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Abstract

The rise of neural networks has opened the door for automatic
analysis of remote sensing data. A challenge to using this ma-
chinery for computational sustainability is the necessity of
massive labeled data sets, which can be cost-prohibitive for
many non-profit organizations. The primary motivation for
this work is one such problem; the efficient management of
invasive species — invading flora and fauna that are estimated
to cause damages in the billions of dollars annually. As an
ongoing collaboration with the New York Natural Heritage
Program, we consider the use of unsupervised deep learning
techniques for dimensionality reduction of remote sensing
images, which can reduce sample complexity for downstream
tasks and decreases the need for large labeled data sets. We
consider spatially augmenting contrastive learning by train-
ing neural networks to correctly classify two nearby patches
of a landscape as such. We demonstrate that this approach im-
proves upon previous methods and naive classification for a
large-scale data set of remote sensing images derived from in-
vasive species observations obtained over 30 years. Addition-
ally, we simulate deployment in the field via active learning
and evaluate this method on another important challenge in
computational sustainability — landcover classification — and
again find that it outperforms previous baselines.

Introduction

In recent years, neural networks have made impressive
strides in their potency and can now accurately predict faces
(Ye et al. 2020) and translate natural language (Devlin et al.
2018). Besides progress in network architecture and opti-
mization, this progress has been driven by large data sets
such as Imagenet (Deng et al. 2009) and hugely parallel ac-
celerators such as graphics processing units (GPUs) or ten-
sor processing units (TPUs) (Jouppi et al. 2017). Besides
these advances in machine learning, another field that has
improved with more efficient data processing is remote sens-
ing. While remote sensing via satellites has been used since
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Figure 1: Invasive species management requires sending out
observers to suitable locations across a large landscape. To
effectively use limited resources it is imperative to send ob-
servers to the most important locations. In this work, we con-
sider using unsupervised machine learning on remote sens-
ing data to aid these efforts, using deep embedding tech-
niques to improve sample complexity of species classifica-
tion.

the cold war, the first commercial satellite (IKONOS) was
only launched in 1999. Researchers have been increasingly
interested in applications of remote sensing to environmen-
tal questions (Jensen 2009; Lentile et al. 2006).

Machine learning for problems in computational sustain-
ability is an active area of research (Gholami et al. 2019;
Chen et al. 2016; Xue et al. 2017; Xie et al. 2015), and
one problem that stands to benefit from both access to high-
quality remote sensing data and machine learning methods
is invasive species management. As part of an ongoing col-
laboration with the New York Natural Heritage Program,
which manages and coordinates invasive species data in the
state of New York (Department of Environmental Conser-
vation 2018), this work considers remote sensing data for
invasive species management. As part of the Imaplnvasives



project (NatureServe 2020), the New York Natural Heritage
Program collects data of observations across the state, and
their current database includes over 200,000 observations of
invasive species spread over 30 years. Collecting these data
is laborious and requires sending out professionals or vol-
unteer citizen scientists to conduct field surveys. To effec-
tively utilize available workers, it is paramount to send them
to suitable locations that have a high likelihood of contain-
ing invasive species. While exhaustively searching the state
is impossible, the task is made easier by the fact that suit-
able habitats of various invasive species are often known,
e.g., the hemlock wooly adelgid lives in coniferous hemlock
forests (Holmes, Murphy, and Royle 2005). In practice, the
allocation of observers to actual locations is often made by
ecological experts.

Towards automating the task of deciding suitable loca-
tions for observations, we consider the task of predicting in-
vasive species’ locations from satellite images, see Figure
1 for a schematic and further description. A central prob-
lem with this approach is sample complexity; neural net-
works often require large labeled data sets, whereas many
species might have few observations. Specifically, in this set-
ting, closely monitoring such species before large outbreaks
(meaning few observations) is ecologically important. How-
ever, in this setting, satellite imagery is easy to obtain, which
suggests the use of unsupervised learning. With this in mind,
we consider augmenting contrastive learning (Oord, Li, and
Vinyals 2018) by utilizing the spatial structure of remote
sensing data; training a neural network to classify nearby
but non-identical satellite images as such. This naturally in-
duces the network to generate low-dimensional embeddings,
which can later be used for tasks like classification or active
learning. As we demonstrate, this improves sample com-
plexity over supervised methods and also is an improve-
ment over previous methods of unsupervised learning of re-
mote sensing images. In addition to evaluating our method
on satellite images geo-referenced to an invasive species
data set from New York Natural Heritage Program, we also
consider using our method for another important problem
in computational sustainability — landcover classification.
We here consider the publicly available data sets Eurosat
(Helber et al. 2019) and the U.S. Department of Agricul-
ture’s National Agricultural Imagery Program (NAIP) (Jean
etal. 2019), and again show that our method beats baselines.
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Figure 2: Our data set of invasive species observations cov-
ers the state of New York, spanning over 200 species and 30
years. Each dot corresponds to a unique observation.

Lastly, we simulate field deployment of our method via ac-
tive learning and propose to perform active learning in the
latent space of images, showing that it can improve upon
traditional active learning. We summarize our contributions
as follows.

e We introduce a new data set of remote sensing images for
invasive species management, where images correspond
to observations on the ground.

e We consider spatially augmented contrastive learning for
remote sensing data as a method to improve sample com-
plexity, and consistently find that it outperforms baselines
across three data sets.

e We simulate field deployment of the method, proposing
active learning in the latent space of satellite images.

Remote Sensing and Invasive Species

In this work we consider invasive species that are non-
native and that cause some type of harm to the environment,
economy, or human health. Examples include zebra mus-
sels invading United States (US) freshwater bodies (Nien-
huis, Haxton, and Dunkley 2014). It has been estimated
that invasive species cause damages in the billions of dol-
lars annually, just in the US (Pimentel, Zuniga, and Morri-

Species Description Observations % of dataset
Water Chestnut Floating aquatic plant that hinders boats and crowds out native plants 285 4.39
Honeysuckle Terrestrial plants that form monotypic stands and reduces diversity 295 4.54
Oriental Bittersweet Woody vine that smothers and uproot trees 307 4.72
Japanese Knotweed Terrestrial plant that forms monotypic stands and reduces diversity 1287 19.81
Garlic Mustard Terrestrial plant that forms monotypic stands and reduces diversity 653 10.05
Japanese Barberry Terrestrial plant that forms monotypic stands and reduces diversity 459 7.06
Common Reed Grass Terrestrial plant that forms monotypic stands and reduces diversity 1174 18.07
Purple Loosestrife Shoreline plant that clogs waterways and reduces wetland habitat 918 14.13
EurasianWater-milfoil ~Submerged aquatic plant that hinders boats and crowds out native plants 441 6.79
Multiflora Rose Terrestrial plant that forms monotypic stands and reduces diversity 679 10.45

Table 1: Class names and distribution for the invasive species data set, as well as a description of their ecological relevance.



son 2005). A famous example is the hemlock woolly adel-
gid, which initially came to the US from Japan (Oten et al.
2014). The insect feeds on the sap at the base of hemlock
needles, disrupting nutrient flow and eventually killing the
tree. Due to the ecological importance of hemlocks in many
forest ecosystems, researchers across the US are working on
finding efficient strategies to monitor, mitigate, and eradi-
cate the hemlock woolly adelgid as well as all other inva-
sive species. As part of an ongoing effort in the state of
New York to monitor invasive species, the New York Natural
Heritage Program uses iMaplnvasives (NatureServe 2020)
to collect and synthesize invasive species data across the
state going back more than 30 years (NatureServe 2020).
The state is divided into eight invasive species regions, each
with partnerships which monitor their region using a com-
bination of paid employees and citizen scientists. Records
of observed invasive species are reported to iMaplnvasives
as the central database. The database currently consists of
over 200,000 individual observations, each containing a lo-
cation and time, the species found, the observer’s name, etc.
Figure 2 illustrates the geographical spread of recorded ob-
servations. We will consider the ten most observed invasive
species, listed in table 1, and will construct a remote sensing
data set from these observations to be used for downstream
tasks. On the fine spatial scale, observations are strongly cor-
related, as it is typical for one observer to observe multiple
invasive species some meters away from another observer.
Additionally, some locations have more observations than
others, such as data near large cities. To make the data set
approximately spatially balanced, we randomly sub-sample
the observations across a grid. We divide the state of New
York into a grid corresponding to 0.01 degrees latitude and
longitude, and only select one observation per square in this
grid, and further make sure that there are no neighboring
(horizontally, vertically or diagonally) observations. This re-
sults in a data set of 6498 observations, and ten classes —
corresponding to unique species — that are roughly balanced
between species. For this work we do not consider any tem-
poral information about the observations, such as what date
or time an observation was made. See Table 1 for further de-

tails. We then obtain 512x512 pixels red, green, blue (RGB)
remote sensing images corresponding to these locations via
Google Maps, see Figure 4 for examples. While most inva-
sive species cannot be seen from satellite, their tendency to
prefer certain cover types, e.g., the Hemlock Woolly Adel-
gid prefers hemlock trees found in coniferous forest, will
be useful as ecosystem traits can be observed via satellites.
Given this data set, we first consider using unsupervised ma-
chine learning to generate low-dimensional embeddings that
efficiently allows us to classify what invasive species inhabit
what regions based upon historical data. The ultimate goal
of this line of work is to use machine learning predictions to
actually decide what pieces of land are susceptible to inva-
sive species. Later in the paper, we simulate this by consid-
ering an active learning approach on this historical data set
and defer field deployment to future work.

Embeddings

Given a remote sensing image x we wish to be able to gen-
erate low-dimensional embeddings y = f () for some map-
ping f. The perhaps most well-known applications of em-
beddings are so-called word-embeddings, where individual
words are represented by dense vectors suitable for neural
network computation (Mikolov et al. 2013). Given some cor-
pora of text D, one initializes each word w in a language to
be represented by some vector v(w) and then obtains the
final word embeddings as the solution to some optimization
problem. Typically, one considers some loss function £ using
the word w and its neighbor n, i.e., we have

inEan v o), ()|

It is often desirable to choose the loss function ¢ such
that words that are used in similar contexts, i.e., have simi-
lar neighbors, have similar embeddings. The motivation for
defining the loss function in this manner can be motivated
by the J.R. Firth quote, ”You shall know a word by the com-
pany it keeps”. We consider an embedding for a satellite
image x, but whereas there is a discrete fixed number of

Figure 3: Given a remote sensing landscape, we consider two patches close to each other. These images are then fed into the
same neural network which generate embeddings vy, v2 of the images. Given a collection of such embeddings, we want to be
able to classify neighbours as such, and use the inner product v{ vy as the logit.
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words in a language, we will let the embeddings be given
by a neural network f. Inspired by this strategy of consider-
ing close words, it is natural to apply the same idea that the
embeddings of satellite images of nearby locations should
have similar embeddings, see Tile2Vec or Patch2Vec (Jean
et al. 2019; Fried, Avidan, and Cohen-Or 2017) that rely on
triplet loss. Instead of directly optimizing embeddings via
the triplet loss, we obtain them as a byproduct of a classi-
fication task, extending contrastive learning (Oord, Li, and
Vinyals 2018; Bachman, Hjelm, and Buchwalter 2019) to
spatial domains by utilizing the neighborhood relationship
induced by the spatial distribution of remote sensing images.
Specifically, given two remote sensing images x, n, where n
is a neighbor to x, we train the neural network f to generate
embeddings that allow us to conclude that  and n indeed
are neighbors. For an illustration, see Figure 3. A simple
strategy is to cast this as a classification problem and use the
softmax loss. If the embeddings are column vectors, we treat
their inner product as the actual logit and then consider the
soft-max cross-entropy loss.

exp (f(z)"f(n))
> exp (f(2)Tf(5))

In practice, computing the denominator is expensive, and
one can approximate it by only considering negative exam-
ples from the same batch. For a schematic illustration of the
method, see Figure 3. One can further enlarge the data set by
considering augmentations such as, rotations that the natu-
ral landscape is approximately invariant under. It has been
observed that one can slightly improve contrastive learning
by scaling the logits by some fixed parameter 7" and not us-
ing the embeddings of the final layer, but instead adding a
small head multi-layer perceptron (MLP) on top of the con-
volutional neural network (CNN) for training but then using
intermediate representations from the CNNs as representa-

l(x,n) = —log

ey

Invasive Species

EuroStat

Invasive Data Set
Embeddings RFC LR

Contrastive 2563 +£154 2671 £1.71
Tile2Vec 23.07 £1.03 24.16 +£1.57
AutoEncoder | 22.50 £0.78 2191 £1.14
PCA 22.16 £0.80 22.36 +1.37
ICA 2224 +1.11 19.55+1.23

Table 2: Accuracy for unsupervised setting. All experiments
were run for 10 rounds, and the average value is given =+ the
standard deviation.

tions (Chen et al. 2020).

Experiments

In this section, we primarily focus on our invasive species
data set to evaluate the feature extraction from unlabeled re-
mote sensing images. The dataset is constructed as per previ-
ous section. We also perform active learning experiments to
simulate deploying our method in the field and additionally
perform experiments for two external remote sensing data
sets.

Unsupervised Experiments

We first evaluate whether the embeddings generated via our
methods are useful for classification, comparing to Tile2vec
(Jean et al. 2019) and some further baselines which we de-
scribe here. Tile2Vec uses a triplet loss (Hoffer and Ailon
2015) to train a feature extracting network to push geo-
graphically nearby tiles close together in the extracted fea-
ture space. The Tile2Vec and contrastive feature extractors
are built with the ResNet-18 architecture (He et al. 2015),
with the last layer set to have 256 neurons/features. The
contrastive method also uses a ResNet-18 architecture, plus

NAIP

Figure 4: Examples images from all three data sets. The invasive species data set correspond to observations of invasive species
(given in table 1) across the state of New York. The Eurosat data set corresponds to satellite images over ten types of landcovers
across continental Europe (Helber et al. 2019). The NAIP data set corresponds to images from California obtained via the
national agriculture imaging program (Jean et al. 2019).
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a two-layer top module with 256-neurons for embedding
which is discarded after training (i.e. features are obtained
from the underlying ResNet) (Chen et al. 2020). The mod-
els are trained for 150 epochs with a batch size of 256
and a learning rate of 0.1, both using the Adam optimizer
(Kingma and Ba 2014). Tile2Vec uses the triplet loss with
a margin of 0.1 following (Jean et al. 2019), whereas the
contrastive method is trained with the loss in eq. (1). See
the Appendix for further hyperparameters. The autoencoder
(Kramer 1991) baseline has an encoding module consist-
ing of three convolutional layers with 8, 16 and 32 filters,
respectively. This is followed by two fully connected lay-
ers of size 256 and 128, meaning the feature space has 128
dimensions. The decoding module had a single, fully con-
nected layer of size 512, followed by three transpose con-
volutional layers. All convolutional layers were followed
by a max-pooling layer, and all layers, except the output
layer, were passed through a Leaky ReLu activation with
a negative slope of 0.01. The autoencoder was optimized
to minimize the mean squared error between the input im-
age and reconstruction, training over 40 epochs with a batch
size of 256 and using the Adam optimizer with a learning
rate of 0.001. For principal component analysis (PCA) (Tip-
ping and Bishop 1999) and independent component analysis
(ICA) (Hyvirinen and Oja 2000) each image was flattened
to be a vector of size 12,288. The top 10 principle or inde-
pendent components are then computed, and the activations
of these components for each image is treated as extracted
features.

For all methods, the data were prepared in the same man-
ner. The images are normalized to have zero mean and unit
variance. We consider random 64x64 parts of the original
512x512 image, for Tile2Vec and contrastive two neighbors
consists of two such parts from the same base image. In
addition to using nearby parts of a remote sensing image,
we also rotate and flip the images randomly and randomly
zero out 16-by-16 sub-images to extend the data set further.
The data set is first divided into a 70 percent set for unsu-
pervised training of the feature extractors; the remaining 30
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percent of the data is then randomly split into two 15 per-
cent sets for training and evaluating the top-level classifier.
We assess feature quality for a total of 10 rounds by evaluat-
ing the accuracy of a top layer classifier using the extracted
features and ground truth labels — using either a logistic re-
gression classifier (LR) or a random forest classifier (RFC)
(Pedregosa et al. 2011). We chose these methods as they are
well-known and often perform well in practice. The RFC
is trained using 100 decision tree learners and Gini impurity
as the criterion for splitting; see the Appendix for further hy-
perparameters. We report test accuracy for the top layer clas-
sifier using the extracted features, giving the mean and stan-
dard deviation accuracy for these methods in Table 2. As can
be seen, our contrastive method outperforms all baselines
for both classifiers. The predictions are likely to further im-
prove with a larger data set, and we emphasize that the task
is difficult as one cannot directly see invasive species from
the images but must instead consider what habitat might be
suitable for them.

Supervised Experiments

In ecological or biological domains, it is often easy to obtain
unlabeled remote sensing data but generating labels requires
sending domain experts to the field, which is a laborious
process. A strong unsupervised feature extractor can poten-
tially lead to a high accuracy classifier with much fewer la-
bels, corresponding to substantial savings in fieldwork. With
this in mind, we investigate our method’s accuracy com-
pared to fully supervised methods with different amounts
of labeled data available. We consider strong baseline deep
learning classifiers DenseNet (Huang, Liu, and Weinberger
2016), ResNet (He et al. 2015) and AlexNet (Krizhevsky,
Sutskever, and Hinton 2012), and additionally compare to
the features extracted via Tile2vec. The data set is split into
a training set of size 70 percent and a testing data set com-
posed of the remaining 30 percent. From the training set, a
variable percentage of the labels were then removed. This
was done to simulate a real-world setting where there are
ample unlabeled data for unsupervised methods to use, but
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Figure 5: Available labeled data vs accuracy for supervised methods and unsupervised methods trained on all images (but not
all labels). In this low-data regime (left) and zoomed out full spectrum of available labels (right), spatial contrastive learning

outperforms classical supervised methods.
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Figure 6: We simulate field deployment by performing ac-
tive learning across the invasive species data set. Unlike clas-
sical active learning, where one queries for both images and
labels, we propose to perform the active learning in the em-
bedding space obtained from unsupervised models. This ap-
proach outperforms traditional active learning, and spatial
contrastive learning outperforms Tile2vec.

few labels for supervised methods. Within the training set,
we ran experiments with the following percent of labeled
data available: 6, 12, 18, 24, 30, 36, 40, 50, and 75 percent.
For the unsupervised methods (contrastive and Tile2Vec),
we first train the unsupervised feature extraction on the en-
tire training data set, using the same hyperparameters as the
unsupervised experiments. We then train a top-level classi-
fier (RFC) on the available labeled data using the extracted
features as input. For the fully supervised methods, we train
them on the available labeled data for 40 epochs using the
Adam optimizer with a learning rate of 0.1 to optimize the
cross-entropy loss, resulting in convergence for the loss. We
then test each model’s accuracy on the test set. We repeat
each of these experiments for five rounds and report the
mean and standard deviation accuracy. As can be seen in
Figure 5, our method outperforms all others. This highlights
how our method can be used to greatly reduce the number
of needed labels, and therefore the cost, to obtain an accu-
rate classifier. With a larger amount of labeled data, fully
supervised methods, like DenseNet or ResNet, likely would
match the performance of our method, but the experiments
suggest that when labeled data are scarce, spatial contrastive
learning provides efficient feature extraction.

Active Learning

The ultimate goal of our collaboration with the New York
Natural Heritage Program is to use remote sensing images
to direct ecologists to locations deemed likely to contain in-
vasive species. To roughly simulate this setting, we consider
performing active learning over our invasive species data set.
We are given a fixed number of queries for labels and must
use these to train as accurate a prediction model as possible
(evaluated on a held-out test-set). Unlike traditional active
learning where one chooses both images and labels to add to
the train set, we propose to use all images for unsupervised
pre-training, and then only conduct active learning on the la-
bels. In our setting, remote sensing data are inexpensive but
sending ecologists to perform observations on the ground is
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Figure 7: t-SNE visualization of the feature space for inva-
sive species data set for our method, Tile2Vec, PCA and
Autoencoder, where each color indicates a particular inva-
sive species class. The illustration suggests that Tile2Vec en-
courage looser clusters that can lead to generalization error,
which could be a reason our method performs better.

more expensive. The idea of conducting active learning only
on the labels has the potential to greatly speed up ecological
work but is only possible if useful features can be extracted
in an unsupervised fashion.

In this experimental setting, we compare our contrastive
model, Tile2Vec and standard active learning (i.e. selecting
both images and labels) using ResNet-18. The data are pre-
pared in the same manner as the supervised experimental
setting. We first train the contrastive method and Tile2Vec
unsupervised feature extraction using the same setting as de-
scribed in the unsupervised experiments. We then randomly
initialize each method to have 256 labels and allow it to
train a supervised model. For the contrastive method and
Tile2Vec we trained a RFC from the features extracted to
the labels, using 100 decision tree learners and the Gini pu-
rity as the splitting criterion. For ResNet, for each round the
ResNet model was trained on all available labeled data for
40 epochs, with a batch size of 256, optimizing the cross-
entropy loss with the Adam optimizer and a learning rate
of 0.1. Then we run a series of 10 rounds of active learn-
ing, using the entropy sampling method for active learning
(Settles 2012). Each round we generate predictions on all
unlabeled images in the training set and take the set (of size
256) which produced the largest entropy in the classifica-
tion predictions. This selected set is then added to the avail-
able labeled data for each method, and the model re-trains on
the now larger train set and reports its accuracy on the test
set. This experiment was run five times for the contrastive
method, Tile2Vec, and ResNet. In Figure 6, we plot the mean
and standard deviation accuracy against the amount of la-
beled data available. This demonstrates that our method can
be used in an active learning setting to guide which labels
should be taken; we hope to study this approach further in
the future. This model is, of course, a simplification com-
pared to actual field deployment, and many practical differ-
ences compared with real deployment remain.



EuroStat

Embeddings RFC LR

Contrastive 71.47 £0.40 7123 +0.67
Tile2Vec 60.49 £ 0.63 49.77 +0.56
AutoEncoder | 60.22 £0.92 57.27 £0.51
PCA 65.72 £0.80 43.13+0.94
ICA 6530+ 0.86 21.254+5.11

Table 3: Accuracy for Eurosat (Helber et al. 2019). All ex-
periments were for 10 rounds, and the average value is given
= the standard deviation.

Qualitative Analysis

To probe the learned features, we use t-SNE (Maaten and
Hinton 2008) to visualize the features extracted by our
method, Tile2vec, the autoencoder and PCA, as seen in Fig-
ure 7. For this experiment, the embedding data were ex-
tracted from each method for the test set after training each
method to convergence, using the same parameters as per
the unsupervised experimental setting. The illustration sug-
gests that Tile2Vec and spatial contrastive learning results in
a clearer structure than PCA and autoencoders. Further, we
suspect that the L2 loss used in Tile2vec may not constrain
the clusters as can be seen in this visualization, perhaps lead-
ing to a weakened ability for the model to generalize.

Additional Data Sets

Eurostat While the invasive species application is the
main focus of this work, we conduct experiments on ad-
ditional data sets to show the generality of the proposed
method. We consider landcover classification, where one at-
tempts to classify a remote sensing image as belonging to
some specific landcover type (forest, road, river, etc.). This
task has practical implications in computational sustainabil-
ity and can, e.g., be used for monitoring deforestation. We
first consider the Eurostat data set, which consists of 27,000
Sentinel-2 satellite images of various landcover types from
Europe (Helber et al. 2019). The data and baselines were all
prepared as for the invasive species data set, and the results
of our experiments on this data set can be seen in Table 3.
As can be seen, our method outperforms all other feature
extractors on this data set.

NAIP We additionally consider the NAIP data set (Jean
et al. 2019), which contains a fourth spectrum band, which
highlights our method’s ability to handle multi-spectral re-
mote sensing. A difference in this experimental setting is
that the NAIP data set has train and test set sources from dif-
ferent geographical locations and that one must obtain fea-
ture extraction that is robust under such distributional shift.
See (Jean et al. 2019) for details. Again, for this data set, we
consider the same unsupervised experimental setting as per
the invasive species data set. We use the entire training set
to train our unsupervised methods, and then split the test set
into two equal sets. For the PCA and ICA feature extractors,
because of the fourth color channel, the input vectors were
of size 16,384 as opposed to 12,288; otherwise, the data and
baselines were all prepared in the same manner. The results
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NAIP
Embeddings RFC LR
Contrastive 66.47 +1.88 58.38 +1.96
Tile2Vec 62.70 £1.51 53.174+1.52
AutoEncoder | 61.50 £2.77 40.65 £+ 2.03
PCA 60.92 £1.43 57.55+2.51
ICA 62.58 =197 34.08 +1.58

Table 4: Accuracy for NAIP (Jean et al. 2019). All experi-
ments were for 10 rounds, and the average value is given +
the standard deviation.

of our experiments on this data set can be seen in Table 4.
As can be seen, our method outperforms all other feature
extractors on this data set.

Challenges and Opportunities

Whereas this paper has focused on computational aspects of
invasive species management, deploying and using our mod-
els has many practical challenges and opportunities that we
here expand upon. Firstly it is important to note that even an
accuracy around 25 % can be useful for directing fieldwork
and that it can complement classical approaches. We also
note that the problem is hard as we only observe the habitat
and not the invasive species themselves. Certain habitats can
be favorable for invasive species, but that does not necessar-
ily imply species presence. We also emphasize that there are
variations within invasive species habitats. Ecologists know
that the hemlock wooly adelgid lives off of hemlock trees,
but an exact understanding of how the forest characteris-
tics interact with the spreading rate is lacking (Oten et al.
2014). Not all hemlock forests are identical, and there might
be variations in e.g. tree density that influence spreading.
Furthermore, land cover types are often coarse and might
be on the level of “evergreen forest” rather than specifying
e.g. tree species composition. Proximity to roads, trails, and
water bodies can often impact invasive species spread, and
their presence is easily detected from satellite images but
not necessarily captured by land cover. The habitats can also
pose a problem for our machine learning models. Many of
the terrestrial plants we used can occur in the same or very
similar forested habitats (and same for the aquatic plants in
aquatic habitats). This could result in misclassifications in
machine learning outputs for a particular species. Misclassi-
fication could have cost implications for managers by either
sending managers to unsuitable sites or possibly missing a
key population that should be managed.

Secondly, we highlight how the data are collected. The
New York State (NYS) invasive species program is managed
by a collection of regional organizations which use paid pro-
fessionals and citizen scientists. Strategies include recruiting
citizen scientists for shorter fieldwork excursions, allowing
citizens to report invasive species via an online reporting
tool, or inviting the public to participate in plant removal
events. How the data are collected likely leads to some bias,
for example, locations that are easier to reach might be mon-
itored more frequently. Bias is common in citizen science
applications, and e.g. the eBird project suffers from road-



side bias (Chen and Gomes 2019). However, we note that
many invasive species spread via humans, so bias towards
populated areas is not necessarily bad.

Related Work

Unsupervised deep learning has a long history (Kramer
1991). A popular line of work employs auto-encoders (Hin-
ton and Zemel 1994). Contrastive predictive coding has also
been researched since (Oord, Li, and Vinyals 2018), and typ-
ically relies on predicting parts of the input given other parts
(Bachman, Hjelm, and Buchwalter 2019; Srinivas, Laskin,
and Abbeel 2020). Specifically, in (Oord, Li, and Vinyals
2018) the method relies on finely dividing natural images
into subparts and then autoregressively making predictions.
The idea of contrastive coding has inspired a lot of recent
work (Chen et al. 2020; He et al. 2020). We spatially aug-
ment contrastive learning methods, and instead of consider-
ing crops of the same image, we use non-overlapping parts
of the same landscape — relying on spatial smoothness of
landscape features. The strategy of considering neighbors is
popular in natural language processing (NLP) (Devlin et al.
2018), and is also used for word embeddings (Mikolov et al.
2013; Pennington, Socher, and Manning 2014). With the ad-
vent of deep learning, machine learning for remote sens-
ing has received much attention. The most closely related
work is Tile2Vec (Jean et al. 2019), which uses a strategy
reminiscent of word embeddings to generate remote sensing
embeddings, specifically using the triplet loss. The work of
(Fried, Avidan, and Cohen-Or 2017) also uses the triplet loss
for geographic data but instead relies on supervision. Con-
temporaneous work also includes (Kang et al. 2020), which
similarly to this study considers unsupervised learning for
remote sensing, we emphasize that our work also includes
applications to active learning. An important application of
remote sensing is poverty mapping, where given access to
remote sensing data, one tries to predict economic condi-
tions ~on the ground” (Xie et al. 2015). Another important
use case is the prediction of crop yield from remote sens-
ing data (Setiyono, Nelson, and Holecz 2014; Wang et al.
2018). Invasive species management is an important eco-
logical problem with economic implications, and computa-
tional aspects of the problem have received considerable in-
terest. Researchers have used remote sensing via airplanes
to identify invasive species from handcrafted features (Ustin
et al. 2002; Asner et al. 2008; Piiroinen et al. 2018). Re-
searchers have used reinforcement learning (Taleghan et al.
2015), mixed integer programming (Biiyiiktahtakin, Feng,
and Szidarovszky 2014) and stochastic dynamic program-
ming (Shea and Possingham 2000) to generate manage-
ment strategies. Modelling work includes Hawkes processes
(Gupta et al. 2018), extensions of the firefighter problem
(Spencer 2012) and predator-prey dynamics (Bjorck et al.
2018).

Conclusions

In this work, we have considered the use of remote sens-
ing data for invasive species management, motivated by an
ongoing collaboration with the New York Natural Heritage
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Program. By spatially augmenting contrastive coding meth-
ods, we show how to obtain low-dimensional embeddings of
remote sensing data. Our experiments show that this method
outperforms baselines, and we additionally show how one
can perform active learning in this embedding space to im-
prove sample complexity. For future work, we hope to fur-
ther study how to integrate these methods into deployment.
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