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Abstract
Planning scenarios involving user pre-specified items present
themselves frequently in recommender system domains. Al-
though next-item and next-basket recommendation has been
a focus of prior research, multiple consecutive item or basket
approaches are needed for planning. No prior work has lever-
aged pre-specified future reference items to improve this type
of challenging consecutive prediction task at inference time.
PLAN-BERT is the first to accommodate this general plan-
ning scenario. It does so by contributing novel modifications
that take inspiration from the masked training and contex-
tual embedding of self-attention models. To test the model,
we use the domain of student academic degree planning, in
which students’ past course histories and future pre-specified
courses of interest are used to fill in the remainder of their
curriculum. Our offline analyses consist of 15 million historic
course enrollments at 20 institutions and an online evaluation
conducted at one of the institutions. Our results show that
PLAN-BERT outperforms existing models including BERT,
BiLSTM, and a UserKNN baseline, with small numbers of
future reference items substantially improving accuracy. Sig-
nificant results from our online evaluation show PLAN-BERT
to be strongest in students’ perceptions of personalization.

Introduction
Research on session-based predictive approaches have fo-
cused on next time slice recommendation (Fang et al. 2019;
Mehta, Hofmann, and Nejdl 2007; Berkovsky, Kuflik, and
Ricci 2007). Much less explored have been models that pre-
dict multiple consecutive items, or baskets, for recommen-
dation (Cheng et al. 2013). Unexplored has been the use of
future reference items to aid in this task. Consecutive time
slice recommendations are called for in planning scenarios
and it may be desired or even necessary for a user to select
several individual (i.e., item) or grouped (i.e., basket) future
items ahead of time. Multiple time slice recommendation is
a challenging prediction problem as auto-regressive models
build on earlier assumptions, amplifying error over time as a
result (Liu et al. 2019c). Incorporation of user pre-specified
future items into planning-based models can potentially mit-
igate this degradation in accuracy and improve the personal-
ization of recommendations. We investigate this potential in
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both offline and online experiments with the introduction of
PLAN-BERT, the first model to support pre-specified future
reference items to make multiple consecutive recommenda-
tions without auto-regression.

We chose Bidirectional Encoder Representations from
Transformer (BERT) (Devlin et al. 2019) as the base ar-
chitecture for our approach due to the similarity of BERT’s
masked token prediction objective to our planning recom-
mendation scenario. This objective randomly masks a per-
centage of tokens during training, with the objective of re-
ducing error in predicting them based on context. This is
somewhat analogous to planning-based scenarios in which
we would like a recommender to utilize both users’ past
items and pre-specified future items to generate a plan. Un-
like with BERT applied to natural language, where 15%
of tokens are conventionally masked, the majority of to-
kens may be masked or missing in planning-based scenar-
ios if a user’s pre-specified future items represent only a
small portion of an expected plan. We evaluate PLAN-BERT
on consecutive basket recommendation, though consecutive
and next-item recommendation is a supported special case.
Our introduction of PLAN-BERT makes the following novel
modeling contributions:

• Inference time utilization of future reference items for
consecutive recommendation

• Explicit user and item features as input to BERT for rec-
ommendation

• Multiple consecutive basket prediction without auto-
regression

We evaluate PLAN-BERT on the high stakes task of stu-
dent academic degree planning. This task is well suited for
planning-based recommendation, with semesters of enroll-
ments akin to baskets of items, and consecutive semester
recommendations expected to be made based on past course
histories and future pre-specified courses of interest. Support
for academic planning is important because of the stakes
involved. Course selection decisions can greatly affect stu-
dents’ careers and enrollment is costly, with annual tuition
ranging from thousands to tens of thousands of dollars. As
noted by Elbadrawy and Karypis (2016), this is also a diffi-
cult recommendation task due to students’ multifaceted se-
lection criteria. The task is not only difficult for predictive
models, but for humans too. Completion rates for students at
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4-year institutions hover at around 62% (Shapiro and Dun-
dar 2016), with research suggesting that this is in part due
to the multitude of decisions involved in degree planning
(Baker 2018). With student-adviser ratios at large institu-
tions around 1:600 (Carlstrom and Miller 2013), and tight-
ening institutional budgets (Dowd and Shieh 2014; Mitchell,
Leachman, and Saenz 2019), there is a national need for ef-
fective recommender systems development in this area.

Our offline analyses of a 20 institution dataset, consisting
of both 2-year community colleges and 4-year degree grant-
ing institutions, show how PLAN-BERT outperforms BERT
and other deep and non-deep model baselines and the ben-
efit of future reference courses. We conduct an online user
study, implementing PLAN-BERT and other models into a
production course planning system. Statistically significant
results from the study find that PLAN-BERT scored highest
in student perceptions of personalization.

Related Work
We briefly review work in three areas closely related to ours:
sequential next-item and next-basket prediction, approaches
to the user-wise cold start problem in recommendation, and
approaches to course recommendation in higher education.

Next-Item and Next-Basket Recommendation
Next-item sequential recommendation has been frequently
studied in recommender systems (Yap, Li, and Philip 2012;
Li, Zhao, and Liu 2018), where patterns in user history are
used to predict the next item a user may access. More re-
cently, efforts have explored next-basket recommendation,
where a user might, for example, add multiple related items
to a shopping cart (Rendle, Freudenthaler, and Schmidt-
Thieme 2010; Wan et al. 2015; Yu et al. 2016). Deep model
approaches using recurrent and convolutional neural nets
have been most commonly used to make next-item, within or
across session recommendations by modeling user sequen-
tial item or clickstream histories (Hidasi et al. 2015, 2016;
Li et al. 2017; Quadrana et al. 2017; Tuan and Phuong 2017;
Wang et al. 2018; Guo et al. 2020).

Recent advances in natural language processing have re-
vealed that multi-head self-attention models have strong se-
quence modeling capabilities (Vaswani et al. 2017; Radford
et al. 2019; Devlin et al. 2019). One model in particular,
BERT (Devlin et al. 2019), has been used to great effect
in NLP. BERT uses a bidirectional self-attention architec-
ture that predicts randomly selected masked words in text
during training. Sun et al. (2019) adapted this model to the
next-item recommendation task by changing the training ob-
jective to predict masked items and attain state of the art per-
formance on several recommendation datasets.

Approaches to the User-Wise Cold Start Problem
The user-wise cold start problem refers to when recommen-
dation models have little to no data about a user with which
to personalize recommendations (Ralph et al. 2019). Collab-
orative filtering-based approaches have used side informa-
tion, such as user profile information and user social con-
nections to assist in user-wise cold start recommendation

(Sedhain et al. 2014; Barjasteh et al. 2015). Other work has
taken into account user interface actions to infer user intent
and thus improve cold start personalization (Wu et al. 2016).
In a similar vein, Sun et al. (2013); Christakopoulou, Radlin-
ski, and Hofmann (2016) selectively chose questions to ask
users regarding their preferences to quickly profile users and
demonstrated that answers to these questions improved rec-
ommendation performance over baselines. Recommending
courses to new freshmen with no course history or declared
major is an example of the user-wise cold start problem in
higher education. Asking students for their intended major is
one approach to overcoming this problem (Pardos, Fan, and
Jiang 2019). Asking students to specify courses they would
like to take in future semesters is another approach, which
we explore with PLAN-BERT.

Course Recommendation
Several facets of course recommendation have been ex-
plored in past approaches. Non model-based deployed sys-
tems display analytics to students drawn from aggregate
course evaluations (Chaturapruek et al. 2018). Other rec-
ommender systems have focused on degree requirements
and constraint satisfaction as priorities for recommendation
(Parameswaran, Venetis, and Garcia-Molina 2011) and the
scheduling interfaces for accommodating these constraints
(Li, Tinapple, and Sundaram 2012). Predictive models have
been employed for next course recommendation, utilizing
student ratings of courses (Farzan and Brusilovsky 2006;
Bendakir and Aı̈meur 2006) and student and course hierar-
chical features (Elbadrawy and Karypis 2016).

Neural approaches to course recommendation have begun
to emerge, utilizing sequential enrollment histories for next-
course enrollment (Pardos, Fan, and Jiang 2019; Polyzou,
Athanasios, and Karypis 2019), grade prediction (Ren et al.
2019; Jiang, Pardos, and Wei 2019), and course similarity
prediction (Pardos and Nam 2020; Pardos and Jiang 2020).
Only a constraint-based approach (Parameswaran, Venetis,
and Garcia-Molina 2011) has focused on long-term plan-
ning, by constraining the recommendation space of existing
recommender scores using student graduation and course re-
quirements. Recent work has addressed short-term planning
for a desired next semester course outcome (Jiang and Par-
dos 2019). This RNN-based approach supports only single
time slice recommendation due to the exponential complex-
ity of considering different sets of course inputs across mul-
tiple time slices. PLAN-BERT addresses this single-basket
limitation, but focuses on incorporating future courses of in-
terest to generate a long-term coherent plan, rather than ex-
plicitly optimizing for a single future course outcome goal.

PLAN-BERT
To address the modeling challenges of consecutive basket
prediction for planning-based recommendation scenarios,
we adapt a Transformer-based model to generate degree
plans; we designate this adaptation PLAN-BERT. In this
section, we will describe the incorporation of future refer-
ence courses and historical courses into the BERT frame-
work. We will then introduce user and item features into the
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model, overview the architecture of PLAN-BERT, and then
describe the training procedure.

Prediction with Past and Future Reference Courses

In the scenario of higher education, similar to next-basket
recommendation, items (i.e., courses) in the same basket
(i.e., semester) occur in parallel. Therefore we employ a se-
quence of multi-hot vectors to represent the course schedule
of a student, denoted by Ct×‖C‖ ∈ {0, 1}, where t is the
number of semesters and C denotes the set of all courses
at the institution. We partition a student’s t semesters into
historical and future semesters. We denote the number of
historical semesters as h, and define the historical course se-
quence of a student to be Hh×‖C‖ = C[0 : h].

Students often have several courses in mind that they are
interested in taking in the future. They may be courses they
plan to take with friends, courses related to a tangential inter-
est, or upper level courses of contemporary relevance to their
intended research or industry careers. To model students’
multifaceted preferences, we utilize these future courses of
interest r as input to PLAN-BERT. Incorporation of these
courses also allows for personalized plans to be generated
even for new freshmen with no course history and no de-
clared major. By exploring the impact of the number of fu-
ture reference courses specified, r, on accuracy, we can at-
tempt to identify the lowest number that can overcome the
cold start problem without presenting an undue burden for
the user to provide more information than necessary before
generating their plan. Providing pre-specified future refer-
ence courses to PLAN-BERT can also help reduce predic-
tion error across long sequences of baskets, as the reference
courses serve as anchors for the output sequence space.

For our offline analyses, we randomly sample r courses
from the complete course schedule C to serve as example
references courses. We accept as a limitation that the ac-
tual courses students are interested in may be of a differ-
ent distribution from this sample. The sampled referenced
courses are represented by Rt×‖C‖ = Sample(C, r) and
we have

∑
Rt×‖C‖ = r. In our scenario, students pre-

select their reference courses when they enter the university.
Thus, we employ K = [C[0 : h];Sample(C, r)[h : t]] to
represent all known courses, which is the concatenation of
historical courses sequence H and future reference courses
taken from the last t − h rows of R. An example of the in-
put and prediction target of a sophomore is demonstrated
on the right of Figure 1, where the vertical dimension de-
notes the space of courses and the horizontal dimension
denotes semesters. Blue, green, and yellow squares repre-
sent historical courses, H = C[0 : h], future reference
courses, R[h : t] = sample(C, r)[h : t], and target courses,
T = C − [C[0 : h]; sample(C, r)[h : t]], which are masked
in the input. The input of PLAN-BERT consists of blue and
green courses while yellow target courses are expected out-
put. We note that historical and reference courses are ex-
cluded from the prediction target.

Incorporation of Explicit User and Item Features
Prior work in NLP has leveraged features of words (Liu et al.
2019a) and document meta-data (Ostendorff et al. 2019) to
improve text classification accuracy with BERT. We draw
from these works and incorporate meta-data of users and
items into PLAN-BERT.

In higher education, many auxiliary features of students
and courses are available. User features, such as student ma-
jor, could help reveal students’ preferences and assist with
the cold-start problem for new freshmen. Item features, such
as course department, could similarly help approximate the
embedding of a course that has only been offered for one
semester.

We use matrix U t×‖U‖ to represent one type of feature
of a student, where ‖U‖ is used to denote the size of the
vocabulary of a user feature and t denotes the number of
semesters of the student. For each student with h histori-
cal semesters, we know her user features of the first h + 1
semesters. We therefore concatenate the user features of the
first h + 1 semesters and zero pad the remaining t − h − 1
semesters, formulated as Fu = [U [h+1 : t], 0(t−h−1)×‖U‖].
Similarly, we represent item features as I‖C‖×‖I‖, where ‖I‖
denotes the size of the vocabulary of an item (course) feature
and ‖C‖ denotes the number of all offered courses. Since
only the features of known courses are available for recom-
mendation, we employ the product of known courses and
item features’ matrix, Fi = Kt×‖C‖I‖C‖×‖I‖ as the repre-
sentation of item features.

In addition to user and item features, there also exist fea-
tures that are the result of an interaction between both users
and items. One example is course grades earned by students,
thought to play a factor in course selection. However, prior
work on predicting grades has proven this to be a difficult
task for neural models (Jiang, Pardos, and Wei 2019; Ren
et al. 2019), perhaps owing to their non-normal distribution
(Arthurs et al. 2019). Furthermore, inputting grades has been
found not to improve next semester course enrollment pre-
diction (Pardos, Fan, and Jiang 2019). We therefore leave
the exploration of methods for meaningfully incorporating
course grades as a matter for future work.

Architecture
In this section, we introduce the architecture of PLAN-
BERT. Fig. 1 illustrates (a) the components of this archi-
tecture and (b) the inputs and outputs of the model.

PLAN-BERT accepts several inputs; each represented by
a t× x matrix, where t is the number of semesters and each
row denotes the information of a corresponding semester.
The inputs are as follows:

• Historical Courses and Reference Courses: A ma-
trix of known courses represented by K = [C[0 :
h];Sample(C, r)[h : t]]t×‖C‖, which is the concatena-
tion of historical semesters and future semesters contain-
ing reference courses.

• Relative Semesters: An identity matrix of size t × t.
It is the number of elapsed semesters since the student
began and is equivalent to the positional encoding in
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(a) The architecture of PLAN-BERT (b) The input and prediction targets of PLAN-BERT

Figure 1: (a) The architecture of PLAN-BERT and (b) the historical and future reference courses and prediction targets

BERT which provides positional information to the self-
attention mechanism.

• Semesters’ Seasons: A matrix denoted by St×3
2 . Each di-

mension is a one-hot vector. It denotes the season (e.g.,
Fall, Spring, or Summer) of the corresponding semester.

• Future Indicator: Resembling the [mask] token in BERT,
we introduce a vector with shape T t×1 ∈ {0, 1} to indi-
cate the time slots to be predicted. It is a list of tokens used
to indicate future semesters. If the corresponding semester
is future, the value is 1, otherwise it is 0.

• User & Item Features: Matrices for studentFu = [U [h+
1 : t], 0(t−h−1)×‖U‖] and course Fi = Kt×‖C‖I‖C‖×‖I‖

features as described in the previous subsection.

Based on the aforementioned inputs, the architecture of
Devlin et al. (2019) is employed to generate degree plans.
Devlin et al. (2019) utilize embedding layers for projecting
all inputs into dense vector sequences and a series of bidirec-
tional transformer encoder layers to produce contextual em-
beddings. Finally, a tied embedding layer (Inan, Khosravi,
and Socher 2017) and a softmax layer are used to project
contextual embeddings back to the space of courses as a rec-
ommended course schedule.

Training Procedure
Inspired by masked language models like BERT, we em-
ploy percentage sampling to pre-train PLAN-BERT to learn
the contextual embedding of courses. In this pre-training
stage, we randomly select a proportion α of courses from
all courses CT,‖C‖ as reference courses; PLAN-BERT does
not utilize historical courses in pre-training, so h = 0 in this
phase. The remaining 1 − α proportion of courses are the
expected targets. The matrix of known courses in this phase
is K = Sample(C,α

∑
C) and the target is C −K.

PLAN-BERT learns the relationship between history
and future reference courses by utilizing a fine-tuning
stage where we randomly sample r courses from CT,‖C‖

as reference courses R and we randomly select an in-
teger h among 0, 1 · · ·T − 1 as the number of histori-
cal semesters. Therefore, we have a number of historical
semesters h = random(0, T − 1), known courses K =
[C[0 : h]; sample(C, r)[h : t]], and target of output C −K
in this phase. In both pre-training and fine-tuning, to reduce
overfitting, PLAN-BERT samples reference courses and the
number of historical semesters h dynamically, which means
we change their random seeds in each epoch as was done in
Liu et al. (2019b).

Offline Evaluation
We firstly describe the datasets and experiment settings for
offline evaluation of PLAN-BERT and other comparison
models. We then report results of our offline analyses com-
paring PLAN-BERT to baseline models on the task of multi-
semester enrollment prediction, then break-down PLAN-
BERT predictive performance by student year, semester, and
number of future reference courses used.

Datasets
We use an anonymized dataset of undergraduate enrollment
from the University of California at Berkeley, a pubic lib-
eral arts university in the USA (referred to as UNIVER-
SITY1), and a large dataset from the City University of
New York, a system of 19 public colleges offering a mix-
ture of associate’s and bachelor’s degrees, also in the USA
(referred to as SYSTEM1). We use data from 17 of these
colleges, since two colleges lacked sufficient data to eval-
uate model performance. We use the first two years of en-
rollment data from all colleges in SYSTEM1 to ensure all
comparisons for SYSTEM1 use the same number of train-
ing and comparison semesters. The UNIVERSITY1 dataset
consists of 4.6 million course enrollments in 7,252 unique
courses by 134,275 bachelor’s degree seeking students be-
tween Fall 2008-2017. Student features in this data consist
of major, the college, department, and division of the major,
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Hyperparam. Searched Val. (U1) Val. (S1)
Layers [1, 4] by 1 2 3
Hidden Size 128, 256, 512, 1024 512 512
Dropout [0.0, 0.5] by 0.1 0.2 0.2
α (1 - mask%) [0.4, 0.9] by 0.1 0.8 0.8
Finetuning r [3, 15] by 1 10 5
Conf. Pen. β - 0.1 0.1
Learn Rate - 10−4 10−4

Table 1: Hyperparameter search ranges and values used in
the evaluation of UNIVERSITY1(U1) and SYSTEM1(S1).

and whether the student entered as a transfer or new fresh-
man. Course features consist of the department, subject, and
instructors of each course. The SYSTEM1 dataset consists
of 10.4 million course enrollments made by 903,226 total
students across the 19 institutions between Fall 2014-2019.
The median number of courses per institution was 1,177 and
the median number of students per institution was 45,287.
The student and course features of SYSTEM1 were similar
to that of UNIVERSITY1.

These datasets have not been made publicly available, as
the possibility of re-identification is significant and would
violate federal protections against disclosure of student
records (FERPA 1974). Access to these data may be ob-
tained by establishing a data access agreement with the Of-
fice of the Registrar responsible for each dataset.

Experiment Settings
For both datasets, we partition students temporally by start-
ing year to create the testing sets. The last four years of en-
rollment data comprise the test set of UNIVERSITY1 and
the last two years for SYSTEM1. We generate the valida-
tion and training sets as a 20/80 random split of the students
not included in the test set. We note that in both datasets,
there are new courses offered in the testing period which
have never been seen in the training period, which therefore
cannot appear in the predicted course plans and lower our
recall. In UNIVERSITY1, 24.8% of courses in the testing
set were new, and 12.84% were new, on average, in SYS-
TEM1. Finally, we employ r = 5 reference courses for each
student, derived from our experiments in the Impact of Ref-
erence Courses section of the results.

We repeat all experiments five times and report average
results, setting random seeds per experiment. We report re-
sults trained with the best hyperparameters found using a
grid search, shown in Table 1. We follow (Pardos, Fan,
and Jiang 2019) in using Recall@10 as the primary evalua-
tion metric in experiment performance evaluations. We also
present overall summary evaluation results using the popu-
lar NDCG@10 metric. Recall@10 is |y∪ŷ[:,0:10]||y| , or the pro-
portion of actual courses taken contained in the top 10 pre-
dicted courses taken in each semester, where y denotes the
actual courses taken and ŷ denotes predicted courses taken.
Normalized Discounted Cumulative Gain (NDCG) is a com-
monly used evaluation metric that evaluates the degree of
relevance of each item (Järvelin and Kekäläinen 2002).

For each model, we stop its pre-training and fine-tuning
when validation Recall@10 has not increased for 10 epochs.

Experiments concluded after one week on a system with
4x NVIDIA GTX 980Ti, 2x Xeon E5-2620 v3 CPU, and
256GB RAM using Python 3.6.3 and Keras 2.3.0 on Ubuntu
18.04. Model and experiment code is available online1.

Baselines
We compare three baselines and user and item variations
on our proposed PLAN-BERT model. These baselines were
chosen because of their competitiveness and ease of adapta-
tion to the sequential basket recommendation problem. Be-
cause our task requires the prediction of items, the time slots
of those items, and the incorporation of future reference
items, adapting other classical and deep baselines such as
P 3α, ItemKNN (Dacrema, Cremonesi, and Jannach 2019),
and S3-Rec (Zhou et al. 2020) is a non-trivial task that would
merit extensive modification to the respective baseline archi-
tecture.

• UserKNN (Sarwar et al. 2001): A classic recommenda-
tion approach based on k-nearest-neighbors and user-user
similarities which was found to be competitive against
state of the art deep learning methods (Dacrema, Cre-
monesi, and Jannach 2019). For each user, we employ
cosine similarities of known courses of the user and com-
plete course schedules of historical students. We treat the
entire history and reference courses of each student as a
single basket rather than a sequence of baskets. We use
user-user cosine similarities to calculate a weighted aver-
age of historical students’ schedules.

• LSTM (Hochreiter and Schmidhuber 1997): A classi-
cal recurrent neural network model, which is widely used
in sequential recommendation. In our paper, LSTM re-
places Transformer encoder layers of PLAN-BERT with
a sequence of LSTM layers. Since LSTM can only model
historical information, only historical courses are pro-
vided and reference courses are excluded.

• BiLSTM (Schuster and Paliwal 1997): A bidirectional
LSTM, modeling sequences in both forward and back-
ward directions. Similar to LSTM, we directly replace the
Transformer encoder layers of PLAN-BERT with BiL-
STM layers. Reference courses are included in its input.

• BERT (Devlin et al. 2019): This represents the exact im-
plementation of Devlin et al. (2019), in which future refer-
ence items and meta-features are not utilized. This repre-
sents BERT without our PLAN-BERT enhancements. We
omit the next-sentence prediction loss due to the recom-
mendation context, akin to BERT4Rec (Sun et al. 2019).

• PLAN-BERT: Our proposed model, whose training pro-
cedure includes pre-training and fine-tuning, with fu-
ture reference courses utilized in training and inference.
The +user and +item suffixes mean student features and
course features have been added to the model in training
and inference. PLAN-BERT with both of these additions
represents our fully realized model.

1https://github.com/CAHLR/plan-bert-aaai
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Recall@10 NDCG@10
Datasets UNIVERSITY1 SYSTEM1 UNIVERSITY1 SYSTEM1
Class standing Fr So Jr Sr Fr So Fr So Jr Sr Fr So

UserKNN 0.2317 0.1900 0.1764 0.1920 0.2822 0.2748 0.1779 0.1381 0.1325 0.1456 0.1737 0.2097
LSTM 0.1299 0.2158 0.2327 0.2388 0.1699 0.3523 0.0953 0.1618 0.1767 0.1778 0.1276 0.2631
BiLSTM 0.2555 0.2702 0.2787 0.2843 0.3622 0.3803 0.1945 0.1927 0.1875 0.1860 0.2202 0.2632
BERT 0.1778 0.2387 0.2881 0.2981 0.1662 0.3636 0.1333 0.1719 0.1908 0.2108 0.1241 0.2942
PLAN-BERT 0.2648 0.2851 0.2985 0.3225 0.3726 0.4222 0.2142 0.2191 0.2292 0.2469 0.2988 0.3555
PLAN-BERTi 0.2755 0.2958 0.3047 0.3275 0.3915 0.4547 0.2219 0.2265 0.2284 0.2401 0.3119 0.3706
PLAN-BERTu 0.2704 0.2867 0.3118 0.3327 0.3753 0.4241 0.2108 0.2095 0.2245 0.2386 0.3018 0.3643
PLAN-BERTiu 0.2859 0.2967 0.3161 0.3338 0.3945 0.4471 0.2270 0.2281 0.2369 0.2510 0.3196 0.3722

Table 2: Results of PLAN-BERT and baselines on UNIVERSITY1 and SYSTEM1 datasets.

Results

We examine enrollment plan generation performance of
PLAN-BERT and comparison models on our two datasets.
Recall@10 and NDCG@10 of enrollment predictions of all
test set semesters by all models are reported in Table 2, ag-
gregated by the class standing of the predicted students as of
their first semester in the test set. As discussed in the intro-
duction of our datasets, SYSTEM1 has only Freshman and
Sophomore students because it consists of majority two-year
degree granting institutions. The Freshman result for UNI-
VERSITY1, for example, is the average Recall@10 of each
semester in the four years of predicted enrollments (i.e., gen-
erated 4-year plan) starting from the first semester of the
UNIVERSITY1 test set. The Freshman result is an exam-
ple of the cold-start scenario, as no course histories exist for
these students at the time of plan generation.

We find that PLAN-BERT+user+item attains the best re-
call across almost all class standings of students and the
best NDCG across all class standings in UNIVERSITY1 and
SYSTEM1. We note that even without user+item features,
PLAN-BERT outperforms all other models for all student
classes. Compared to BiLSTM, another neural architecture
that utilizes future reference courses, PLAN-BERT’s mar-
gin of improvement increases with standings representing
longer course histories, showing the advantage of the self-
attention and contextual embedding architecture for making
use of sequence histories. We also find that for upperclass-
men, the addition of both item and user features provides a
substantial boost in performance over the addition of user
or item features alone. These features, which include major,
department of major, and department of courses, perhaps be-
come more important for prediction in a student’s later years
as they take more courses within the department of their ma-
jor. Finally, we observe that the models that do not utilize
future reference courses (i.e., LSTM and BERT) perform
substantially worse on the cold-start scenario of predicting
future enrollments for Freshmen.

We further investigate the performance of PLAN-BERT,
breaking out the results of Table 2 by each semester pre-
dicted for each class standing. Figure 2 shows Recall@10
per semester for the PLAN-BERT+user+item model on
the UNIVERSITY1 dataset. With 3, 6, and 9 historical
semesters, Sophomore, Junior, and Senior students’ Re-
call@10 reaches 0.2247, 0.2680, and 0.3592, improving by

12.07%, 30.07%, and 79.15% respectively over the Fresh-
man recall at the same semester, showing that Recall@10
improves exponentially with additional historical semesters.
Although many random sampling procedures are employed
in the training and inference stages in our BERT-based mod-
els, their evaluation results are relatively stable: the maxi-
mum standard deviations of Recall@10 of BERT, PLAN-
BERT, PLAN-BERT+item, PLAN-BERT+user, and PLAN-
BERT+user+item across the five experiment repetitions for
each class standing are 0.0046, 0.0017, 0.0022, 0.0021, and
0.0014, respectively.

Figure 2: Impact of historical semesters on enrollment pre-
diction on UNIVERSITY1 dataset, broken out by (Fa)ll,
(Sp)ring, and (Su)mmer semesters.

Impact of Reference Courses The previous analysis ob-
served the benefit of various amounts of historical data
in predicting enrollments. In this section, we analyze the
benefit of various amounts of future data (i.e., reference
courses). Previous analyses used a fixed number of future
reference courses (r = 5). In this analysis, we vary r from
zero to ten and observe the impact on recall of the mod-
els which support future reference courses; UserKNN, BiL-
STM, and PLAN-BERT variants. Figure 3 shows the results
of plan prediction for Freshmen in both datasets. We observe
that BiLSTM benefits the most from increased reference
courses, exhibiting the steepest curve in UNIVERSITY1,
while PLAN-BERT benefits most in SYSTEM1. The benefit
of reference courses to UserKNN levels off at r = 2 in UNI-
VERSITY1 and begins to decrease after 2 in SYSTEM1. In
both datasets, PLAN-BERT outperforms all models for ev-
ery positive value of r.

Our offline analyses of future reference courses sample
actual future courses from a student’s enrollment sequence.
However, in a real world scenario, which we evaluate in the
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(a) UNIVERSITY1 results (b) SYSTEM1 results

Figure 3: Comparison of impact of r on recall for predictions
of all semesters with no course history (i.e., Freshmen).

next section, these future courses of interest would need to
be provided by the student. Users are often ambivalent to
provide an excess of information upfront in order to receive
a digital service in general (Chang, Harper, and Terveen
2015). We therefore would like to request as few reference
courses as possible while still being able to effectively per-
sonalize a plan. The need for future reference courses will be
greater for underclassmen, where the model has fewer his-
torical courses to incorporate, or none at all, and students
have the most semesters ahead of them. Figure 4 breaks
down the impact of r on plan generation performance for
each class standing using PLAN-BERT+user+item. Fresh-
man and Sophomore plans are most affected by increased
future reference courses. We also find that recall for Fresh-
men, who have no course history, improves 120% (0.1002 to
0.2214), from r = 0 to just r = 2 reference courses (Fig. 4),
and improves over 190% (0.1002 to 0.2985), from r = 0 to
r = 6 reference courses. We observe that the performance
of r = 2 future reference courses for Freshmen is equiv-
alent to Sophomores (∼ 7 historical courses) with r = 0.
We hypothesize that pre-specified future tokens provide a
more informative bias towards the student’s future intentions
despite their sparsity compared to course history. Our re-
sults show that sparse pre-specified future reference items
can greatly improve plan prediction performance and that
PLAN-BERT’s architecture is best suited, out of all models
we considered in experimentation, to taking advantage of the
information provided by pre-specified reference items.

Figure 4: The recall of students of different grades with
different r for PLAN-BERT+user+item in UNIVERSITY1
dataset. x-axis denotes r and y-axis denotes Recall@10.

Online Evaluation
We conduct an online user study by implementing our mod-
els into an existing production course recommender system2

to explore if our offline evaluation agrees with subjective

2https://askoski.berkeley.edu

user-perceived performance of PLAN-BERT. We recruited
63 first and second-year undergraduate student participants
from UNIVERSITY1 for our study. We filtered out 2 respon-
dents that did not answer open-ended response questions ac-
cording to the study directions. There was a wide represen-
tation of majors, with no one major representing more than
15% of respondents.

Evaluation Methodology
We follow the evaluation methodology of Adiwardana et al.
(2020) for chat-bot model evaluation. They divide subjec-
tive evaluation into two phases: an interactive phase where
raters converse with a chat-bot and rate their conversation,
and a static phase where raters rate a set of completed con-
versations between a human and chat-bot. Adiwardana et al.
(2020) adopt two rating metrics: sensibility, whether a con-
versation makes sense, and specificity, whether the chat-
bot’s responses are relevant to the topic being discussed. We
adapted this methodology and defined sensibility to students
as ”whether the plan presented to [them] makes sense”, and
specificity as ”how specific the plan is to [them].”

We use PLAN-BERT+user+item, LSTM, and UserKNN,
as detailed in the previous baselines subsection to generate
plans with the exception that the LSTM used for compar-
ison in this online evaluation was the default model used
in the production system, trained using an auto-regressive
next-semester prediction approach following Pardos, Fan,
and Jiang (2019). We limit the number of total plan gener-
ation models to ensure students had sufficient time to com-
plete the study and randomize the order of models presented
per respondent. We select UserKNN as a simple baseline,
LSTM as the currently deployed production baseline, and
PLAN-BERT+user+item as the top model from offline eval-
uations. We also add a randomly selected actual past student
history of the same major as the respondent (referred to as
”Actual”) as a human-level plan generation benchmark for
comparison.

Study Design
We split the survey of the study into three phases. In the
first phase, future course selection, we ask students to se-
lect at least three courses of interest using a search tool to
add those courses to their academic plan. Three reference
courses struck a balance between attaining high recall per-
formance in our offline analyses and minimizing the burden
on students to add a large number of courses.

In the second phase, interactive plan rating, we present
students with a set of three academic plans, generated dy-
namically from the models based on the respondent’s course
history and reference courses. These plans are presented in a
randomized order and the student is asked to rate each plan
in terms of its specificity and sensibility.

In the final phase, static plan rating, we randomly sam-
ple a past graduated student’s history of the same major as
the respondent and use this history as input to each model
with h = 2, r = 3. We show respondents the past student’s
first two semesters and present the r = 3 as the courses the
”example student wished to take in the future” and ask re-
spondents to rate the plans generated for the next two years
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from each model. For comparison, we present the past stu-
dent’s actual courses taken as a candidate plan.

Spec. Sens. Spec. (St) Sens. (St)
PLAN-BERT 72.13% 54.10% 77.05% 47.54%
LSTM 65.57% 55.74% 70.49% 52.46%
UserKNN 65.57% 44.26% 60.66% 45.90%
Actual - - 77.05% 60.66%

Table 3: Plan ratings from the online user study. Spec. de-
notes specificity, sens. denotes sensibility, and (St) denotes
ratings from the static plan phase.

Results
We report the percentage of respondents that answered
”Yes” to whether a plan was sensible or specific in Table 3.
We use a two-sided Wald test to compute p-values as in
Winecoff et al. (2019). We compare among all valid respon-
dents and apply a Bonferroni correction to account for mul-
tiple post-hoc comparisons.

Out of all models, PLAN-BERT is the only one to achieve
statistically significant separation, being scored higher than
UserKNN in specificity (p=0.0023) for ratings of other stu-
dents’ generated plans (St.) and attaining equal specificity to
the actual student history. Specificity for actual student his-
tories in the static rating context is also statistically signifi-
cantly better than UserKNN (p=0.0023). These are the only
statistically significant results, possibly owing to an insuffi-
cient sample size of only 63 students. Given sufficient sta-
tistical power, we would expect to see a difference between
actual course plans and LSTM generated plans in specificity
and sensibility. PLAN-BERT also achieves superior speci-
ficity in all contexts. Although LSTM attains higher sensi-
bility in one context, actual student histories received an av-
erage sensibility of 60.66%, indicating it is quite difficult for
students to evaluate sensibility. The results are similar to of-
fline evaluation, where PLAN-BERT showed superior recall
over LSTM and UserKNN.

Conclusion
We introduced PLAN-BERT, the first model to support
consecutive basket recommendation with future reference
items. Using a novel dataset of 20 institutions, we empiri-
cally demonstrated the value of pre-specified reference items
in helping overcome the cold start problem. Even small
numbers of pre-specified reference courses had a sizable im-
pact, with r = 2 increasing Recall@10 of generated course
plans by 120%.

Our results also demonstrate that PLAN-BERT’s bidirec-
tional self-attention architecture is better suited to utilize
past sequence information than BiLSTM and a UserKNN
baseline, and that incorporation of user and item features
provided substantial benefit to Recall@10 in a student’s
later years of study. Finally, our online study showed that
PLAN-BERT has plausible real-world applicability in pro-
viding virtual guidance to students navigating the complex
terrain of a higher education degree. Future work may ex-

plore the application of PLAN-BERT to other domains such
as itinerary planning or e-commerce recommendation.
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