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Abstract

Analyzing big geophysical observational data collected by
multiple advanced sensors on various satellite platforms pro-
motes our understanding of the geophysical system. For in-
stance, convolutional neural networks (CNN) have achieved
great success in estimating tropical cyclone (TC) intensity
based on satellite data with fixed temporal frequency (e.g.,
3 h). However, to achieve more timely (under 30 min) and
accurate TC intensity estimates, a deep learning model is de-
manded to handle temporally-heterogeneous satellite obser-
vations. Specifically, infrared (IR1) and water vapor (WV)
images are available within every 15 minute period, while
passive microwave rain rate (PMW) is available about every
3 hours. Meanwhile, the visible (VIS) channel is severely af-
fected by noise and sunlight intensity, making it difficult to
be utilized. Therefore, we propose a novel framework that
combines generative adversarial network (GAN) with CNN.
The model utilizes all data during the training phase includ-
ing VIS and PMW information and eventually uses only
the high-frequent IR1 and WV data for providing intensity
estimates during the predicting phase. Experimental results
demonstrate that the hybrid GAN-CNN framework achieves
comparable precision to the state-of-the-art models, while
possessing the capability of increasing the maximum estima-
tion frequency from 3 hours to less than 15 minutes. Please
visit https://github.com/BoyoChen/CNN-GAN-TC for codes
and implementation details.

1 Introduction
Tropical cyclone (TC) is a type of low-pressure weather sys-
tem that forms and develops over the warm tropical ocean. It
is characterized by intense rotating winds and severe rainfall
associated with eyewall clouds and spiral rainbands. A TC
hitting the land poses severe threats to society by producing
gusty wind, sea surge, flooding, and landslide.

TC intensity (i.e., the maximum sustained surface wind
near the center) is one of the most critical factors in disas-
ter management. The state-of-the-art SATCON (Velden and
Herndon 2014), widely used in operational forecasting, es-
timates TC intensity based on consensus decision-making
procedures using infrared images from geostationary satel-
lites and other observations from low-Earth-orbit satellites.
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Note that high quality SATCON estimates could be obtained
at an approximate three-hour frequency.

Recently, several studies have applied convolutional neu-
ral networks (CNN) on satellite images to estimate TC in-
tensity (Pradhan et al. 2018; Chen, Chen, and Lin 2018;
Chen et al. 2019; Wimmers, Velden, and Cossuth 2019).
The previous work released a benchmark dataset ”TCIR”
for the TC-image-to-intensity regression task (Chen, Chen,
and Lin 2018), which consists of satellite images including
four channels (fig. 1 (a)-(d)). The CNN-TC network(Chen
et al. 2019) 1 utilized IR1 (Infrared) and PMW (passive mi-
crowave rain rates) channels and achieved a state-of-the-art
performance also at a three-hour frequency.

Notably, the VIS (visible) channel was not utilized in the
past, because it only provides meaningful cloud information
during the daytime. Besides, PMW channel images can only
be collected at the frequency of≈ 3 hours while the observa-
tions from IR1 and water vapor (WV) channel are available
almost anytime.2 As real-time intensity estimations are re-
quired for pragmatic disaster management, we must be able
to handle temporally-heterogeneous satellite observations.

This work proposes a novel deep learning model com-
bining CNN and GAN (generative adversarial network) to
deal with the temporally heterogeneous datasets. Our goal
is to eliminate the dependency on PMW channel and per-
form the prediction with only IR1 and WV channels, so that
24/7 intensity estimations could be provided. To keep the
performance comparable to the state-of-the-art model, we
also make use of the most of the information provided by
good quality VIS images. We proposed a novel 5-stage train-
ing strategy, with which two separated generators are trained
for producing simulated VIS and PMW images. Afterward,
generated VIS and PMW images can be used along with IR1
images to conduct the estimates. fig. 2 is a schematic of our
inference model.

We summarize related work about GAN in section 2 and
provide analysis of various used satellite observations in sec-

1This article is published in Weather and Forecasting, one of
the best journals in the relevant research field.

2PMW is collected by low-Earth-orbit microwave satellites.
Meanwhile, IR1, WV, and VIS are collected by geostationary
satellites. Normally, geostationary satellites collect data at the fre-
quency of 15 min. In a super rapid scan mode, a geostationary satel-
lite provides observations every 2 min.
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Figure 1: Channels of the TCIR dataset. (a)-(d) The four basic channels: IR1, WV, VIS, and PMW. (e) relu(WV − IR1). By
comparing (d) and (e), we can find the implicit correlations between the PMW and other channels.

Figure 2: A schematic showing how the proposed hybrid
GAN-CNN model is used for estimating TC intensity. Note
that only the temporally homogeneous IR1 and WV data go
into the model as the input while the GAN component gen-
erates the PMW and VIS features for the CNN regressor.

tion 3. section 4 discusses the hybrid GAN-CNN architec-
ture and the training strategy. Then section 5 demonstrates
the capability of the proposed model dealing with tempo-
rally heterogeneous datasets to provide 24/7 intensity esti-
mates in good quality. section 6 provides a quick recap.

2 Background Knowledge
In this section, we summarize several GAN frameworks that
inspire our work. In a typical GAN (Goodfellow et al. 2014),
there are two opposing players: a generator and a discrimi-
nator. The generator is responsible for generating fake data
and trying to confuse the discriminator. A discriminator acts
like an umpire, responsible for distinguishing between real
and fake data. The competition between both players prompt
the generator to generate fake data that is difficult to distin-
guish from the real data.

CGAN (conditional GAN) (Mirza and Osindero 2014) at-
taches conditions to the input of the generator. These condi-
tions should be related to several side information provided
by the image, such as the class of the object in the picture.
The generator is restricted only to generate images that meet
the conditions. Additionally, the specified conditions will be
disclosed to the discriminator along with the generated data.
This formulation allows generators to generate images ac-
cording to our needs.

AC-GAN (auxiliary classifier GAN) (Odena, Olah, and
Shlens 2017) follows the steps of CGAN by setting condi-
tions to the generator. Differently, specified conditions are
not exposed to the discriminator. Instead, the discriminator
are required to reconstruct the side information of the images
on its own. Compared to CGAN, AC-GAN further improves
the stability of training and the quality of the generated data.

In most of GAN frameworks, the discriminator only out-
puts a single probability to determine whether the entire
image is generated or not. In contrast, PatchGAN (Li and
Wand 2016) modifies its discriminator to cut the whole im-
age into multiple small patches with overlap and discrimi-
nates them piece by piece. This technique has been proven to
be mathematically equivalent to doing blending with data af-
ter cutting into patches. This technique is useful for data with
even distribution and no distinct boundary, such as satellite
images.

U-Net (Ronneberger, Fischer, and Brox 2015) is a type of
generators which has a similar structure to an auto-encoder.
The input and output of U-Net are both images. It retains the
local details from the input image by skip connections, then
reconstructs them in the corresponding position. Therefore,
it is widely used in situations where the input and output are
pictures of the same size.

Proposed in 2017, Pix2Pix (Isola et al. 2017) uses pic-
tures as the condition of the generator and completes the
style conversion task brilliantly. Because the inputs of the
generator are images, Pix2Pix reasonably uses U-Net as its
generator. Meanwhile, the PatchGAN discriminator is used.
L1 distance between the input picture and the output picture
are added to the generator loss. This term in the loss function
directly guides the generator to produce the desired image
and is useful for fighting against mode collapse. However,
this framework demands data to be paired before and after
conversion.

CycleGAN (Zhu et al. 2017) focuses on training two gen-
erators (style A-¿ style B, style B-¿ style A) at the same time
instead of training a one-way generator. CycleGAN requires
the input image (assuming style A) to be converted back
as similar as possible after passing through both generators.
We can thus ensure that the generator retains the critical in-
formation in the original image when converting the style.
The concept in CycleGAN is similar to an auto-encoder.
On the other hand, CycleGAN also resolves the limitation
of Pix2Pix that requires the paired data. However, due to
the characteristics of TC images, we apply Pix2Pix in our
framework, but not that of the CycleGAN. The detailed rea-
sons are described in section 3.1.
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3 Data Analysis and Preprocessing
We conducted our experiment on the benchmark TCIR
dataset, which includes 4 channels: Infrared (IR1), Water
Vapor (WV), Visible (VIS), and Passive Microwave (PMW).
An example is shown in fig. 1 (a)-(d). For more details about
the TCIR, please refer to the previous work of Chen, Chen,
and Lin (2018).

3.1 Analysis of the PMW Data
According to domain knowledge, PMW is positively corre-
lated with relu(WV-IR1) (Olander and Velden 2009). There-
fore, the fig. 1(d) and fig. 1(e) are somewhat similar to each
other. This evidence suggests that a properly trained Pix2Pix
model can hopefully restore the PMW channel using IR1
and WV information. However, since there is still a certain
gap between PMW and relu (WV-IR1), we cannot directly
use the latter one to replace the former one.

Besides, we also discovered that the conversion is uni-
directional. While we can use IR1 and WV to derive PMW,
it is challenging to derive IR1 and WV from PMW. Thus,
cycleGAN is not recommend to serve as the PMW generator.

3.2 Analysis of the VIS Data
The VIS channel is the noisiest compared with other three
channels. Types of effects includes:

1. VIS images are meaningless at night due to the significant
decrease in light intensity.

2. Even under the daylight, about 1/5 of the VIS are noisy or
completely black.

3. The intensity of sunlight varies at different hours through-
out the day. Cloud is more obvious when the time is closer
to noon.

4. Similar to other channels, the signal may be disturbed by
noises. Sometimes even half of a VIS image is black. Be-
sides, there could be strip noise occasionally.

By adopting the VIS generator, we want to (1) generate VIS
images with IR1 and WV at all times, even during the night,
(2) calibrate sunlight level among all VIS images, and (3)
remove block and strip noise. For clearer example, please
refer to fig. 9 in the experiment section.

3.3 VIS Quality Control
A subset of VIS data with good quality is needed to serve as
the labeling data and facilitate the training of the VIS gener-
ator. This selection was conducted based on the calculation
of the mean and standard deviation of the entire image val-
ues.

By filtering unusual values of mean, we can exclude all-
black and all-white images. On the other hand, a clear VIS
image’s standard deviation is likely to fall within a cer-
tain interval. After consulting human experts, we subjec-
tively determine the range of reasonable mean and stan-
dard deviation in which a high-quality VIS should be (1)
0.1 ≥ mean ≥ 0.7 and (2) 0.1 ≥ std ≥ 0.31.

Figure 3: Framework of hybrid GAN-CNN.

Moreover, to further reduce false positives, we limit high-
quality visible images to be between 07:00 and 17:00 be-
cause it is impossible to have high-quality VIS data dur-
ing the nighttime, namely our third condition: (3) 7 ≥
local time.hour ≥ 17.

As a result, a total of 12480 TC images (training data)
were marked as good quality VIS, accounting for 20.9% of
the total 59837 samples in the training data.

4 Proposed Method
To eliminate the dependence on the usage of PMW and solve
problems caused by severe noise in the VIS, we demand
GANs that can stably generate VIS and PMW channels only
by the two temporally homogeneous channels: IR1 and WV
(fig. 3). In the dataset, every set of TC images have PMW
observation, while only 20% have good-quality VIS. To use
available information optimally, generators for PMW and
VIS are trained separately (fig. 4).

We use an adjusted U-Net for the generator. Thanks to
the skip connections in U-Net, local details in the source
image can be preserved. Regarding the discriminator, we
use the idea of PatchGAN. Satellite observations are contin-
uous, without concept of objects, foreground, background,
and boundaries. Radically speaking, any segmentation of a
real TC image can be determined normal because there is
no object to be dissected. A PatchGAN divides images into
multiple small areas before determining whether it is real,
which is suitable for our data and makes training more sta-
ble.

4.1 Training Objective
There are three components in this framework: a generator,
a discriminator, and a regressor. The loss functions are for-
mulated as:

LGtarget
= lgen + α× lL2 + β × lregr
+ γ × lm2n × [[target = vis]]

LDtarget
= ldisc + γ × lm2n × [[target = vis]]

target ∈ {vis, pmw}
LR = lregr

(1)
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Figure 4: Illustration of two sets of GANs.

α, β, γ used in the experiments are listed in table 1.

Discriminator loss (LD) The goal of the discriminator is
to correctly identify the target image as real observation or a
fake generated by the generator:

ldisc(G,D) = E
ir1,wv,target

[ logDdisc(ir1, wv, target)

+1− logDdisc(ir1, wv, target
′)],

target′ = Gtarget(ir1,wv),

target ∈ {vis, pmw}
(2)

This concept is the same as that in the Pix2Pix.

Generator loss (LG): The loss contains the following re-
quirements associated with our loss function. First, the goal
of the generator is to confuse the discriminator:

lgen(G,D) = E
ir1,wv,target

logDdisc(ir1, wv, target
′),

target′ = Gtarget(ir1, wv),

target ∈ {vis, pmw}
(3)

This is equivalent to the loss in the patchGAN.
Second, the generated VIS/PMW must be similar to the

input VIS/PMW:

lL2(G) = E
ir1,wv,target

||target− target′||2,

target′ = Gtarget(ir1, wv),

target ∈ {vis, pmw}

(4)

This concept is borrowed from the Pix2Pix. Note, however,
that the L2 distance (MSE) is used instead of the L1 distance
(MAE) in our model because L2 distance encourages more
blurring. Usually, we want to generate images with clear
lines and apparent boundaries. However, satellite images
have no concept of boundaries, where they are smoother
than ordinary pictures, such as dogs, cats, and cars. There-
fore, we modify the Pix2Pix architecture based on our need.
A comparison of using L1 distance and L2 distance will be
shown later in section 5.2.

Besides, we have added the following two innovative de-
signs to our GANs, specializing the GANs to complete tasks

appropriately. The details are described in the following two
sub-sections.

Auxiliary time loss (lm2n): As mentioned in section 3.2,
we expect the VIS generator to adjust all generated VIS im-
ages to the sunlight level at noon. To achieve this goal, we
need to first calculate m2n (minutes to noon) for each VIS
image: m2n = |60× hour +minute − 60× 12|. We take
m2n as an additional condition and apply the concept of the
AC-GAN to our VIS generator and discriminator. Then the
loss function therefore has an extra term.
Discriminator:

lm2n(D) = E
vis,m2n

||m2n−Dm2n(vis)||2 (5)

Generator:

lm2n(G,D) = E
ir1,wv

||m2n′ −Dm2n(vis
′)||2,

vis′ = Gvis(ir1, wv,m2n′),

0 ≤ m2n′ ≤ 300

(6)

VIS images with good quality were obtained during day-
time, specifically from 7:00 to 16:59 (see section 3.3), so
the largest value of minutes to noon is 300. In training, ran-
domly generated floating-point numbers between [0, 300]
are provided to the generator as condition.

Regressor loss (LR): Since our ultimate goal is to use the
generated VIS / PMW channels as the regressor’s inputs, the
generator is requested to create useful features that can fa-
cilitate estimations.

The generator is first asked to generate PMW and VIS
given the condition m2n = 0. The obtained results are pro-
vided to the regressor, along with IR1 and WV. Finally we
can obtain our intensity estimation using generated VIS /
PMW (e.g. lower part of fig. 3). The precision of the predic-
tion is also added to one of the terms of the generator loss:

lregr(Gvis, Gpmw, R) = E
ir1,wv,vmax

||vmax− vmax′||2,

vmax′ = R(ir1, wv, vis′, pmw′),

vis′ = Gvis(ir1, wv, 0),

pmw′ = Gpmw(ir1, wv),
(7)

The term vmax stands for the maximum wind velocity, the
definition of TC intensity.

4.2 Strategy of Three-Stage Training
To fairly calculate lregr, we need to pre-train the regressor.
Therefore, a novel three-stage training illustrated in fig. 3
and fig. 5 is proposed.

Figure 5: 3-stage training.
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Figure 6: The steps of the extended 5-stage training.

1. Pre-train regressor: Pre-train the regressor with origi-
nal VIS and PMW along with other regressor inputs and
thereby let the regressor learns how to extract essential
features from real VIS / PMW in advance.

2. Train generator: The generator and discriminator are op-
timized together. The loss mentioned in eq. (7) ensures
that significant feature regressor is using will be gener-
ated.

3. Fine-tune regressor: With well-trained generator, we use
the generated VIS / PMW features to fine-tune the regres-
sor.

4.3 Strategy of Five-Stage Training
Good results are achieved through the above procedures of
three-stage training. To be even better, VIS generator should
be trained with only data with good quality VIS images.
Meanwhile, the training process becomes more stable when
2 generators are only optimized when another one is fixed.

Therefore, based on the three-stage training described
above, a more detailed five-stage training process illustrated
in fig. 6 is proposed. In the five-stage training, the first two
stages of three-stage training are repeated for two loops:

1. Loop 1: Only data with good quality VIS images are used
in this loop. PMW generator is fixed while we focus on
optimizing the VIS generator. When calculating loss in
eq. (7) we use the original PMW instead of a generated
one.

2. Loop 2: All data are used. VIS generator is fixed while we
pay attention to PMW generator.

3. After training both generators, regressor get fine-tuned us-
ing the generated PMW’ and VIS’.

By applying five-stage training, we obtain the final opera-
tional predicting model (fig. 2).

5 Experiments and Analysis
In the following section, two techniques proposed in the pre-
vious work will be explained briefly, including auxiliary
features and rotation-blending. Please refer to Chen et al.
(2019) for more details. Next, we will compare our perfor-
mance with related works which also focuses on estimat-
ing TC intensity, including both operational meteorological
models and deep learning techniques. Finally, we qualita-
tively analyze the quality of the proposed model.

In the experiments, we split the dataset into three parts: (1)
Training data: TCs during 2000-2014, (2) Validation data:
TCs during 2015 and 2016, (3) Testing data: TCs during
2017.

Auxiliary Features: In addition to the output from convo-
lution layers, additional features are passed into the regres-
sor. The auxiliary features are demonstrated to be helpful
in improving the precision of estimation (Chen et al. 2019).
These features provide clues such as (1) day of year: stands
for seasonal information, (2) local time, and the most influ-
ential one: (3) One-hot encoded region codes: region codes
is in {WPAC, EPAC, CPAC, ATLN, IO, SH}, representing 6
different basins.

Rotation Blending: Considering the nature of TCs as a
rotating weather system, TC data is rotation invariant. That
is, rotations with respect to the center usually do not af-
fect the estimation of the TC intensity. (Chen, Chen, and
Lin 2018) demonstrated that the idea of using rotation for
augmentation leads to a significant improvement in perfor-
mance.

During the training phase, each image will be randomly
rotated by any degree before feeding into our model. When
it comes to inference, images will be rotated by evenly dis-
tributed ten angles ranged from 0 to 360 to collect 10 differ-
ent estimations. Afterward, these intensity estimations are
blended to obtain the final estimate.

5.1 Intensity Estimation Performance
The main task of this work is to accurately estimate the TC
intensity, which is the output of our model. The unit of TC
intensity is knot (kt) defined as its maximum wind speed
(Vmax). The value of Vmax is usually ranged in [30, 180],
and TCs with a Vmax larger than 96 kt are considered as
intense TCs.

Table 2 compares our performance to other works. ADT
(Advanced Dvorak Technique) (Olander and Velden 2007) is
a common used method to estimate TC intensity, which ex-
tract features from IR1 images before applying linear regres-
sion. SATCON (Velden and Herndon 2014) is the state-of-
the-art model used by meteorologists in operational forecast.
It rely highly on observations from low-Earth-orbit satel-
lites.

The performance of our proposed model is comparable
to the state-of-the-art model in both deep learning and me-
teorology, while our model can provide much more timely
estimations.

In fig. 7, we compare the validation MSE score over the
first 100 epoch of training. The blue line represents the state-
of-the-art model, which provides intensity estimates every 3
hours. The orange and green line shares the same inputs, IR1
and WV, which is available every 15 min. The former is the
model that directly uses them for estimations while the latter
is our proposed model. In contrast, our adequately trained
GAN model helps us further improve the performance of
intensity estimation, bringing it closer to the state-of-the-art
model. Most importantly, our proposed model can provide
intensity estimates every 15 min.
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Stage α(L2) β(regr) γ(m2n) Max epochs
Pre-training Regressor - - - 70
VIS Generator 1000 0.0001 0.002 500
Pre-training Regressor - - - 100
PMW Generator 10 0.001 - 200
Fine-tune regressor - - - 300

Table 1: Hyper-parameters used in the 5-stage training.

no smoothing w/ smoothing 3
input frequencyvalid test valid test

ADT (Olander and Velden 2007) 12.65 IR1 30 min 4

SATCON (Velden and Herndon 2014) 8.59 IR1, PMW 5 ≈ 3H
CNN-TC (Chen et al. 2019) 10.38 – 8.74 8.39 IR1, PMW ≈ 3H
CNN-TC 6 10.13 10.13 8.62 8.89 IR1, PMW ≈ 3H
Proposed model 10.43 10.19 9.01 9.33 IR1, WV ≤ 15 min

Table 2: The comparison between RMSEs of our proposed models and state-of-the-art models.

Figure 7: Learning curves in MSEs for models with different
channel combinations as the input.

5.2 Effectiveness of the L2 Distance
L2 distance is chosen instead of L1 distance in eq. (4), which
is different from an ordinary Pix2Pix framework. Compared
to commonly seen pictures, satellite observations are con-
tinuous and have smoother boundaries. As described in sec-
tion 4.1, using L2 distance encourages more blurring. In
fig. 8, we take VIS channels as examples, compare the gener-
ated results from models using L1 distance and L2 distance.
As shown, the model using L1 distance generates images
less smoothly.

5.3 Qualitative Study
fig. 9 shows the generated images from the proposed model.
Compared with the original VIS images, the generated VIS
image is slightly blurred, and the eye is not as clear as the
original one. Nevertheless, these images can be generated
stably anytime, with the removal of most noises, and with
adjustment of sunlight intensity.

Figure 8: VIS examples generated by generators using L1
and L2 distance for lregr, described in eq. (4). Validation
data is used for generating VIS in this figure.

Interestingly, most of the generated PMW seems to be
slightly rotated. This is presumably because observations
can only be obtained when the low-Earth-orbit satellites pass
across the TCs. Therefore, the time PMW channel being col-
lected could be slightly misaligned with other channels.

6 Conclusion
This paper focuses on improving the utility of deep learning
in TC intensity estimation for practical scenarios. A mod-
ified Pix2Pix GAN framework is presented to better fit in
our unusual TC data that is temporally-heterogeneous, and
we combine the GAN with a CNN regressor, which even-
tually becomes our proposed hybrid GAN-CNN model. By
properly dealing with temporally-heterogeneous data, our
proposed model not only achieves comparable performance
with the state-of-the-art model in estimating precision but
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Figure 9: The generated VIS and PMW data. For each block, there are original VIS (upper left), generated VIS (upper right),
original PMW (lower left), and generated PMW (lower right). Validation data is used for generating this figure.

also provides the estimates much more timely, which leads
to better TC warning operations and could eventually save
more lives.

Moreover, being capable of estimating TC intensity by
only IR1 and WV channels, the new model enables us
to reanalyze the intensity of TCs further back to the time
only simple IR1 and WV images were available (1980s)
instead of starting from the 2000s, providing the potential
of a breakthrough in the research about climate change and
global warming from the aspect of TC activities.
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Broader Impact
Timely warnings are critical to a better disaster warn-
ing/management system. From Hurricane Katrina to Hurri-
cane Harvey and even to recent COVID-19, we should learn
that early awareness of these disasters could result in saving
many lives.

Take Hurricane Harvey as an example. Back on August
25, 2017, Hurricane Harvey was estimated as a category 2
hurricane during 02:00 to 14:00. After it became a category
3 hurricane at 17:00, all in a sudden, it grew into a category

3Simple smoothing techniques are applied here to obtain a
boost in estimation precision (Chen, Chen, and Lin 2018; Chen
et al. 2019).

4They are currently providing estimations every 30 mins. But it
could be ≤ 15 min as well.

5SATCON depends on low-Earth-orbit satellites observations,
which is somehow similar to the PMW.

6Our reproduction of CNN-TC. We add additional batch nor-
malization layers in our reproduced CNN-TC, which leads to a mi-
nor improvement.

4 hurricane only 3 hours later at 20:00. Eventually, Hurri-
cane Harvey caused record-breaking damage in the U.S. To
timely monitor this rapid intensification is challenging for
the conventional TC intensity estimation techniques, which
provides estimates only once per 3 hours. Imagine if there
was a timely estimation system which can provide inten-
sity estimates every 15 minutes. The insane increasing trend
could be detected earlier, precious time could be bought,
people could be better prepared, and lives could be saved.

On the downside, a significant pitfall of applying machine
learning techniques in disaster management is that models
are naturally conservative when facing extreme cases. For
example, TC intensity ranges from 20 to 180 kt, while about
70% of the value distributed within 35 kt to 64 kt, which
makes it almost unavoidable for machine learning models to
under-estimate unprecedented extreme values. Therefore, an
auxiliary warning system should exist no matter how precise
we humans can be with our machine learning techniques.
After all, disaster management is a cost-sensitive scenario
in which we should always keep in mind that while false
positive is annoying, false negative is deadly.
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