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Abstract
Event argument extraction is an essential task in event ex-
traction, and become particularly challenging in the case of
low-resource scenarios. We solve the issues in existing stud-
ies under low-resource situations from two sides. From the
perspective of the model, the existing methods always suf-
fer from the concern of insufficient parameter sharing and
do not consider the semantics of roles, which is not con-
ducive to dealing with sparse data. And from the perspective
of the data, most existing methods focus on data generation
and data augmentation. However, these methods rely heavily
on external resources, which is more laborious to create than
obtain unlabeled data. In this paper, we propose DualQA, a
novel framework, which models the event argument extrac-
tion task as question answering to alleviate the problem of
data sparseness and leverage the duality of event argument
recognition which is to ask “What plays the role”, as well
as event role recognition which is to ask “What the role is”,
to mutually improve each other. Experimental results on two
datasets prove the effectiveness of our approach, especially in
extremely low-resource situations.

Introduction
Extracting events (EE) from natural language text has re-
ceived growing interest these years (Hirschberg and Man-
ning 2015; Liu, Chen, and Liu 2019; Liu et al. 2019; Tong
et al. 2020), which is usually modeled as two-stage task,
including event detection (ED) and event argument extrac-
tion (EAE). As event detection has gained great popularity
and reached a fairly high performance (Wang et al. 2019),
event argument extraction becomes the key of event extrac-
tion. Based on the trigger and event type detected by ED, the
goal of EAE is to extract the arguments related to the event
and predict their roles according to the event schema, which
defines what kind of roles should be contained in specific
event type. For example, giving an Attack event triggered by
“destroyed” as well as its event mention “He claimed Iraqi
troops had destroyed five tanks”, EAE needs to recognize
“Iraqi troops”(Role= Attacker), and “five tanks”(Role= Tar-
get).
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Figure 1: Examples of Event Argument Recognition(EAR)
and Event Role Recognition(ERR). EAR depends on the
pre-defined event schema ”Attack”. ERR depends on the
Named Entity Recognition(NER) of the sentence. Both of
them acted on the premise of event information providing
by ED.

So far, many methods have been done under the super-
vised learning paradigm (Chen et al. 2015; Nguyen, Cho,
and Grishman 2016; Liu, Luo, and Huang 2018), and they
ordinarily demand quantities of manually annotated data,
which is very expensive, and scarce in real situations. Ac-
cording to our statistics, about 60% event types in ACE 2005
English corpus (Doddington et al. 2004) have less than 100
labeled samples and only 1.11% events in ACE 2005 have
all roles that the type should contain. Thus, how to address
the bottleneck of low-resources EAE has become a chal-
lenge. We try to overcome this challenge from both model
and data perspectives.

From the perspective of the model, existing EAE methods
usually adopt sequence-labeling paradigm or classification
paradigm. (Chen et al. 2015; Nguyen, Cho, and Grishman
2016; Liu, Luo, and Huang 2018) However, they have two
major limitations. (1) Insufficient parameter sharing: Pre-
vious studies always model different roles separately (i.e.,
different tags or classifiers for various roles), and different
roles are trained independently. Such a separated paradigm
is natural to restrict the optimization of some roles with lim-
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ited resources. (2) Insufficient utilizing semantics of the
roles: Existing methods hope that the model can learn the
patterns of extracting different roles from the raw texts. They
treat the roles as labels, without allowing the model to un-
derstand the meaning of labels. For example, extract argu-
ment corresponding to role “Attacker”, existing methods al-
ways treat the role as a tag or a category or leverage a sepa-
rated classifiers to extract. They do not tell model the mean-
ing of “Attacker”. Under this paradigm, extracting argument
with few samples is highly difficult. Above issues call for a
method that can be fully-parameter sharing and leverage the
semantic information of the roles.

From another perspective of the data, to mitigate the im-
pact of data sparseness and cope with low-resource scenar-
ios, there has been a surge of interest in data generation
(Chen et al. 2017; Yang et al. 2018) and data augmenta-
tion (Liu et al. 2019; Yang et al. 2019). These methods
tend to rely heavily on external resources. However, these
resources are often incomplete (i.e., events are not always
found in external sources) and laborious to build. Afore-
mentioned difficulties motivate us to study semi-supervised
event argument extraction method, which seeks to exploit
limited event data to annotate substantial unlabeled real
sentences automatically. This kind of approach reduces
the dependence on external resources. Although traditional
semi-supervised learning has many advantages(Rosenberg,
Hebert, and Schneiderman 2005; Lee 2013; Miyato et al.
2019), applying this framework to EAE tasks directly has
great risks of error propagation, especially in such a com-
plicated task. To overcome this problem, we aim to design
an approach, which can benefit from unlabeled data in an
effective manner.

To conquer challenges in both model and data aspects,
we proposed our framework DualQA, which is a question
answering based semi-supervised event argument extraction
approach. Concretely, from the model aspect, in order to
share parameters as much as possible and leverage the role
semantics, we formulate the EAE as Machine Reading Com-
prehension (MRC, we regard MRC as a kind of question
answering), where the most advanced method is proven ex-
ceed human beings in some specific datasets (Devlin et al.
2019). In this framework, we leverage question to represent
the semantics of the role. Besides, we convert EAE task to
predict the argument span corresponding to the giving role
according to the event schema. This process is consistent
for all roles, which achieves the purpose of fully-parameter
sharing, as Figure 1 top illustrating (i.e., to extract the ar-
gument, giving role: “Attacker”→ “What plays the role At-
tacker in the event Attack ?” → argument: “Iraqi troops”).
Formally, given the event triggers and event types, generat-
ing questions containing role information according to the
event schema and extracting event arguments from natu-
ral language text in turn can be defined as event argument
recognition (EAR, role → argument). From the data as-
pect, we design a dual training process, which can make up
for the shortcomings of traditional semi-supervised learn-
ing framework. Intuitively, as Figure 1 bottom illustrating
(i.e., to recognize the role, giving argument: “Iraqi troops”
→ “What is the role of Iraqi troops in the event Attack ?”

→ role: “Attacker”), also given the event information, gen-
erating question burying argument information according to
the argument candidate1 as well as determining it belonging
to a specific role in turn can be defined as the dual task of
EAR, which we call event role recognition (ERR, argument
→ role). Specifically, the process of EAR and ERR are of
great similarity, and further, their output can be verified by
each other (i.e., ERR can generate question from argument
extracted by EAR to verify EAR’s result, meanwhile EAR
can generate question from role identified by ERR to ver-
ify ERR’s result). However, due to the ERR process is not
fully-parameter sharing and depends on the argument can-
didate which is sometimes unreliable in real situation, we
define the EAR as primal task and ERR as dual task. In
the process of semi-supervised training, the two models can
mutually collaborate with each other (i.e., two models share
the same question understanding module), make up for each
other (i.e., both models generate each other’s training data),
and be enhanced at the same time. Our contributions can be
summarized as follows:

• We design a novel semi-supervised framework DualQA
(dual question answering) to solve the event argument ex-
traction in low-resource scenarios.

• To share parameters as much as possible and leverage the
role semantics, we propose EAR and ERR under the ques-
tion answering paradigm. To reduce the error propagation
of traditional semi-supervised methods, we propose a dual
training process to utilize the duality of EAR and ERR.

• We conduct extensive experiments on two public event
extraction datasets and our method significantly outper-
forms SOTA methods in low-resource situations.

Methodology
In this section, we will introduce the details of DualQA
framework to semi-supervised event argument extraction.
As we said in the introduction, proposed approach im-
proves the traditional EAE in terms of both model structure
and semi-supervised training process. Consequently, we first
present the main components of our model, then introduce
the semi-supervised training process.

Dual Model Design
The architecture of DualQA is illustrated in Figure 2. Du-
alQA consists of two models: EAR model Ma

θ and ERR
model Mr

φ, where θ and φ are their model parameters.
Given the event mention (i.e., sentence containing events)
xs, event trigger information xtr, event type xts, they
can be considered as context information C (i.e., C =
{xs;xtr;xts}). According to the event schema, EAR gen-
erates the question burying the information of roles (r). Af-
terwards, EAR aims to extract an appropriate argument (a)
to the role, which is to approximate p(a|r, C). Also given
the same context informationC, ERR generates the question
burying the information of arguments (a) based on the ar-
gument candidates (i.e., utilizing NER in real scene). Then,

1Using name entity recognition (NER) in real situations
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Figure 2: The model design of DualQA. Left: The overall architecture, where C contains the event mention information and
the event information provided by event detection. The green parts represent the EAR process (Ma

θ ), while the orange parts
represent ERR process (Mr

φ). Right: The implements structure of DualQA. The green and orange parts are for EAR and ERR
respectively. The blue-black parts are shared by the two model.

ERR tries to determine a role (r) to the argument, which is
to approximate p(r|a,C).

Next, the rest of this subsection will introduce the model
details in the following aspects: question generation, in-
stance encode, flow attention, argument classifier, role clas-
sifier.

Question Generation Question generation aims to model
event information and role or argument information in ques-
tion text. In order to help the model understand the seman-
tics of the role, we have incorporated conceptual knowl-
edge into the question. In view of the above, we design
simple fixed templates for EAR and ERR. Given the role
words xr, event type words xts, proposed approach utilize
the role words to find the corresponding concept descrip-
tions Xd = {x1d, ..., xnd} via concept net (Speer and Havasi
2013). Then the question is generated as: “What plays the
role xr in xts ? (x1d, ..., x

n
d )”. Similarly, given the role words

xa, event type words xts, the question is generated as: “What
is the role of xa in xts ?” (without knowledge).

Instance Encode Our encoding module is a BERT-
based(Devlin et al. 2019) contextualized encoder, which is
leveraged to encode the context and question generate by
EAR and ERR (as shown in Figure 2). We denote the con-
text information as a sequence

C = {[CLS]xts[SEP ]x1, x2, ...[SEP ]xtr[SEP ]...xn},
where xts is the words of event type, xtr denotes trigger
words, xs = x1, x2, ..., xn denotes the event mention and
[CLS], [SEP ] are special tokens of BERT. We encode the
event context into hidden representations

HC = {hci}
|C|
i=1 = BERT(C) ∈ R|C|×d, (1)

where d stands for hidden size. For the purpose of maximiz-
ing parameter-sharing, the same encoder will be used for en-
coding the EAR’s question text QA = {q1a, q2a, ..., qna} and

ERR’s question text QR = {q1r , q2r , ..., qnr }, which is

UA = {uaj }
|QA|
j=1 = BERT(QA) ∈ R|QA|×d,

UR = {urj}
|QR|
j=1 = BERT(QR) ∈ R|QR|×d. (2)

Flow Attention The main purpose of flow attention mod-
ule is to couple the question and context matrix and produce
a set of query-aware feature vectors for each word in the
context, which is following Seo et al. (2017). The flow at-
tention is not used to summarize the question or context into
single feature vectors, which reduce the loss of information
caused by early summarisation. The attention will be com-
puted from two directions: from context to question (C2Q)
as well as from question to context (Q2C). First calculate the
similarity matrix SA ∈ R|C|×|QA| between EAR question
(UR) and context (HC), SR ∈ R|C|×|QR| between ERR
question (UA) and context (HC), where sij indicates the
similarity between i-th context word and j-th question word
(EAR question or ERR question). The similarity matrix is
formulated as

sAij = E(hci ,u
a
j ) ∈ R, sRij = E(hci ,u

r
j) ∈ R, (3)

where E(·) is a trainable scalar function modeling the simi-
larity between two input vectors. we compute it as

E(h,u) = mlp([h;u;h ◦ u]), (4)
where mlp(·) is a multilayer perceptron (MLP), [; ] denotes
the vector concatenation operation and ◦ is elementwise
multiplication. After that, utilize S to obtain the attentions
from both direction for EAR and ERR. From context to
question (C2Q) attention signifies the most relevant question
words to context, which can be formulated as

aij =
exp(sij)∑|Q|
j=1 exp(sij)

∈ R,

ũi =
∑
j

aijuj ∈ Rd, (5)
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where aij represents the context to question attention
weight, U can be UA or UR and ũi forms the context-aware
question matrix Ũ. From another direction question to con-
text (Q2C) attention signifies the closet similarity to one of
the question words which are hence critical for answering
the question. We calculate the Q2C attention as

bi =
exp(max(Si:))∑|C|
i=1 exp(max(Si:))

∈ R,

h̃i =
∑
i

bihi ∈ Rd, (6)

where bi represents the question to context attention weight,
Si: denotes the i-th row’s elements of similarity matrix S

and h̃i forms the context matrix H̃ indicates the most impor-
tant words in the context. Finally, as Figure 2 right illustrat-
ing, both EAR and ERR share same projection to combine
features above to query-aware representations, which can be
formulated as

gi = F([hci , ũi, h̃i]) ∈ Rd,
E(h, ũ, h̃) = mlp([h; ũ;h ◦ ũ;h ◦ h̃]), (7)

where mlp(·) is a multilayer perceptron (MLP), [; ] de-
notes the vector concatenation operation and ◦ is element-
wise multiplication. At last, we get the question-aware con-
text representation for EAR (GA = {gai }

|C|
i=1) and ERR

(GR = {gri }
|C|
i=1).

Argument Classifier After getting the context features,
we feed it into the token classifiers to predict the probability
of if the token is the start of an argument or end:

p(as|C, r, θ) = os = Softmax(Ws ·Ga),

p(ae|C, r, θ) = oe = Softmax(We ·Ga), (8)

in which Ws and We are learnable parameters, os and oe

are the start and end probability distributions predicted by
model, θ is all parameters of EAR.

Role Classifier As shown in Figure 2 right, we use a sim-
ple CNN (Kim 2014; Krizhevsky, Sutskever, and Hinton
2012) to classify roles:

p(r|C, a, φ) = or = Softmax(Wr · CNN(Gr)), (9)

in which Wr is learnable parameter, or are the role prob-
ability distributions predicted by model, φ is all parameters
of EAR.

Semi-supervised Dual Training Strategy
This subsection introduces the semi-supervised dual training
strategy. The training process is similar to the self-training
process (Rosenberg, Hebert, and Schneiderman 2005), in
each iteration we need to train the model jointly first, and
then use the model with a certain ability to annotate the un-
labeled data. After that, add them to the labeled data to re-
build the training set. Each round of training can be divided
into two processes: joint train and annotate the unlabeled
data. The iterative process stops when the unlabeled data is
exhausted or our model converges.

Joint Train In the joint train phase, both EAR model
(Ma

θ ) and ERR model (Mr
φ) are optimized alternative at the

same time like generative adversarial nets (Goodfellow et al.
2014) on the training set (SA for EAR and SR for ERR), the
objective function is given below:

O(θ, φ) = O(θ) + O(φ)

= max(E(c,r,a)∈SA
[log(p(a|c, r, θ))]

+ E(c,r,a)∈SR
[log(p(r|c, a, φ))]), (10)

where θ and φ indicate the parameters of EAR model and
ERR model. Given an event context c and one of the argu-
ment (a) as well as the role (r), EAR model seeks to max-
imize the probability of a, in contrast, ERR model tries to
maximize the probability of r. Formula 10 can be decom-
posed into optimized EAR and ERR. The objective function
of EAR model is shown below:

O(θ) = −min
|SA|∑
k=1

(log(p(aks |ck, rk, θ))

+ log(p(ake |ck, rk, θ))), (11)

in which (ak, ck, rk) is the k-th sample in training set SA,
(aks , a

k
e ) indicates the start and end position of the argument

ak. Similarly, the objective function of ERR model is:

O(φ) = −min
|SR|∑
k=1

log(p(rk|ck, ak, φ)), (12)

where (ak, ck, rk) is the k-th sample in training set SR.

Label Data After joint train process, obtain EAR model
and ERR model with certain capabilities mutually anno-
tate the unlabeled data (SU ) which is more reliable than
only sampling from one distribution. Given an event men-
tion without argument, its event type, and the event schema,
we build (context (c), role (r)) pair for each role in event
schema, and then estimate the argument via EAR model,
which is â =Ma

θ(c, r). After that, feed (c, â) pair into ERR
model for verification, which is r̂ =Mr

φ(c, â). When â and
r̂ are not negative predictions, and r̂ = r, pair (c, â, r) is
considered a credible annotation. The annotations of ERR is
also checked in the same way. Given the context informa-
tion, we build (context (c), argument (a)) pair for each ar-
gument in argument candidate (NER result (Shaalan 2014;
Lample et al. 2016) in unlabeled set). Similarly, we get the
estimated role r̂ by calculating r̂ =Mr

φ(c, a), and then ver-
ify which by computing â = Ma

θ(c, r̂), when â and r̂ are
not negative predictions, and â = a, pair (c, a, r̂) is con-
sidered a reliable annotation. Then these credible data will
be added to the labeled data to build a new training set. We
summarize the training process for DualQA in algorithm 1.
The whole process works in an iterative manner. In each iter-
ation, proposed method rebuild a new training set utilized by
optimizing both EAR model and ERR model. The iterative
process stops when our model converges or the unlabeled set
is exhausted.
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Algorithm 1 DualQA Learning Algorithm

Input: Labeled data SA = {(ci, ai, ri)}|SA|
i=1 and SR =

{(ci, ai, ri)}|SR|
i=1 , unlabeled data SU = {(cj)}|SU |

j=1

1: while SU 6= Ø and not converge do
2: Ma

θ ,Mr
φ ← Initialize

3: Ma
θ ,Mr

φ ← Joint train using SA and SR (Eq. 10)
4: for all cj in SU do
5: for all r in event schema of cj do
6: â←Ma

θ(cj , r)
7: r̂ ←Mr

φ(cj , â)
8: if â not neg and r̂ not neg and r̂ = r then
9: Append (cj , â, r) to SA and SR

10: end if
11: end for
12: for all a in argument candidate of cj do
13: r̂ ←Mr

φ(cj , a)

14: â←Ma
θ(cj , r̂)

15: if â not neg and r̂ not neg and â = a then
16: Append (cj , a, r̂) to SA and SR
17: end if
18: end for
19: if all role of cj and all argument related to cj has

credible answer then
20: Remove (cj) from SU
21: end if
22: end for
23: end while
Output: EnhancedMa

θ

Experiments
In this section we conduct experiments to evaluate pro-
posed method. We first introduce the basis settings, includ-
ing dataset and evaluation, baselines, and experimental set-
tings. Then we illustrate performance comparison results
with baseline methods. Finally we introduce the effective-
ness of various components of our approach.

Datasets and Evaluation
We choose two public event extraction datasets from com-
pletely different fields to validate the effectiveness and an-
notation ability of our method. (1) ACE 2005 English cor-
pus(Doddington et al. 2004): ACE 2005 corpus is a stan-
dard benchmark dataset which is widely adopted for evaluat-
ing event extraction systems. ACE 2005 corpus is collected
from daily data, such as weblogs, news, broadcast conver-
sation and so on. We adopt the configuration as (Liu, Luo,
and Huang 2018), in which 529/30/40 documents are use as
train/dev/test sets and the time-related tags have merged as
one tag “Time”. As shown in Table 1, ACE 2005 English
corpus is an English dataset with extremely sparse in events.
(2) FewFC 2: FewFC is a public Chinese dataset for few-
shot event extraction in financial field. As shown in Table 1,
FewFC corpus is a field-specific Chinese dataset, in which
the average role contained in each event type is relatively

2https://github.com/TimeBurningFish/FewFC

Dataset #sentences #roles #event types %Neg.
ACE 2005 3887 28 33 68.50

FewFC 8982 19 10 49.58

Table 1: Statistics for ACE 2005 and FewFC dataset. In par-
ticular, %Neg. implies the percentage of “no argument” ac-
cording to the event schema.

large. Since the amount of data we obtained at the time of
writing this paper is very limited, we only used 7 event types.
In addition, we divide the data into 8:1:1 as train/dev/test
sets. And in order to make the label of the role more seman-
tic, we semanticize the label according to the type of event.
Table 1 shows the overall statistics of two datasets, which
are of great difference in regardless of languages, domain or
sparseness. Furthermore, for EAR task, there are naturally
a large amount of event argument missing in events, which
can be the negative samples for EAR. In addition, for the
training process of ERR, we constructed negative samples
1:1 relative to the positive samples, which come from NER
or argument reduction (e.g., “Iraqi troops” to “Iraqi”) or
expansion (e.g., “Iraqi troops” to “Iraqi troops had”).

The evaluation metrics adopts (Chen et al. 2015; Liu, Luo,
and Huang 2018; Nguyen, Cho, and Grishman 2016) ar-
gument role classification evaluation strategy: an argument
prediction is correct only if its span and role it plays match
with golden label.

Baselines
We compare our approach with BERT-based state-of-the-art
baselines and their enhanced versions: (1) BERT-EE(Devlin
et al. 2019): BERT-based sequence labeled model. (2)
PLMEE(Yang et al. 2019): Current event extraction state-
of-the-art, which base on BERT, and utilizes different classi-
fiers for different roles. (3) self-training(Rosenberg, Hebert,
and Schneiderman 2005): Self-training is a semi-supervised
learning method that uses a single model’s predictions on
unlabeled data to retrain iteratively. All methods with ∗ in
the experiment exploit self-training means (i.e., annotating
once and training twice).

Additionally, we also conduct ablation study to further an-
alyze our approach: (1) EAR: Only leverage the EAR pro-
cess for training or self-training. EAR model is similar to Du
and Cardie (2020), but entire model is implemented by our-
selves and adopts our own question generation strategy. (2)
Joint-EAR-ERR: The result of joint training EAR and ERR
only on the given labeled data, without annotating the unla-
beled data. (3) DualQA: Joint train EAR and ERR and an-
notate the unlabeled data to boost each other’s performance.

Experimental Settings
Hyper-parameter Settings All methods above base on
the same pretrained BERT (Devlin et al. 2019) (BERT-BASE-
UNCASED for English dataset and BERT-BASE-CHINESE for
Chinese dataset) 3. We trained all model with initial learn-
ing rate 1e-5, and AdamW optimizer (Loshchilov and Hutter

3https://github.com/google-research/bert
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Method/Dataset ACE FewFC
P R F1 P R F1

BERT-EE(Devlin et al.) 26.7 38.2 31.4 18.9 35.9 24.8
BERT-EE∗ 28.3 41.9 33.8 19.4 37.6 25.6
PLMEE(Yang et al.) 36.3 46.8 40.9 52.0 30.9 38.8
PLMEE∗ 37.6 46.6 41.6 54.1 31.9 40.2

DualQA 49.1 42.3 45.4 57.4 34.4 43.1

Table 2: Overall performance comparison in ACE 2005 En-
glish corpus and FewFC.

Method/Dataset ACE FewFC
P R F1 P R F1

BERT-EE(Devlin et al.) 26.7 38.2 31.4 18.9 35.9 24.8
BERT-EE∗ 28.3 41.9 33.8 19.4 37.6 25.6
EAR 33.6 42.6 37.5 34.8 28.4 32.0
EAR∗ 44.2 35.4 39.3 40.0 30.2 34.4

DualQA 49.1 42.3 45.4 57.4 34.4 43.1

Table 3: MRC performance comparison in ACE 2005 En-
glish corpus and FewFC.

2017), the convolution neural network used in ERR has three
convolutional layer with 256 hidden nodes, and filter size are
3×3/4×4/5×5, other settings of hyper-parameters are fol-
lowing the configuration of BERT. For ERR model, we add
an extra type as negative category, and for EAR, when both
start and end classifier consider the “[CLS]” token to be the
position, this sample is negative.

Data Settings In order to study the performance of semi-
supervised event argument extraction method with diverse
labeled data sizes and evaluate the performance under low-
resource condition, for all datasets, we first retained 60%
training data as unlabeled set (the human annotation is not
visible during training), then sample a percentage of data
from remaining training set as labeled set. There are no over-
lap between labeled set and unlabeled set. The two sets are
the same for all methods as well. During the whole pro-
cess, we only rebuild the training set, and there is not any
sampling operation in test or validation set. Furthermore, all
approaches are provided the same context information in-
troduced in Methodology (event mention, event type, event
trigger).

Comparisons with SOTA Methods
To build a low-resource environment, following the sample
strategy mentioned before, in ACE 2005 English corpus, we
sample 10% training data as labeled set and 60% training
data as unlabeled set. Besides, in FewFC, we sample 1%
training data as labeled set and 60% training data as unla-
beled set. Table 2 summarizes the performance comparison
between aforementioned SOTA models and our approach in
the same test set of two datasets. Under low-resource set-
tings, DualQA can outperform other methods (3.8% on F1

Method/Dataset ACE FewFC
P R F1 P R F1

PLMEE(Yang et al.) 36.3 46.8 40.9 52.0 30.9 38.8
PLMEE∗ 37.6 46.6 41.6 54.1 31.9 40.2
EAR 33.6 42.6 37.5 34.8 28.4 32.0
Joint-EAR-ERR 40.5 42.2 41.4 40.0 43.0 41.5

DualQA 49.1 42.3 45.4 57.4 34.4 43.1

Table 4: Dual learning performance comparison in ACE
2005 English corpus and FewFC.

score for ACE and 2.9% on F1 for FewFC), which justi-
fies our approach can learn patterns from few samples and
leverage the unlabeled data effectively regardless of Chi-
nese or English, general or financial. And the improvement
of DualQA on precision score is quite significant (11.5% in
ACE and 3.3% in FewFC). This is probably due to the mu-
tual verification between them in annotating unlabeled data.
Moreover, semi-supervised methods are better than fully-
supervised methods in almost all points, which further il-
lustrates utilizing unlabeled data can help the model to have
generalization capability under low-resource scenarios. This
is why we want to study semi-supervised event argument
extraction.

Ablation Study
The effectiveness of MRC framework. We study the ef-
fects of applying MRC framework. The data settings are
same as “Comparisons with SOTA methods”. Table 3 il-
lustrates the performance comparison between MRC-based
method (EAR) and sequence labeling model (BERT-EE)
on two datasets. MRC-based methods make significant im-
provements compare with the sequence labeling model. We
analyze this is due to the sequence labeling model suffers
from insufficient parameter sharing which is catastrophic es-
pecially with few samples. And it also can not solve the roles
overlap problem (Yang et al. 2019) (i.e., one argument plays
different roles). By contrast, methods only based on ques-
tion answering can not only leverage the semantics of roles
to enhance robustness in low-resource situations, but also
solve the issue of roles overlap. However, methods based on
MRC framework (EAR) is still much worse than our method
(DualQA).

The effectiveness of dual learning. We study the effects
of proposed dual learning framework. The data settings are
same as “Comparisons with SOTA methods”. As can be seen
in Table 4, the two tasks can mutually correct each other, and
benefit from unlabeled data. Furthermore, comparing EAR
model with Joint-EAR-ERR, although MRC framework has
above advantages, a single question answering perspective is
still not enough, and the dual task can bring a significant im-
provement. In addition, comparing Joint-EAR-ERR as well
as DualQA and PLMEE as well as PLMEE∗, our approach
is more efficient in benefiting from unlabeled data than self-
training (4% (ours) compare with 0.7% (PLMEE) in ACE
and 1.6% (ours) compare with 1.4% (PLMEE) in FewFC).
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Figure 3: Performance comparison with different amounts of
labeled training data and 60% unlabeled training data. Left:
ACE 2005 English corpus. Right: FewFC.

The effectiveness under different amounts of labeled
data. In real scenarios, manually labeled data is of great
laborious. We aim to leverage massive unlabeled data to im-
prove our model with limited labeled data. Therefore, we
wonder how is our method performances under different
amounts of labeled data. As the sample strategy mentioned
before, we sample 60% training data as unlabeled set for
both ACE and FewFC, and then sample different amounts of
data (10%/20%/40% for ACE and 1%/5%10% for FewFC)
from remaining training data as labeled set. As Figure 3
presents, our approach (DualQA) outperform other methods
under all data conditions we tried, but it is more robust than
the baseline under extremely low resource situations (10%
in ACE and 1% in FewFC).

The quality of annotations. The unlabeled data we used
in the experiment are all derived from the datasets it-
self. In that case, we can automatically evaluate the qual-
ity of annotations from various methods on the “unlabeled
set”. We sample 60% training data as unlabeled set from
ACE, and then sample different amounts of training data
(10%/20%/40% ) as labeled set. We evaluate the annotation
quality of different models on the unlabeled set and test set,
as shown in Figure 4. The annotations quality of our method
outperforms other methods, which proves the effectiveness
of our method in annotating unlabeled data in low-resource
situations.

Related Work
Event argument extraction. Event argument extraction is
a key step of event extraction, where various methods have
been proposed. Traditional approaches (Chen et al. 2015;
Liu, Luo, and Huang 2018; Nguyen, Cho, and Grishman
2016; Yang et al. 2019) take advantage of neural network to
automatically fit the distribution of training samples, which
is often limited by the amount of data. Several works (Mintz
et al. 2009; Chen et al. 2017; Yang et al. 2018, 2019) try to
leverage the external resources to generate event for mak-
ing up the shortcoming. The general idea of these works is
to leverage either NLP systems (e.g., translation model) or
external knowledge bases (e.g., Freebase) under the distant
supervision (Mintz et al. 2009) to build an external corpus.
However, the external resources are relatively more difficult
to obtain than unlabeled data. Motivated by this, our method
hopes to benefit from unlabeled data.
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Figure 4: Annotation quality comparison with different
amounts of labeled training data and 60% unlabeled train-
ing data in ACE 2005. Left: Performance in test set. Right:
Annotation quality of unlabeled set.

Machine reading comprehension Explorations on con-
verting traditional NLP tasks into question answering task
has drawn widespread concern, recently. Levy et al. (2017)
leverage the MRC framework to settle the zero-shot relation
extraction. Li et al. (2019) convert entity-relation extraction
as multi-turn question answering. Du and Cardie (2020) and
Zhang et al. (2020) model the EAE task as question answer-
ing, but their methods are fully-supervised and only model
the EAR process as well. Above works illustrate that the
MRC paradigm has certain advancements in NLP field. In
view of this, we propose two EAE tasks (i.e., EAR and ERR)
based on question answering framework.

Dual learning. Dual learning, proposed by He et al.
(2016), aims to make use of the duality between the pri-
mal task and the dual task to leave the two model mutu-
ally benefit from each other and boost each other’s perfor-
mance at the same time. There are various way of coop-
eration, such as target-source translation and source-target
translation (He et al. 2016), query-response conversation and
response-query conversation (Shen and Feng 2020), ques-
tion answering and question generation (Li et al. 2018), and
so on. Distinct from them, we took the advantage of the du-
ality between the two question answering tasks under the
semi-supervised settings to settle the event argument extrac-
tion. We are also the first to perform dual learning frame-
work in this task.

Conclusion and Future Work

In this paper, we proposed a new framework dual ques-
tion answering (DualQA) for event argument extraction in a
semi-supervised learning manner. We define EAR and ERR
under the question answering paradigm to share parameter
as much as possible, and utilize the semantics of the role.
Besides, we propose a dual training process, which encour-
ages the two model mutually enhance each other and verify
each other’s annotation to reduce the impact of error prop-
agation. We conduct extensive experiments on two public
datasets. And the experimental results prove the effective-
ness of our approach. In the future, we will further explore
the scalability of our method to other tasks.
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