Clinical Temporal Relation Extraction with Probabilistic Soft Logic Regularization and Global Inference
DOI:
https://doi.org/10.1609/aaai.v35i16.17721Keywords:
Information Extraction, Applications, Healthcare, Medicine & WellnessAbstract
There has been a steady need in the medical community to precisely extract the temporal relations between clinical events. In particular, temporal information can facilitate a variety of downstream applications such as case report retrieval and medical question answering. Existing methods either require expensive feature engineering or are incapable of modeling the global relational dependencies among the events. In this paper, we propose a novel method, Clinical Temporal ReLation Exaction with Probabilistic Soft Logic Regularization and Global Inference (CTRL-PG) to tackle the problem at the document level. Extensive experiments on two benchmark datasets, I2B2-2012 and TB-Dense, demonstrate that CTRL-PG significantly outperforms baseline methods for temporal relation extraction.Downloads
Published
2021-05-18
How to Cite
Zhou, Y., Yan, Y., Han, R., Caufield, J. H., Chang, K.-W., Sun, Y., Ping, P., & Wang, W. (2021). Clinical Temporal Relation Extraction with Probabilistic Soft Logic Regularization and Global Inference. Proceedings of the AAAI Conference on Artificial Intelligence, 35(16), 14647-14655. https://doi.org/10.1609/aaai.v35i16.17721
Issue
Section
AAAI Technical Track on Speech and Natural Language Processing III