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Abstract

Cross-domain aspect-based sentiment analysis aims to utilize
the useful knowledge in a source domain to extract aspect
terms and predict their sentiment polarities in a target do-
main. Recently, methods based on adversarial training have
been applied to this task and achieved promising results. In
such methods, both the source and target data are utilized to
learn domain-invariant features through deceiving a domain
discriminator. However, the task classifier is only trained on
the source data, which causes the aspect and sentiment infor-
mation lying in the target data can not be exploited by the
task classifier. In this paper, we propose an Adaptive Hybrid
Framework (AHF) for cross-domain aspect-based sentiment
analysis. We integrate pseudo-label based semi-supervised
learning and adversarial training in a unified network. Thus
the target data can be used not only to align the features via
the training of domain discriminator, but also to refine the task
classifier. Furthermore, we design an adaptive mean teacher
as the semi-supervised part of our network, which can miti-
gate the effects of noisy pseudo labels generated on the target
data. We conduct experiments on four public datasets and the
experimental results show that our framework significantly
outperforms the state-of-the-art methods.

Introduction

Aspect-based sentiment analysis (ABSA) is an important
task in fine-grained sentiment analysis (Liu 2012; Pontiki
et al. 2014; Thelwall et al. 2010), which involves aspect
extraction(AE) and aspect sentiment classification(ASC).
Given a sentence, the goal of ABSA is to identify the aspect
terms and infer the sentiment expressed on these aspects.
For example, given a sentence “I love Windows 7 which is a
vast improvement over Vista.”, this task need to extract the
aspect terms “Windows 7" and “Vista”, and predict the sen-
timent polarities towards them are positive and negative re-
spectively. Many supervised models have been proposed for
this task (Li et al. 2019a; He et al. 2019; Zhou et al. 2019)
and achieved promising results. Unfortunately, these models
are highly dependent on large-scale training dataset which
may be not available in many practical situations. One of the
solutions to this problem is cross-domain aspect-based sen-
timent analysis, which utilizes the labeled data in a source
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domain to improve the prediction of the aspect terms with
their sentiment polarities in a target domain.

There are some studies focused on the domain adaptation
of fine-grained sentiment analysis. Ding et al. (Ding, Yu, and
Jiang 2017) combined neural network with rule-based aux-
iliary task for the domain adaptation of aspect extraction,
which is only a subtask of ABSA. Wang and Pan (Wang and
Pan 2018) presented a recursive neural network for cross-
domain aspect and opinion co-extraction, which utilized the
shared dependency structure between different domains. To
alleviate the dependency on linguistic resources, Wang and
Pan (Wang and Pan 2019) used local and global memory
units to capture the transferable interactions of aspect and
opinion terms. These researches merely focused on the de-
tection of aspect and opinion terms, while ABSA also need
to find out the correspondences between them. Li et al. (Li
et al. 2019b) proposed a transferable neural network with se-
lective adversarial training for cross-domain ABSA, which
is the first attempt for the domain adaptation of ABSA. In
their model, the unlabeled target data are used by the do-
main discriminator to learn the common features across do-
mains, while the task classifier is only trained on the source
data. This leads the target data can not be utilized to refine
the task classifier, even though these data may contain some
beneficial aspect and sentiment information.

In this paper, we propose an Adaptive Hybrid Framework
(AHF) which combines semi-supervised learning and adver-
sarial training together for cross-domain aspect-based senti-
ment analysis. On the one hand, our framework utilizes the
pseudo labels generated on the target data to train the task
classifier, which can improve the task decision boundary. On
the other hand, our framework is able to align the feature dis-
tribution through adversarial training. Specifically, AHF is
comprised by a domain discriminator, a student network and
a teacher network. The domain discriminator equipped with
a gradient reversal layer is used to learn domain-invariant
features. We employ Mean Teacher model (Tarvainen and
Valpola 2017) which is comprised by a student and a teacher
network to implement pseudo-label based semi-supervised
learning. The teacher network tracks an exponential mov-
ing average of the student network weights, thus the teacher
tends to generate better pseudo labels than the student. The
student is trained on the labeled source data and the target
data with pseudo labels.



x (sentence) | I love Windows 7

which

is a vast improvement over  Vista

y (labels) O (0] B-POS  I-POS

[0)

O O O (¢} O B-NEG O

Table 1: An example sentence and its corresponding labels.

Though better pseudo labels can be produced by the
teacher, there still exists a lot of noisy labels due to the do-
main discrepancy. To reduce the impact of the noisy labels,
we further modify the original Mean Teacher with automatic
threshold and domain similarity weighted loss, which is ref-
ered as adaptive mean teacher. First, different from the previ-
ous work using a same threshold (French, Mackiewicz, and
Fisher 2018), we employ automatic confidence threshold to
filter the noisy labels. It is unreasonable to employ a same
threshold for our task, because the number of aspect terms
is far less than non-aspect terms in the dataset and the net-
work is prone to predict higher probability for non-aspect
terms. Therefore we separately compute the thresholds for
aspect terms and non-aspect terms at different training steps.
In addition, we assign a higher weight to the label of a word,
if the word comes from a sentence more similar with the
source data.

The main contributions of this paper are as follows:

For the first time, we propose to integrate pseudo-label
based semi-supervised learning and adversarial learning
for cross-domain ABSA. Therefore our framework AHF
can effectively leverage the unlabeled target data for task
classifier refinement and domain-invariant feature learn-
ing.

To reduce the effects of noisy pseudo labels, we intro-
duce an adaptive mean teacher network to implement
the semi-supervised learning, which extends the original
Mean Teacher with automatic confidence threshold and
similarity weighted loss.

Experimental results on ten transfer pairs show that our
framework can achieve better performance than the state-
of-the-art methods.

Related Work

Aspect-based Sentiment Analysis. Many models have
been proposed to tackle the task of aspect-based sentiment
analysis. Mitchell et al. (Mitchell et al. 2013) used hand-
designed features and conditional random fields (CRFs) to
detect the aspects and their sentiment polarities. With the
development of deep learning, numerous neural network
models have been applied to the task of ABSA. Zhang et
al. (Zhang, Zhang, and Vo 2015) combined word embed-
ding and automatic extracted features for this task. A uni-
fied framework comprised by three key components was
proposed by Li et al. (Li et al. 2019a). He et al. (He et al.
2019) presented a novel interactive multi-task learning net-
work which can leverage the interactions between the two
subtasks of ABSA. Zhou et al. (Zhou et al. 2019) presented
a span-based model to jointly extract the aspects and classify
the sentiment expressed on them. These supervised models
have shown promising results on this task, but they gener-
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ally rely on numerous annotated data, which are hard to be
collected in real world applications.

Cross-domain Aspect-based Sentiment Analysis. There
have been a lot of researches for the domain adaptation
of coarse-grained sentiment classification (Li et al. 2017;
He et al. 2018; Li et al. 2018; Zhang et al. 2019). How-
erver, coarse-grained sentiment classification only predicts
an overall sentiment polarity of a document, while ABAS
need to predict the aspects with their sentiments, which
is more challenging. The tasks of cross-domain aspect or
opinion terms extraction are closely related to cross-domain
ABSA. Traditional approaches employed feature engineer-
ing or bootstrapping algorithm for the domain adaptation of
aspect extraction (Jakob and Gurevych 2010; Li et al. 2012).
Recent researches focused on neural network based mod-
els. Ding et al. (Ding, Yu, and Jiang 2017) integrated the
neural network with rule-based unsupervised methods for
cross-domain aspect extraction. Wang and Pan (Wang and
Pan 2018) proposed a novel recursive neural network to the
domain adaptation of aspect and opinion co-extraction. But
these researches only perform aspect or opinion extraction
without identifying their correspondences. Li et al. (Li et al.
2019b) published the first work for cross-domain aspect-
based sentiment analysis. They proposed a selective adver-
sarial learning method to align the features between differ-
ent domains. Since the target data are merely used to train
the domain discriminator, the task classifier can not leverage
the category information lying in the target data.

Mean Teacher. The Mean Teacher model was proposed
by Tarvainen et al. (Tarvainen and Valpola 2017) for semi-
supervised image classification. Xu et al. (Xu et al. 2019)
adopted this model for the domain adaptation of semantic
segmentation. Recently, it was applied for the NLP tasks
such as document classification (Ko, Durrett, and Li 2019)
and semantic parsing (Wang et al. 2020). In this paper, we
apply the Mean Teacher to a sequence labeling problem and
modify it to fit our task.

Our Approach

In this section, we introduce the overall framework of our
proposed approach. We first give the task definition and no-
tations. And then we describe the architecture of AHF in
detail.

Task Definition
We formulate the task of ABSA as a sequence labeling prob-
lem. Given an input sentence * = {wj,ws, ..., w,}, our

goal is to predict a label sequence y = {l1, [, ..., [, }, where
each l; is from the label set ) = {O, B-POS, I-POS, B-NEG,
I-NEG, B-NEU, I-NEU}. Label “O” represents the word is
not in an aspect term. Other labels are comprised by two
parts: {B, I} denote the beginning and inside of an aspect
term; {POS, NEG, NEU} denote the positive, negative and
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Figure 1: The architecture of AHF.

neutral sentiment. We present an example sentence and its
corresponding label sequence in Table 1. From the labels
of the words, we can get “Windows 7” and “Vista” are the
aspect terms, and their sentiment polarities are positive and
negative, respectively.

In this paper, we focus on the unsupervised domain adap-
tation of ABSA. The input data includes a set of labeled sen-

. . AN
tences from a source domain Ds = {«,y%} " andaset of

‘ N,
. t
j=1

Our goal is to use both Ds and Dy to train a model, which
can predict the label sequences for target data.

An Overview of AHF

We present the architecture of AHF in Figure 1. It consists
of a domain discriminator, a student network and a teacher
network. The domain discriminator receives the vectors out-
put from feature extractor of the student network. Then it
predicts an input sentence is from the source or the target
domain. And it is trained on the two domain data. The stu-
dent network and the teacher network share a same structure
and they constitute the adaptive mean teacher. The student
network is trained with a cross entropy loss and a squared
error loss. The source data with ground truth annotations are
used to compute the standard cross entropy loss. For the un-
labeled target data, we use the teacher network to generate
the soft pseudo labels and these data are used to calculate
the squared error loss. In particular, we employ automatic
threshold to filter some noisy pseudo labels. And according
to the sentence similarity with the source domain, we assign
different weights to the labels of the words when computing
squared error. The teacher is an ensembling network of the
student, which does not participate in the back-propagation.
At each time step, its parameters are updated through the ex-

unlabeled sentences from a target domain Dy = {
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ponential moving average (EMA) of the corresponding pa-
rameters in the student network.

Base Model

The student network and the teacher network share a same
architecture and we introduce this architecture in this sec-
tion. The base model is comprised by a feature extractor and
a task classifier.

Feature Extractor. For an input sentence =x
{wy,ws, ..., w,}, the model first converts each word
into an embedding vector. We create the embedding vector
e; of word w; through concatenating its word embedding
ewy and POS embedding ep,:

€t = [ewt; ept] (1)
where “;” represents the vector concatenation. Then we em-
ploy a BiLSTM to capture the contextual information of
each word in the input sentence and obtain the contextual
representation h; as follows:

hi = [LSTM (e;); LSTM (e;)]. 2)

Task Classifier. The task classifier is comprised by a linear
layer and a softmax layer. It uses the hidden vectors from
BiLSTM h = {hq, ha, ..., hy, } as input and predicts the la-
bel for each word. The probability distribution y, of the ¢-th
word is computed as follows:

yi = softmax(Wyh, + by) 3)

where W, and b, denote the weight matrix and bias term,
respectively.

Domain Discriminator

To empower the feature extractors with the ability of learn-
ing domain-invariant features, we add a domain discrimina-
tor to implement the adversarial learning (Goodfellow et al.



2014). In particular, the domain discriminator utilizes all the
sentences in Ds and D as inputs and attempts to tell which
domain these sentences come from. At the same time, the
feature extractor of the student network tries to fool the do-
main discriminator.

In detail, we use hs = {hsy, hsa,...,hs,} to represent
the hidden vectors computed by the feature extractor of the
student network. These hidden vectors are fed into the do-
main discriminator and encoded by an attention layer into a
single vector. The attention layer first computes a weight o
for each word to represent the importance of them:

my = VN tanh(W,,, his; + byy,)
_ exp(my)
> k=1 exp(my)

where Vg and W, are weight matrices, b,, is the bias
term. The representation of the sentence is computed by the
weighted sum of all the hidden vectors:

n
r; = E ahsg.
t=1

Finally, we adopt a softmax layer to do the domain classifi-
cation:

“
&)

Qi

(6)

d; = softmax(Wyr; + bg). @)

We employ an adversarial loss L, 4, to enforce the student
feature extractor to produce domain shared representations.
For each sentence x;, we set z; = 1 if it is from the source
domain, otherwise we set z; = 0. The adversarial loss is
computed as follows:

Ns+Ny
Logo = — Z (zilog(d;) + (1 — z;)log(1 —d;)) (8)

i=1

where Ny and NV, represent the number of the sentences in
the source dataset Ds and the target dataset Dy, respec-
tively. The common training process is to minimize the clas-
sification error. But our intention is to learn the features such
that the discriminator cannot recognize which domain a sen-
tence comes from. To resolve this issue, we add a gradient
reversal layer (Ganin et al. 2016) before the attention layer
to conduct adversarial training. We use 9;? to denote the pa-
rameters in the student feature extractor. And the gradient
reversal layer reverses 9Lagu jnto —-n OLagy during the gra-

003 007

5 5
dient backpropagation process. Thus the common features
can be obtained through the training of domain discrimina-
tor.

Adaptive Mean Teacher

So far, the data distribution can be aligned through the do-
main discriminator. But the aspect and sentiment informa-
tion lying in the target data are not explicitly utilized. A natu-
ral solution is to produce the pseudo labels for the target data
and use these labels to guide the training of the task classi-
fier. The effectiveness of this solution is highly dependent
on the quality of the generated labels. And the predictions
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computed by an exponential moving average of the network
tend to be more reliable than the ones produced by the origi-
nal network (Tarvainen and Valpola 2017). Thus we employ
the Mean Teacher to leverage the pseudo labels in our frame-
work. Furthermore, we modify the Mean Teacher with auto-
matic threshold and similarity weighted loss to reduce the
influence of the noisy labels, which is referred as adaptive
mean teacher.

The Mean Teacher consists of a student network and a
teacher network, which have the same structure following
the base model introduced above. The teacher does not par-
ticipate in the back-propagation. Its parameters are updated
with the exponential moving average of the corresponding
parameters in the student network. At the time step p, the
parameters of the teacher 917; are computed as follows:

0, =001+ (1 =)0 ©)

where 95 represents all the parameters in the student net-
work at time step p, 7y is a smoothing coefficient hyperpa-
rameter.

The source domain sentences are fed into the student net-
work to predict the label of each word. We employ the cross
entropy as the task loss function:

Ns N;
£cr = - Z Z gi,tlo.g(yft)
i=1 t=1
where N, denotes the number of the sentences in source
dataset Dg, IV; is the total word number in the i-th sentence,
gi,¢ 1s the one-hot vector representing the gold label of the
t-th word in the -th sentence, yft is the probability distribu-
tion computed by the task classifier following the Equation
3. This loss function enables the student network to learn
features from the labeled source data.

The target domain sentences are fed into both the student
network and the teacher network. The teacher network gen-
erates soft pseudo labels for these sentences. At the same
time, the student is trained to produce consistent predictions
with these soft pseudo labels. In our framework, we employ
automatic threshold and similarity weighted loss to mitigate
the impact of noisy pseudo labels.

While high network prediction confidence does not guar-
antee correctness, there exists a positive correlation between
them, so we first use the confidence threshold as filter. Previ-
ous work (French, Mackiewicz, and Fisher 2018) employed
a fixed threshold throughout the training process, but this is
not suitable for our task. The number of non-aspect terms
is much more than the aspect terms, which leads that the
network tends to predict higher probability value for label
“O”. Therefore we compute the thresholds for label “O” and
aspect labels, respectively. We divide the label set ) into
two sets )1 and )s, where ); only contains label “O” and
Vs is comprised by other aspect labels. For each label set
Y. (¢ € {1,2}), we select 3% most-reliable predictions by
looking at network predictions on target data in the current
batch. Then we use Qg().) to denote the smallest confi-
dence value in these reliable predictions and compute the
threshold 7, of ). at the current training step as:

Te = maX(pa Qﬁ(yc))

(10)

(1)



where p. is a manually set value for )., which is utilized
to filter the noisy labels at the early training steps. In this
way, the threshold is adaptive both to different label sets
and to different training phases. For the ¢-th word in the
i-th sentence, the probability distribution computed by the
teacher task classifier is represented by y7,. The threshold
7. is adopted to calculated the mask matrix M; ; as:

-1, if (max(yf,) > 1) A (1L, € V)
M = { 0, otherwise (12)
where [7, represents the predicted label of the teacher net-

work for the #-th word. Furthermore, we consider that the
predicted labels are more reliable for the sentences more
similar with the source domain. And the output probabil-
ity d; from the domain discriminator can be interpreted as
a measure of the similarity. Thus, to effectively leverage the
pseudo labels on the target data, we employ the squared er-
ror with threshold mask matrix and similarity weight as loss
function:

N¢ N;

Lo = Z Zdi < M -

i=1 t=1

il =yl (13)

where N; denotes the number of sentences in the target
dataset D, yZT . and yft are the probability distribution com-
puted by the teacher and the student network, respectively.

Joint Training

We combine the three losses into an overall objective func-
tion:

L= l:cr + £se + )\advﬁad’u

where Aqq4, is a hyper-parameter. During the training phase,
the network learns to minimize £ with respect to the model
parameters except the adversarial learning part which will
be maximized. In the test phase, the sentences are fed into
the teacher network to predict the labels.

(14)

Experiments
Datasets

In order to evaluate the performance of our model, we
conduct experiments on four benchmark datasets: Restau-
rant(R), Laptop(L), Device(D) and Service(S). The datasets
are from four different domains and the statistics of them are
described in Table 2. The restaurant data is comprised by the
restaurant reviews from SemEval 2014 (Pontiki et al. 2014),
SemEval 2015 (Pontiki et al. 2015) and SemEval 2016 (Pon-
tiki et al. 2016). The laptop data consists of laptop reviews in
SemEval 2014 (Pontiki et al. 2014). The device data is cre-
ated by Hu and Liu (Hu and Liu 2004) and contains the re-
view sentences from five different digital products. The ser-
vice datasets contains reviews from the web service and is
introduced by Toprak et al. (Toprak, Jakob, and Gurevych
2010).

Following the recent work of cross-domian ABSA (Li
et al. 2019b), we construct ten transfer pairs based on the
four datasets mentioned above. Since the laptop domain and
device domain are quite similar, we do not use the transfer
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Dataset Domain #Sentences | #Train | #Test
R Restaurant 3900 2481 1419
L Laptop 1869 1458 411
D Device 1437 954 483
S Service 2153 1433 720

Table 2: The statistics of the datasets.

pairs L — D and D — L. This paper focuses on the unsuper-
vised domain adaptation of aspect-based sentiment analysis,
and so there are only unlabeled data from the target domain.
The training dataset of each transfer pair contains the labeled
training data of the source domain and the unlabeled training
data of the target domain. We use the labeled testing data of
the source domain as the validation set. And the testing data
of the target domain is used as the evaluation set. We em-
ploy the F1 score as evaluation metric in our experiments.
The extracted results is considered to be correct only if both
the words in the aspect terms and the sentiments towards the
aspects are the same as the gold annotated span.

Experimental Settings

We use Stanford Parser (Manning et al. 2014) to generate
part-of-speech tags of the sentences and employ word2vec
tool! on two different corpora to get the word embeddings.
One corpus contains 1M laptop domain reviews from Ama-
zon (McAuley et al. 2015) and the other corpus is from Yelp
Challenge dataset®. The dimensions of the word embedding
and POS embedding are set to 100 and 15, respectively. We
employ two layers BiLSTM in our experiment and the hid-
den units of LSTM is set to 100. We apply dropout over the
embeddings layers and BiLSTM layers with the dropout rate
0.5. The parameters about adversarial learning 1 and A, g4,
are set 1 and 0.1, respectively. The value of the smoothing
coefficient parameter v is 0.98. The values of /3, p; and po
are set as 60, 0.9 and 0.4, respectively. We set the batch size
of the source domain data and target domain data as 32. The
parameters are optimized by RMSprop algorithm with learn-
ing rate 0.001. We run the experiments five times and report
the average results.

In order to comprehensively evaluate our method, we
compare our framework with several fine-grained adaptation
methods:

TCRF(Jakob and Gurevych 2010): A traditional se-
quence model combines CRF and hand engineered fea-
tures such as POS tags, short dependency path and word
distance.

RAP(Li et al. 2012): A relational adaptive bootstrapping
algorithm that uses common opinion words and syntactic
relations to expand aspect and opinion lexicons.

Hier-Joint(Ding, Yu, and Jiang 2017): Use LSTM and
auxiliary labels generated by syntactic rules to extract
cross-domain aspect terms.

"https://radimrehurek.com/gensim/models/word2vec.html

*http://www.yelp.com/dataset challenge



Model D—-R|D—-S|L—-R|L—-+S|R—-D|R—-L|R—-S|S—D|S—-L|S—R | Avg
TCRF 17.05 13.49 16.06 12.34 19.84 14.59 15.20 13.43 9.56 14.84 14.64
RAP 28.37 16.80 31.05 13.72 17.50 15.69 13.17 15.74 12.38 25.41 18.98
Hier-Joint 30.03 18.74 31.90 15.33 2291 19.17 15.20 20.04 21.80 32.81 22.79
Hier-Joint™ 32.87 19.04 33.54 13.90 24.53 20.72 15.56 23.24 22.65 31.10 | 23.72
RNSCN 31.41 18.93 31.85 16.73 3243 25.54 23.31 19.98 19.15 30.56 | 24.99
RNSCN* 34.60 20.03 35.65 16.59 33.26 26.63 20.04 22.00 18.87 33.21 26.09
SAL 41.64 30.34 42.60 28.00 36.36 32.36 30.14 35.97 26.46 42.18 | 34.61
AHF 44.57 34.96 43.49 33.05 37.33 34.89 33.23 39.61 29.01 | 46.55 | 37.67
Table 3: Comparison results with baselines.
Model D—-R|D—-S|L—+R|L-S|R-D|R=-L|R—=+S|S—-D|S—L|S—R| Avg
AHF-DD 44 .44 33.08 47.32 26.60 28.85 31.90 21.13 37.43 30.68 40.24 | 34.17
AHF-AMT 42.74 34.43 40.27 27.60 35.71 33.66 31.86 36.99 26.64 40.84 | 35.07
AHF-AT+FT1 40.68 28.41 31.02 24.40 34.72 31.33 33.62 35.08 27.73 39.54 | 32.65
AHF-AT+FT2 | 44.38 28.23 37.54 24.60 36.76 34.77 33.42 36.87 28.99 44.73 | 35.02
AHF-DW 43.37 33.79 42.85 32.56 37.26 34.45 31.32 38.54 30.09 46.30 | 37.05
AHF 44.57 34.96 43.49 33.05 37.33 34.89 33.23 39.61 29.01 46.55 | 37.67

Table 4: Comparison results for variants of our framework.

RNSCN(Wang and Pan 2018): A recursive neural net-
work for cross-domain aspect and opinion extraction,
which relies on the shared dependency structure between
different domains.

Hier-Joint™/RNSCN™: Extend Hier-Joint/RNSCN with
an additional LSTM layer for the prediction of the aspect
boundary labels.

SAL(Li et al. 2019b): A state-of-the-art method that em-
ploys dual memory interaction and selective adversarial
learning for cross-domain ABSA.

Experimental Results and Analysis

Main Results. The comparison results of our framework
AHF with the baselines are presented in Table 3. From
the results we find that AHF consistently outperforms the
other approaches on all the transfer tasks. Specifically, our
approach achieves 3.06% improvements over the state-of-
the-art method SAL on average F1 score. Compared with
the traditional approaches TCRF and RAP, the neural net-
work based methods achieve better results on most tasks.
Hier-Joint and RNSCN leverage the common syntactic de-
pendency relations between different domains to learn the
cross-domain features. There always exist some noises in
the dependency parsing tree, which will affect their perfor-
mance. Thus the results of them are lower than SAL which
relies on selective adversarial training to align the features.
Though SAL achieves better results, the target domain sen-
tences are merely used to guide the feature learning through
training the domain discriminator. And our proposed frame-
work AHF can take advantage of the target data for the train-
ing of both the domain discriminator and the task classifier.
From the results, we can observe that AHF performs bet-
ter than SAL, which demonstrates the effectiveness of our
method.

Ablation Study. To investigate the effect of each compo-
nent, we perform comparison between the full AHF model
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and its ablations as shown in Table 4. The variants of our
framework includes:

AHF-DD: Remove the domain discriminator from the
framework.

AHF-AMT: Combine the student network and the do-
main discriminator for the domain adaptation.

AHF-AT+FT1: Replace the automatic threshold with a
fixed threshold 0.9 as previous work (French, Mack-
iewicz, and Fisher 2018).

AHF-AT+FT2: Replace the automatic threshold with two
fixed thresholds where 0.9 and 0.4 are used for label “O”
and aspect labels, respectively.

AHF-DW: Remove the output weight d; of the domain
discriminator from L.

From the results, we find that the integrated framework
performs better than all the variants. The F1 scores of AHF-
DD are lower than AHF on most tasks, which demonstrates
adversarial training is able to reduce the domain gap. And
AHF performs better than AHF-AMT in which the target
data are only used to train the domain discriminator. This
indicates that the information lying in the target data can
be used for the task classifier refinement. The performance
will drop when we use the fixed thresholds. Furthermore, we
find that the average F1 scores of AHF-AT+FT1 and AHF-
AT+FT?2 are even lower than AHF-AMT. This proves that
using automatic threshold to filter noisy labels is critical to
our framework. Comparing the results of AHF and AHF-
DW, we can see that the performance of our framework can
be slightly improved by the similarity weight.

Feature Visualization. We visualize the feature vectors of
the target domain generated by AHF-AMT and AHF. For
feature visualization, we adopt t-SNE (Maaten and Hinton
2008) on the S — D task. The results are illustrated in Fig-
ure 2, where the “blue” represents non-aspect label “O” and
other colors represent aspect labels. The number of different



Input Sentence SN

AHF-AMT AHF

1. The included [memory card|nec is too | NONE X

small.

[memory card|nea v [memory card|nea v

2.In all fairness, [customer reps]pos are very
nice, and they (most of them) try hard to answer
your questions.

[customer reps]pos v

[customer reps|nea X | [customer reps|pos

3. The [phone book]pos is very user-friendly
and the [speakerphone]pos is excellent.

[phone]lpos X
[speakerphone]pos v

[phone book]pos v
[speakerphone]pos vV

[phone]lpos X
[speakerphone]pos v

4. Lots of  flaws, but  exceptional
[sound qualitylpos, [hd size]pos, and | NONE X
[price] pos make it a good buy. NONE X

[sound qualitylpos v

[sound]pos X
NONE X
NONE X

[sound quality|pos v
[hd Size]pos v
NONE X

Table 5: Case study on task S — D. The golden aspect terms and their sentiments are in bold. The “NONE” represents the

prediction is empty.

(a) AHF-AMT. (b) AHF.

Figure 2: Feature visualization with t-SNE algorithm on task
S —D.
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Figure 3: Threshold curves on task S — D.

color points varies greatly due to the data imbalance, where
the number of label “O” is much more than others. From the
figure, we can observe that there are lots of label ambiguous
features generated by AHF-AMT. By contrast, our method
produces features that are more easier to distinguish, since it
can utilize the target domain aspect and sentiment informa-
tion to train the task classifier.

Analysis of the Threshold. To illustrate the change of the
thresholds for different label sets, we draw the threshold
curves with increasing training steps on task S — D. From
Figure 3, we find that the thresholds vary considerably for
different labels over the training steps. And the threshold
of aspect labels is much smaller than that of label “O”. The
network tends to predict high probability value for label “O”
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due to the huge number of non-aspect terms in the dataset.
The threshold for label “O” is close to 1.0 at about 200 steps,
while that value for aspect labels increases gradually during
the training steps.

Case Study. We pick some examples from the device dataset
and present the predicted results in Table 5. This first column
is the input sentence with the golden aspect terms and their
sentiment polarities. The other three columns are the pre-
diction results from SN(remove the teacher network and the
domain discriminator), AHF-AMT and AHF, respectively.
From the first example, we see that AHF-AMT can extract
some specific aspects due to the use of adversarial train-
ing. But the adversarial loss may trigger a negative transfer,
which aligns the target feature with the source feature in an
incorrect category. Thus it may fail to predict some aspects
that can be identified by SN such as “customer reps” and
“sound quality” in the examples. We also find that AHF fails
to predict some aspects due to the huge domain discrepancy.
But it can predict the aspect terms more accurately than the
other two methods. This is because our approach can take
advantage of both high quality target domain pseudo labels
and adversarial learning.

Conclusion

In this paper, we propose a novel adaptive hybrid frame-
work for cross-domain aspect-based sentiment analysis. We
propose to combine the pseudo-label based semi-supervised
learning and adversarial learning in a hybrid framework.
Thus our model can make use of the target data for both task
classifier refinement and domain-invariant features learning.
Furthermore, to mitigate the noisy pseudo labels of the target
data, we introduce adaptive mean teacher which extends the
original Mean Teacher with automatic threshold and domain
similarity weight. Extensive experiments on public datasets
show that our framework AHF consistently outperforms the
state-of-the-art methods.
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