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Abstract

In the mobile Internet era, mobile payment service becomes
the foundation of inclusive finance, which brings convenience
and security to people. Various marketing strategies are de-
signed to encourage mobile payment activities by allocating
incentives such as coupons or commissions to customers or
merchants. We summary two significant issues. First, there
is a phenomenon of mutual influence between merchants
and customers, i.e., bipartite influence issue, thus making the
independent optimization of customers and merchants non-
optimal. Second, the redemptions of coupons are partially ob-
served, as we can only observe that the customer redeems the
coupon or not at a specific incentive value, but cannot observe
that at other incentive value, i.e., data censorship issue. In this
paper, we propose a novel joint incentive optimization frame-
work to address the above two issues. We propose to use a
graph neural network to represent customers and merchants
jointly by modeling the underlying bipartite influences. We
then formulate the response model under the hazard regres-
sion setting and model the hazard rate with a piecewise non-
linear function to capture the changes of responses to differ-
ent incentive values. Finally, we propose a linear program-
ming method to allocate approximated optimal incentive val-
ues to customers and merchants in real-time. Extensive offline
and online experimental results demonstrate the effectiveness
of our proposed approach.

Introduction
Inclusive finance, which is first mentioned by the United Na-
tions in the early 2000s, is defined as the availability and
equality of opportunities to access financial services. Re-
cently, with the rapid development of mobile internet, the
idea of inclusive finance is gaining significant ground, help-
ing more than a billion people access financial services with
just a mobile phone. In the mobile Internet era, mobile pay-
ment service becomes the foundation of inclusive finance,
since payment is one of the most basic financial services.
However, there still exists a large number of people who
barely use mobile payments because of unaccustomedness
or worries. To encourage mobile payment activities, one ef-
fective marketing strategy is to motivate both customers and
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1. Scan the QR-code.

2. Pay with Alipay.

4. Award Commissions. 3. Get shared incentives.

Figure 1: An illustration of the marketing strategy.

merchants to accept mobile payment services by offering
them incentives (e.g., coupons, commissions, bonus) under
specific budget constraints.

Take an example of a marketing strategy at Alipay and
Wechat Pay. We illustrate the overall marketing campaign in
Figure 1. Each merchant is assigned with a unique incentive
QR Code and is encouraged to ask their customers to scan
so that the customer can get a certain amount of incentive
(coupon). Each customer can redeem the coupon by making
proper payment, and the merchant who shares the incentive
QR Code is awarded an amount of incentive (commission).
With the incentives propagated and redeemed under such a
mechanism, the more payments customers can accomplish,
the more coupons customers can redeem, and the more com-
missions merchants can gain.

In practice, people may be insensitive or sensitive to in-
centives, so that incentive optimization of customers and
merchants is the key to maximizing mobile payment activ-
ities. For instance, the response (i.e., the probability of re-
deem the coupon) should remain unchanged for customers
with limited interest, no matter their incentives. For mer-
chants with potential enthusiasm or abilities, the more com-
missions they can get, the more customers they can attract
to scan the QR Code.

Previous works have studied various methods (Boutilier
and Lu 2016; Beheshti-Kashi et al. 2015) for incentive op-
timization under a limited budget in the marketing domain.
Ito et al. (2017) solved price optimization by first forecasting
the relationships between sales and prices. Zhao et al. (2019)
proposed a general online budget allocation framework con-
sisting of two components: forecasting models and decision
making. However, existing methods ignore the phenomenon
of mutual influence between merchants and customers, i.e.,
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bipartite influence. The incentive QR Code scanning and
payment behaviors form a large bipartite graph between cus-
tomers and merchants. When rewarded with more commis-
sions, the merchants would be more willing to ask customers
to scan the incentive QR Code. Influenced by the merchants,
their neighboring customers in the graph are more likely to
redeem the incentives in their shops and thus have higher
incentive response, i.e., the probability of redeem the incen-
tive. Influenced by the increasing number of consuming cus-
tomers, their neighboring merchants would be more willing
to encourage them to scan the QR Code. Another issue is
that the redemption data on the customer-side are partially
observed, i.e., censored data. To address this issue, Zhao et
al. (2019) propose a response model with a sigmoid func-
tion, but ignore the effect of censored data. In reality, when
a customer successfully redeems a coupon at a certain value,
we cannot observe whether this customer will still redeem
at a smaller coupon value, i.e., left-censored data. For any
failed redemption at a certain value, we still cannot observe
whether the customer will fail the redemption at a larger
coupon value, i.e., right-censored data. As such, customers’
responses to any given value are partially observed.

In this paper, we propose a novel joint incentive op-
timization framework to address the above issues. First,
we build a joint representation learning task for customers
and merchants based on graph neural networks built atop
the underlying customer-merchant bipartite influence graph,
which benefits both representations. Second, we propose a
response model layer based on the representations, which
estimates the customer’s response score, i.e., the probabil-
ity of customer redeem the coupon. A reasonable estimator
should guarantee that the response model’s output, i.e., re-
sponse score, should be cumulative as the incentive value
increases. We formulate the response score as a hazard re-
gression problem to address partial observations of censored
data. Third, we allocate the optimal incentive value to each
customer or merchant based on the estimates of the cus-
tomers and merchants’ responses to incentives, under a spe-
cific budget in real-time. We formulate the real-time deci-
sion making as linear programming and solve it with the La-
grangian method.

We conduct extensive experiments on the Alipay dataset.
Moreover, the dataset will be released in the future, which
will make the research community further improve. Exper-
imental results show that our proposed framework signifi-
cantly outperforms other competitive methods. We deploy
the proposed framework in the online environment, which
can make the budget allocation for thousands of requests per
second.

In summary, our contributions in this work are as follows:
1) We propose a graph-based representation learning method
to model the bipartite influence between customers and mer-
chants jointly. 2) We develop a response model based on
hazard regression with a nonlinear piecewise hazard rate to
handle censored data. 3) We propose a real-time incentive
allocation method for customers and merchants.

Background
Graph Neural Networks. As discussed in Section 1, cus-

tomers’ responses to incentives are correlated with mer-
chants’ who interact with each other, and vice versa. Graph
neural network is one of the natural ways of modeling latent
variables when correlated with each other.

Graph neural networks (GNNs) (Wu et al. 2019) study
the learning representation of vertices by aggregating
features (Kipf and Welling 2016; Hamilton, Ying, and
Leskovec 2017; Veličković et al. 2017; Liu et al. 2019a; Xu
et al. 2018) based on the neighbors defined by the graph,
which have demonstrated state-of-the-art performance on
learning tasks such as node classification and link prediction,
with applications ranging from social networks (Hamilton,
Ying, and Leskovec 2017), transaction networks (Liu et al.
2018), gene expression networks (Fout et al. 2017), knowl-
edge graphs (Schlichtkrull et al. 2018), cash-out detec-
tion (Hu et al. 2019), and fraud conspiracy detection (Liang
et al. 2019).

Let G = (V, E) denote the graph with nodes vi ∈ V ,
|V| = N , and edges (vi, vj) ∈ E . Let the adjacency ma-
trix denote as A ∈ RN×N . Associated with the graph, we
also have a feature matrix X ∈ RN×D(0)

with xi denot-
ing the original D(0)-dimensional feature for node vi on the
0-th layer. The simple form of GNNs can be formalized as
follows:

h(l+1)(vi) = σ

( N∑
j=1

α(vi, vj)h
(l)(vj)W

(l)

)
(1)

where we define h(l)(vi) as the hidden feature of the node vi
on the l-th layer, the kernel asααα = (α(vi, vj)) ∈ RN×N , the
transform parameter on the l-th layer W (l) ∈ RD(l)×D(l+1)

,
and σ(·) as the nonlinear function. The kernel ααα is essen-
tially defined on the correlation structure among the latent
variables. For instance, in our task, a merchant successfully
share incentives to a customer, then they are probably corre-
lated with each other on the response to incentives.

Hazard Regression. Hazard regression is commonly
used in survival analysis of patients suffering from poten-
tially fatal diseases. There, one aims to estimate the chances
of survival of a particular patient with covariates (attributes)
x as a function of time to understand the effects of x better.
Unfortunately, each patient only has one life and possibly
different attributes x. Hence, it is impossible to estimate the
fatality rate directly. Instead, one assumes that the hazard
rate λ(x, t) governs the instantaneous rate of dying of any x
at any given time t:

λ(x, t) = lim
dt→0

p(t ≤ T < t+ dt|T ≥ t, x)

dt

= lim
dt→0

p(t ≤ T < t+ dt|x)

dt
· 1

p(T ≥ t|x)

(2)

That is, the density of dying at time t is given by

p(t|x) = λ(x, t) p(T ≥ t|x)︸ ︷︷ ︸
F (t|x)

.
(3)

This leads to a differential equation for the survival prob-
ability with solution F (t|x) = exp(−

∫ t

0
λ(x, τ)dτ). Here

we assumed, without loss of generality, that time starts at 0.
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Figure 2: An illustration of the our proposed framework for joint incentive optimization.

In our case, death amounts to the redemption of in-
centives. We denote an ordered set of incentives R =
{r1, ..., r|R|} in terms of their values. Based on the evidence
of redemptions Ωp = {(ui, rj)|yui,rj = 1}, and fails of
redemptions Ωn = {(ui′ , rj′)|yui′ ,rj′ = 0}, we have the
following likelihood for the observed data:

p(Ωp ∪ Ωn|R) =
∏
Ωp

(1− F (rj |ui))
∏
Ωn

(F (rj′ |ui′)), (4)

where 1 − F (rj |ui) denotes the probability user ui will
redeem the incentive at value rj , i.e., response score, and
F (rj |ui) denotes that the probability ui will not redeem the
coupon at least if the user has a incentive at value rj .

Most hazard regression approaches are based on the Cox’s
propotional hazard model λ(t|x) = λ0(t) exp(w>x) (Cox
1972), including parametric models, and nonparametric
models with baseline hazard rate λ0(t) unspecified. In this
paper, we present a nonlinear parametric hazard regression
model inspired by (Liu et al. 2017).

Method
We illustrate our overall framework in Figure 2 which will
be discussed in the following sections in detail.

Jointly Learning Representations of Customers
and Merchants
Assuming that R is the finite ordered treatment list, which
is defined asR = (r1, ..., r|R|) where r1<r2...<r|R|. Given
customer set Sc and merchant set Sm, let rc ∈ R be the
coupon assigned to customers u and rm ∈ R be the com-
mission assigned to merchants v. Then we can formulate the
possibility of customer u to redeem the incentive rc as:

p(rc|u) =
∑
v∈Sm

p(rc, v|u) (5)

where p(rc, v|u) is the possibility of the customer u to re-
deem the incentive rc in the merchant v. Similarly, we can
formulate the incentive sharing quantity made by the mer-
chant v under the reward rm as:

q(rm|v) =
∑
u∈Sc

q(rm, u|v) (6)

where q(rm, u|v) is the incentive sharing quantity made by
the merchant v to the customer u.

However, it is difficult to apply (5) and (6) directly in an
industrial system, since computing each response value re-
quires whole customer or merchant’s information. Observ-
ing that most customers tend to visit merchants they made
payments before, we build a graph G based on the historical
trading data. Therefore we replace the whole merchant set
Sm with customer u’s neighbor merchants Nu in (5) and
replace the whole customer set Sc with the merchant v’s
neighbor customers Nv in (6). Thus we could approximate
the response value by aggregating neighbors in G. Further-
more, it is natural to use graph neural networks to implement
the aggregating process above.

Assuming A ∈ RN×N is the adjacency matrix of graph
G and X ∈ RN×D is the input feature matrix. hui

=
GNN(ui|A,X) denotes the embedding of customer ui node
and hvi

= GNN(vi|A,X) denotes the embedding of mer-
chant vi node. In the campaign, merchants will interact with
their customers to make both of them get their incentives
back from Alipay. We analyze such interactions as follows.
We rank all the customers according to their sharing quanti-
ties. For each merchant, we calculate the averaged responses
of customers who interact with that merchant. We show the
relationship between the sharing quantity of merchants and
the averaged responses of customers who interact with them
in Figure 3a. It demonstrates that high responses of cus-
tomers tend to interact with merchants who are likely to
share incentives. The reason is that intuitively merchants
with high responses (large sharing quantity) would influence
their customers so that the influenced customers tend to have
similar tastes on the values of coupons, and vice versa.

We have training samples {(ui, rci , yci )
|Sc|
i=1} denoting

whether customer ui redeems the incentive rci and
{(vi, rmi , ymi )

|Sm|
i=1 } denoting the incentive sharing quantity

of merchant vi under the reward rmi , where yci ∈ [0, 1] and
ymi ∈ N. The loss function can be defined as:
|Sc|∑
i=1

lc

(
yci , fc(hui

, rci )
)

+

|Sm|∑
i=1

lm

(
ymi , fm(hvi

, rmi )
)

(7)

where fc(hui , r
c
i ) and fm(hvi , r

m
i ) denote the response

score of customer ui and merchant vi respectively. lc and
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Figure 3: (a) The correlations between of customers and
merchants. (b) customers’ response vary with different
coupons.

lm are the losses for the customer and merchant, respec-
tively. For the instantiation of the above losses, please re-
fer to Section 4. Besides, the response scores of customers
and merchants are not on the same scale. To optimize cus-
tomers and merchants jointly, we normalize the merchants’
response score by dividing the number of sharing incentives
received in the previous days.

Response Models
In this section, assuming that we have the encoding hui and
hvi that includes all the knowledge of the user’s sensitivi-
ties to different values, we design our response models. For
merchants, we use the same response models as in (Liu et al.
2019b). We mainly focus on the response model of estimat-
ing whether a customer will make an action or not under
different amounts of incentives.

We first illustrate the expected response to incentives by
averaging over all customers in our random experiments in
Figure 3b. We found that the overall response score follows a
monotone pattern. It is reasonable that with a higher amount
of incentive (coupon), a customer would have a higher prob-
ability of redeeming it. Without place this prior in our re-
sponse model, the model will easily over-fit the data due to
the noise introduced from our dataset. However, users’ re-
sponses to incentives could vary a lot. There will be some
noticeable change points at certain incentive value. Thus
users’ responses to incentives are not smooth across the en-
tire interval. It is not reasonable to model these curves with
just a linear representation with a fixed smooth exponential
function as in (Zhao et al. 2019). In this part, inspired by
traditional hazard regression, we treat the time t in hazard
regression as the value of coupons in our setting. As men-
tioned in Section 2, we aim to formulate a parameterized
hazard rate function for our problem.

Given the random experiment, we randomly assign differ-
ent customers to different buckets with different amount of
incentives rj , all the values in our training dataset are in the
ordered set R = (r1, ..., r|R|). Instead of modeling the haz-
ard rate function as λ(ui, rj) = λ0(rj) exp(w>hui), we use
a nonlinear piecewise form:

λ(ui, rj) = λ0(rj) exp(w>hui) = exp(w>j hui + bj),

s.t.

|R|−1∑
j=1

|wj+1 − wj | < ζ
(8)

where we parameterize the hazard rate of each piece of seg-
ments independently and essentially penalize the hazard rate
of each piece with fused lasso (Tibshirani et al. 2014). In our
setting, we have the following loss functions:

Lc =−
∑

(ui,rj)∈Ωp

log (1− F (rj |ui))

−
∑

(ui′ ,rj′ )∈Ωn

log (F (rj′ |ui′))

=−
∑

(ui,rj)∈Ωp

log

(
1− exp

(
−
∫ rj

0

λ(ui, τ)dτ)

))

+
∑

(ui′ ,rj′ )∈Ωn

∫ rj′

0

λ(ui′ , τ)dτ,

(9)

and we can infer the response score that user ui redeem a
coupon rj as:

fc(hui , rj) = 1− exp

(
−
∫ rj

0

λ(ui, τ)dτ

)
(10)

Joint Incentive Optimization & Real-Time
Decision Making
As described in section 3 and 4, we can estimate the re-
sponse scores of customers fc(hui

, rj) with short form f ci,j .
In the same way, we could predict the response score of mer-
chants fm(hvi

, rj) with short form fmi,j . Then the joint in-
centive optimization problem can be formulated as a linear
programming problem and be solved with the Lagrangian
method.

There exist two types of requests: the customer request qci
and the merchant request qmi . The customer request aims to
decide the incentive value received once a customer scans
the incentive QR-code. Moreover, the merchant request is
to decide the reward commission value received when an
incentive shared is redeemed. Qc = {qc1, ...} denote the
customer request list and Qm = {qm1 , ...} denote the mer-
chant request list. Our objective is to find an incentive al-
location strategy that maximizes the sum of customers’ re-
sponse score (i.e., current redemption rate) and merchants’
response score (i.e., future redemption rate) under the given
budge B with respect to each user. Formally,

max
xc
i,j ,x

m
i,j

|Qc|∑
i=1

|R|∑
j=1

xci,jf
c
i,j +

|Qm|∑
i=1

|R|∑
j=1

xmi,jf
m
i,j (11)

s.t.xc
i,j ∈ [0, 1], for i = 1, ..., |Qc|, j = 1, ..., |R| (12)
xmi,j ∈ [0, 1], for i = 1, ..., |Qm|, j = 1, ..., |R| (13)
|R|∑
j=1

xci,j = 1, for i = 1, ..., |Qc| (14)

|R|∑
j=1

xmi,j = 1, for i = 1, ..., |Qm| (15)

∑|Qc|
i=1

∑|R|
j=1 rjx

c
i,jf

c
i,j +

∑|Qm|
i=1

∑|R|
j=1 rjx

m
i,j∑|Qc|

i=1

∑|R|
j=1 x

c
i,jf

c
i,j +

∑|Qm|
i=1

∑|R|
j=1 x

m
i,j

≤ B

(16)
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where xci,j is the decision variable of whether choosing treat-
ment rj to customer in the i-th request of Qc and xmi,j is
the decision variable of whether choosing treatment rj to
merchant in the i-th request of Qm. Under constraints (14)
and (15),

∑|R|
j=1 rjx

c
i,j is the incentive value for the customer

and
∑|R|

j=1 rjx
m
i,j is the incentive value for the merchant. The

constraint (16) defines the limited average incentive valueB
given to each customer or merchant.

By introducing dual variables µc
i , µm

i , and λ correspond-
ing to the constraints (14) (15) (16), the Lagrange multiplier
method is applied to solve the convex optimization problem
in objective function (11):

−
|Qc|∑
i=1

|R|∑
j=1

xci,jf
c
i,j −

|Qm|∑
i=1

|R|∑
j=1

xmi,jf
m
i,j

+

|Qc|∑
i=1

µc
i (

|R|∑
j=1

xci,j − 1)

+

|Qm|∑
i=1

µm
i (

|R|∑
j=1

xmi,j − 1)


+ λ

|Qc|∑
i=1

|R|∑
j=1

xci,jf
c
i,j(rj −B) +

|Qm|∑
i=1

|R|∑
j=1

xmi,j(rj −B)


(17)

Rearrange the new objective function, we have
|Qc|∑
i=1

|R|∑
j=1

xci,j
[
fc
i,j(λrj − λB − 1)

]
+

|Qm|∑
i=1

|R|∑
j=1

xmi,j
[
λrj − λB − fm

i,j

]

+

|Qc|∑
i=1

µc
i (

|R|∑
j=1

xci,j − 1)

+

|Qm|∑
i=1

µm
i (

|R|∑
j=1

xmi,j − 1)


(18)

Both objective function and constraint functions are con-
vex. Applying KKT conditions and L-BFGS (Liu and No-
cedal 1989), we could get the optimal λ∗. In a real-time en-
vironment, we have to determine the value of incentives al-
located to customers and merchants, under a specific budget
for each merchant or customer, i.e., real-time decision mak-
ing. Observing that in (18), the different incentive values are
related to the first two terms that are independent of the rest
terms. Then the approximated solutions can be derived as:

xci,j =

{
1, if j = argmin

j
fc
i,j(λ

∗rj − λ∗B − 1)

0, otherwise
(19)

xmi,j =

{
1, if j = argmin

j
λ∗rj − λ∗B − fm

i,j

0, otherwise
(20)

In the online environment, for each request, we fetch the
graph feature as input of the response model and predict the
response scores of the given user for all values in the treat-
ment list. Then based on the value of λ∗ and the decision
formulas (19) and (20), we get the incentive value. Because
the real-time decision making is based on only |R| times
calculations of response scores, the online serving is simple
and high-performance.

Experiment
To demonstrate our approach’s effectiveness, we first con-
duct offline experiments based on our dataset collected from

|Vc| 99.73 x 106

|Vm| 22.58 x 106

|V| 112.59 x 106

|E| 133.64 x 106

# node feature dim 33501
# edge feature dim 2468
# labeled records 1.85 x 106

Table 1: Experimental summary for dataset and customer-
merchant interactions.

the online environment at Alipay. Next, we present our on-
line A/B testing results compared with other methods de-
scribed in section .

Experimental Settings
Dataset 1

Our data are collected from the online Alipay marketing
campaign with more than 1.85 million of samples. Random-
ized experiments are performed to estimate users’ responses
to incentives. After randomly select 5% merchants and cus-
tomers, we partition them into buckets and randomly assign
treatment for each bucket. A customer can redeem the shared
incentives within the next three days so that we can obtain
positive labels if the customer redeems and negative labels
if the customers do not redeem. As mentioned in section ,
the label of merchants is first defined as the 3-days sharing
quantity. However, to match the scale of customers’ labels, it
is normalized by dividing the number of sharing incentives
received in the previous 3-days.

We build our model on top of the customer-merchant in-
teractions. These interactions lead to more than 112.59 mil-
lions of vertices (including merchants and customers) and
133.64 millions of edges. We summarize our dataset and
graph that will be used for offline experiments in Table 1.

Baselines To verify the effectiveness of graph neural
networks, we compare it with classic deep neural net-
works (Schmidhuber 2015) with or without historical
customer-merchant interactions. For all models, hazard re-
gression is applied to the estimation of customers’ responses
to incentives, and the linear mapping layer (Liu et al. 2019b)
is utilized for merchants’ estimation.

DNN: Deep neural networks with fully connected multi-
layer perceptron architectures (Schmidhuber 2015) .

DNN-H: DNN with historical customer-merchant inter-
actions as additional features.

To verify the effectiveness of hazard regression, we com-
pare our proposed method with state-of-the-art monotonic
methods. All models are trained on top of our graph neural
networks.

11. The data set does not contain any Personal Identifiable In-
formation (PII) 2. The data set is desensitized and encrypted 3.
Adequate data protection was carried out during the experiment to
prevent the risk of data copy leakage, and the data set was destroyed
after the experiment 4. The data set is only used for academic re-
search, it does not represent any real business situation

15004



metric Our Model DNN-H DNN
AUCc 0.9303† 0.8879 0.8149
MAEc 0.1934† 0.2880 0.3145
MSEc 0.0973† 0.1391 0.1555
MAEm 0.3241† 0.3584 0.3929
MSEm 0.1486† 0.1698 0.1970

Table 2: Offline performance between the proposed method,
DNN-H and DNN
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Figure 4: Comparisons of uplift gain for customers vary with
different incentive sensitivity levels.

SBBM: Semi-black-box model extends logit demand
curves with the capability of neural networks (Zhao et al.
2019).

DSSM-c: Deep structured semantic models with cost con-
straint (Huang et al. 2013).

Cox: The classic Cox Proportional model has been exten-
sively used for survival analysis (Cox 1972).

For all experiments, we use Adam optimizer (Kingma and
Ba 2014). We apply exponential decay with a learning rate
starting at 0.0001 and a decay rate of 0.95. We set the num-
ber of hidden units for two fully-connected layers as 256 and
128 with ReLU activation, respectively. We set the dimen-
sion of graph embedding in GNN as 64. We set the depth of
our graph neural network as 2. The rest of the hyperparam-
eters (such as regularizers) of the comparison methods are
tuned via standard grid search. 85% of the merchants and
customers are selected for training while the remaining are
for validation purposes. In offline experiments, we use the
Area Under Curve (AUCc), Mean Absolute Error (MAEc)
and Mean Square Error (MSEc) as metrics for customers.
We use MAEm and MSEm as metrics for the measurement
of merchants’ performance. The overall system is built on
Alipay’s graph learning system AGL (Zhang et al. 2020).

Results
Evaluation of Graph Neural Networks We conduct ex-
periments on the real-world dataset collected from the on-
line Alipay marketing campaign, as described above. Ta-
ble 2 shows that our proposed model obtains the improve-
ment compared to DNN-H, as we leverage information on
customer-merchant bipartite influence and learns a better
representation of both customers and merchants. Both of
these methods outperform DNN, which demonstrates the
importance of historical customer-merchant interactions.

To visualize the learned representation between DNN-H
and our model, we analyze the estimates of customers’ “gra-

metric Our Model SBBM Cox DSSM-c
AUCc 0.9303† 0.9246 0.9221 0.9150
MAEc 0.1934† 0.1984 0.2106 0.2409
MSEc 0.0973† 0.1007 0.1113 0.1183
MAEm 0.3241† 0.3298 0.3319 0.3369
MSEm 0.1486† 0.1541 0.1567 0.1524

Table 3: Offline performance between different response
models.
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Figure 5: A visualization of different response models.

dient” (Liu et al. 2019b) which is defined as:

fc(hui , rj) = sigmoid
(

softplus(wT
g hui)︸ ︷︷ ︸

“gradient”

·rj + (wT
i hui)︸ ︷︷ ︸

“intercept”

)
(21)

where fc(hui , rj) is the response score and hui is the repre-
sentation of customers. wT

g and wT
i are trainable parameters

to generate gradient and intercept.
“Gradient” can be used to depict how a customer is sen-

sitive to the incentive. The more sensitive the customer is
(i.e., with greater “gradient”), the more uplift gain response
model can get. It is reasonable that the group of customers
with greater “gradient” may achieve a better uplift gain in
terms of commercial objectives than those with less “gradi-
ent”, under the same treatment of high incentives. We de-
note frhc as the averaged response score of customers un-
der the treatment of high incentives, and frlc as that under
the treatment of low incentives. The uplift gain is defined as
u = frhc − frlc . The uplift gain of customers who are sen-
sitive to incentives (i.e., with greater “gradient”) should be
comparatively greater than those with less sensitivity (i.e.,
smaller “gradient”).

To conduct the experiment, all the customers in test data
are sorted by the inferred “gradient” in descending order
and separated into five groups of different sensitive levels
equally. We show the uplift gain of each group in Figure 4.
We produce a better uplift gain for the customers of the
top sensitive level compared with the DNN-H. For the cus-
tomers of the bottom sensitive level, the uplift gain produced
by our model is relatively smaller compared with the DNN-
H, which implies that our model can infer a better represen-
tation for those insensitive customers.

Effect of Hazard This set of experiments is conducted
to study different response models’ effectiveness while us-
ing the same GNN layer as representation learning. Table 3
shows the performances of four response models under dif-
ferent evaluation metrics. First, our model outperforms other
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Objective Our Model DNN-H
Payments +2.54% 0%

[2.03%, 3.05%] -
Cost -4.04% 0%

[-4.84%, -3.24%] -

Table 4: Relative improvement(%) of our proposed model
versus DNN model

Objective Our Model SBBM Cox
Payments +2.31% +1.47% 0%

[1.98%, 2.64%] [1.14%, 1.8%] -

Table 5: Relative improvement(%) of our proposed method
regression with other monotonic methods

response models on customer-side tasks significantly. Our
hazard regression can well characterize the flexibility and
complexity with a nonlinear function of the response-to-
incentive in our setting. Second, our model achieves slightly
gains on merchants’ results. It indicates that better represen-
tation of customers can benefit the task of merchants within
the unified optimization. It is in line with our assumption
that joint incentive optimization contributes to better cus-
tomer and merchant representations.

We visualize customers’ predicted response scores as we
vary different values of incentives in Figure 5. The ground
truth is calculated by averaging over the response labels
of all customers. The result of each comparison method is
calculated by averaging over the predicted response scores.
When the amount of incentives increases, Semi-black-box-
model fits the ground truth well in small incentive values,
but cannot fit well in large values. This is because the sam-
ples with small values dominate the sample space, and Semi-
black-box-model cannot characterize the data’s censoring.
Our model fits the ground truth the best under different in-
centive values. Significantly, there is a noticeable change
point in ground truth at incentive value 100 (cent), which
means customers are much more sensitive to incentive value
larger than 100 than incentive value smaller than 100. Inter-
estingly, the predicted response scores from our model can
capture such a change point. Additionally, we show the aver-
age hazard rate at each incentive value in the plot. As in our
derivation, the response scores are the cumulative function
of the hazard rate. The hazard rate plot clearly shows two
significant change points at incentive values around 80 per-
cent and 100 percent. The discovery of change points gives
us more insights into the design of the values of incentives.

Online A/B Test To show the performance of our ap-
proach in real-world scenarios, we conduct two sets of ex-
periments on the mobile payment marketing scenario at Ali-
pay with A/B testing. In the beginning, we conduct A/B test-
ing under 2% traffic lasted for one week. Then we increase
the traffic to 30% gradually, and we report the final results
observed in the seven days.

The first set of online experiment is conducted to compare
our model with DNN-H. We show the results in Table 4. The
online experiment shows that our model outperforms DNN-

H with a +2.54% relative improvement on payments under
30% traffic flow. We conduct a t-test to show the confidence
intervals with 95% confidence level. Besides, our proposed
approach significantly saved 4.04% cost while improving
the payments. The second set of online experiment is con-
ducted to compare our model with other monotonic meth-
ods under the same budget. Comparison results on payments
are shown in Table 5. In the online environment, our pro-
posed model outperforms other methods significantly with
a +2.31% relative improvement on payments compared to
Cox under 30% traffic flow. It shows that the nonlinear haz-
ard rate function in our model can well characterize the flex-
ibility and complexity of the incentives’ responses.

Related Work
Marketing has been studied for decades, as it brings sig-
nificant benefits to improve the efficiency of marketing and
many studies focus on this topic. The development of online
business realized various data-driven approaches, including
forecasting (Beheshti-Kashi et al. 2015) and decision mak-
ing (Ito and Fujimaki 2017). Geyik et al. (2014) proposed
a framework of performance-driven campaign budget allo-
cation across different channels with a specific attribution
model as input. Clow (2016) proposed a rule-based method
to assign commissions in traditional marketing. Boutilier et
al. (2016) formulate the budget allocation as a sequential
decision problem and solve it by MDP. Ito et al. (2017)
solved price optimization by first forecasting the relation-
ships between sales and prices and then constructing an
optimization problem based on those predictive formulas.
Staib et al. (2017) study the general budget allocation prob-
lem from a robust optimization perspective. Recently Zhao
et al. (2019) proposed a general online budget allocation
framework consists of two components, including forecast-
ing models and decision making. Our work is related to Ito et
al. (2017) and Zhao et al. (2019) that we aim to improve the
effectiveness of the response model and solved incentive op-
timization problems. Our work differs from Ito et al. (2017)
and Zhao et al. (2019) in that we apply graph neural net-
works to build customer-merchant interactions and model
the response model of users with hazard regression.

Conclusion
This paper presents our solution for incentive optimization
to both customers and merchants in the payment marketing
campaign. Our solution consists of three components. First,
we learn the representations of customers and merchants
based on the intrinsic aggregation operator built inside graph
neural networks atop the underlying customer-merchant in-
teractions. Second, to characterize the flexibility and com-
plexity in our setting, we model users’ response model with
hazard regression using a nonlinear hazard rate function.
Third, we formulate the online decision problem as a lin-
ear programming problem and derive an approximate online
solver. Both offline and online A/B testing results demon-
strate its effectiveness with over 2% relative improvement
on payments. Our solution has been successfully applied to
many scenarios at Alipay.
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