data
is updated regularly. The crawling rate varies from 50,000 to
100,000 PDF documents per day. Of the crawled documents,
about 40% are eventually identified as being academic and
ingested into the database.

Conclusion and Future Work
In this paper, we presented a novel search-then-classify
approach to discover researcher homepages using author
names and paper titles as queries in order to augment and
maintain the URL lists for document crawling in CiteSeerX.
To our knowledge, we are the first to interleave Web search
and deep learning for researcher homepage identification
to build an efficient author homepage acquisition approach.
This is a useful component in CiteSeerX, which crawls re-
searchers’ homepages to collect research papers for inclu-
sion in the library. Moreover, we show that self-training can
be very useful to train deep learning based researcher home-
page classifiers using small amount of labeled data along
with unlabeled data. Since data annotation is very expen-
sive, we show that human effort can be reduced through self-
training, which could be useful when deploying this into an-
other system in future. Our results showcase the potential of
our approach. More interestingly, we discovered 12, 199 re-
searcher homepages using 10, 000 paper title queries. This
shows the capability of research paper titles for finding re-
searcher homepages. We show the integration of our frame-
work in CiteSeerX for collecting URLs for crawling scien-
tific documents. The new datasets that we created are made
available online to foster research in this area.
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