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Abstract

Denoising is the essential step for distant supervision based
named entity recognition. Previous denoising methods are
mostly based on instance-level confidence statistics, which
ignore the variety of the underlying noise distribution on dif-
ferent datasets and entity types. This makes them difficult to
be adapted to high noise rate settings. In this paper, we pro-
pose Hypergeometric Learning (HGL), a denoising algorithm
for distantly supervised NER that takes both noise distribu-
tion and instance-level confidence into consideration. Specif-
ically, during neural network training, we naturally model the
noise samples in each batch following a hypergeometric dis-
tribution parameterized by the noise-rate. Then each instance
in the batch is regarded as either correct or noisy one accord-
ing to its label confidence derived from previous training step,
as well as the noise distribution in this sampled batch. Exper-
iments show that HGL can effectively denoise the weakly-
labeled data retrieved from distant supervision, and therefore
results in significant improvements on the trained models.

Introduction
Named Entity Recognition (NER), aiming to identify text
spans pertaining to specific semantic types such as person,
organization and location, is a foundational NLP task. In
recent years, supervised neural network-based approaches
(Lample et al. 2016; Chiu and Nichols 2016; Ma and Hovy
2016) , which can automatically extract underlying features
from annotated texts and conduct NER recognition, have
achieved promising results in almost all NER benchmarks.

Even with great success, supervised learning methods
heavily rely on fully-annotated training data. However, an-
notated training data is too expensive to obtain, which re-
stricts the real-world application of current NER models in
various entity types. To tackle this problem, distant super-
vision based NER (DS-NER) (Ren et al. 2017; Yang et al.
2018; Shang et al. 2018; Peng et al. 2019; Nooralahzadeh,
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Figure 1: Precision-Recall curves of different denoising al-
gorithms on ACE2005 datasets. We can see that HGL signif-
icantly outperforms other baselines, especially on high noise
rate ACE ALL setting.

Lønning, and Øvrelid 2019) methods are introduced. Gen-
erally, DS-NER uses easily-available resources (commonly
dictionaries in NER) to automatically label plain texts to
produce large-scale data, which is generally referred as
weakly annotated data. And then the generated training data
will be used to learn neural network models. For example,
by matching person name “Washington” in dictionary with
text “Washington is the first U.S. president”, DS-NER will
produce a training instances with entity type PERSON. As
unlabeled plain texts and entity mention dictionaries are very
easy to obtain, distant supervision based methods can sig-
nificantly reduce the annotation efforts and produce much
larger scale of annotation data for model learning.

Unfortunately, although DS-NER boosts the size of train-
ing data, it still faces critical high noise challenge. Due to
the ambiguity of natural language, distant supervision will
inevitably introduce remarkable noise into weakly labeled
data. For example, “Washington” can refer to either a person
name or a location name and DS will generate wrong PER-
SON instances such as “Washington, capital of the United
States”. As a result, denoising is critical to achieve promis-
ing DS-NER performance. Currently, most DS-NER denois-
ing methods are based on instance-level confidence statis-
tics, which predict whether one instance is noise according
to its feature similarity to the majority of other instances.
These instance-level denoising algorithms, unfortunately,
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Figure 2: The overall architecture of HGL. At each step, a batch of instances is sent into a neural network-based denoiser to
obtain its correct/noisy confidence. Then the confidence of each instance is incorporated with the overall hypergeometric noise
distribution of this batch to obtain the training loss of current batch.

ignore the underlying noise structure of different datasets.
For example, the dictionary qualities and dataset properties
vary significantly in different DS settings, which will seri-
ously affect the denoising decisions. To illustrate this, Fig-
ure 1 shows the noise rate of DS-NER on ACE2005 datasets.
We can see that the noise rates on weakly-labeled training
data vary significantly from different entity types and dif-
ferent settings (e.g., named mention only v.s. all mentions).
In some settings, even a great majority of weakly-labeled
instances are noise. Consequently, conventional instance-
level methods cannot achieve robust performance on dif-
ferent noise DS-NER settings adaptively, and therefore it is
critical to take the noise distribution into consideration.

To this end, this paper proposes Hypergeometric Learn-
ing (HGL), which can effectively and adaptively denoise
DS-NER by further modeling and leveraging the underlying
noise structure of a dataset. HGL learns to denoise distantly
supervised labeled data by reshaping conventional training
procedure according to a noise rate-aware hypergeometric
probabilistic model. Figure 2 shows the overall framework
of HGL. Specifically, to model the noise distribution dur-
ing neural network training, we formulate each mini-batch
of size B as a subset being drawn from a weakly labeled
data of size N with noise rate p. Then the noise sample size
S in this mini-batch will naturally follow a hypergeometric
distribution, i.e., S ∼ H(N,N × p,B). Therefore, we re-
gard each instance as either correct or noisy one according
to its label confidence derived from previous training step, as
well as the noise distribution in the sampled batch. For ex-
ample, if one training batch is expected to have 5 instances
to be correctly labeled while the others to be noisy, then the
instances with top-5 confidence will be regarded as correct
instances, while others are treated as noisy ones.

Based on the above principles, we propose a neural
network-based denoiser for DS-NER. The training loss of
the denoiser is marginalized over the hypergeometric distri-

bution S to consider all potential noise distribution of the
current training batch. For different DS-NER settings with
different noise rates, the hypergeometric distribution can be
easily adapted by only adjusting the noise rate according to
the reality. Compared with traditional instance confidence-
based denoising methods, the proposed HGL explicitly ex-
ploits the noise distribution during the denoising procedure.
This enables more robust performance among different NER
settings, especially when the noise rate is relatively high.

Generally, the main contributions of this paper are:

1) We propose to naturally model the noise distribu-
tion of DS-NER during training using a hypergeomet-
ric probabilistic model. The model exploits the underlying
noise structures, and therefore can be more robustly adapted
to different DS-NER Settings. To the best of our knowledge,
this is the first work which tries to consider this critical in-
formation in DS-NER denoising.

2) Based on the noise model, we propose Hypergeo-
metric Learning (HGL), a denoising algorithm for DS-
NER. By reshaping the training procedure according to the
noise distribution and instance-level confidence, HGL can
robustly denoise the training data and therefore leads to bet-
ter NER models. Because denoising is a critical step for all
distant supervision settings, we believe our idea and method
can potentially benefit many other DS tasks, such as relation
extraction.

3) We conducted experiments under various distant super-
vision settings on ACE2005 and CoNLL03 NER datasets.
Experimental results show that HGL can effectively denoise
DS-NER data. Furthermore, using the datasets denoised by
HGL to train a novel NER model can also significantly boost
the system performance, compared with using only weakly-
labeled data and other denoising algorithms.
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Related Work
Neural network-based models have achieved very promising
results in NER field (Lample et al. 2016; Chiu and Nichols
2016; Ma and Hovy 2016; Lin et al. 2020). These methods
commonly rely on large-scale training data to learn effective
entity mention recognizer. However, fully-annotated train-
ing data is too expensive to obtain, which limits the applica-
tion of these methods to more NER scenario.

Distant supervision (Mintz et al. 2009), aiming to effi-
ciently generate large-scale training data using easily avail-
able resources, has attracted much attention (Zeng et al.
2015; Lin et al. 2016). For NER, one common practice is
to use an entity mention dictionary to automatically annotate
the plain texts to generate large-scale training data (Ren et al.
2017; Yang et al. 2018; Shang et al. 2018; Peng et al. 2019;
Nooralahzadeh, Lønning, and Øvrelid 2019). Unfortunately,
DS-NER will introduce remarkable noise into the training
data, and therefore undermines the NER performance.

To tackle this problem, one solution is to only use a high
precision dictionary to avoid introducing noise, and then de-
noising algorithms are applied to handle false negative in-
stances (Yang et al. 2018; Shang et al. 2018; Peng et al.
2019; Nooralahzadeh, Lønning, and Øvrelid 2019). These
approaches have shown promising results in some specific
domains such as medical NER. However, due to the ambi-
guity of natural language expressions, it is often impossible
to obtain a high precision dictionary for many domains. For
example, there are many location names (e.g., Washington)
which could also be used as person names. This limits the
application of these methods to more general NER tasks.

Instead of assuming using a high precision dictionary, this
paper proposes Hypergeometric Learning, which can be di-
rectly applied to various distant supervision settings. Fur-
thermore, we also proposed a Mention Blocking approach to
extend our framework into the circumstance where extreme
low false negative rate exists. There are some previous stud-
ies along this direction, but the majority of them are based
on instance-level confidence derived from an Expectation-
Maximization style procedure (Moon 1996). These methods
mainly reduce the impact of noise on the training proce-
dure by rescaling the instances according to their confidence.
However, they did not explicitly model the noise distribution
during the neural network training, and therefore unable to
achieve robust performance when high noise rate exists.

Hypergeometric Learning for Denoising
Distantly Supervised NER

As we mentioned above, the quality of corpus and dictio-
naries varies significantly from different DS-NER settings.
As a result, denoising methods merely based on instance-
level confidence to identify noise can not achieve promis-
ing results, because in many circumstance even the major-
ity of the datasets would be mislabeled instances. Instead,
this paper proposes to address this issue by jointly consider-
ing the underlying noise distribution and the instance-level
confidence. The essential of our method is to learn a neu-
ral network-based denoiser using Hypergeometric Learning
(HGL) algorithm. In the following, we will first illustrate the

structure of our denoiser, then introduce our Hypergeometric
Learning algorithm.

Denoiser
Our denoiser is a neural network model that takes the
weakly annotated instances from distant supervision as in-
put and predicts whether these instances are correctly la-
beled entity mentions. Specifically, given an input sen-
tence {x1, x2, ..., xn} and a weakly labeled candidate men-
tion {xi, xi+1, ..., xj} in it, we follow Baldini Soares et al.
(2019) to represent an instance x by adding a start symbol
[BEG] before xi and an end symbol [END] after xj :

x = [x0, ..., [BEG], xi, ..., xj , [END], ..., xn]. (1)

Then x is sent into a Transformer (Vaswani et al. 2017) pre-
trained using BERT (Devlin et al. 2019). We use hi to de-
note the encoder output of token xi, and hBEG and hEND

to denote the representations at token [BEG] and [END] re-
spectively. Then we apply an attention-based mechanism to
obtain the representation of the candidate mention r:

r =

[END]∑
k=[BEG]

αkhk, (2)

where αk can be regarded as an important score of token xk
to the entire instance, which is computed by

αk =
exp(Whi + b)∑[END]

k=[BEG] exp(Whk + b)
. (3)

The representation r is then sent into a multi-layer percep-
tron followed by a sigmoid layer to predict the probability
f(x) of this instance being a correctly labeled mention:

f(x) = σ(MLP (r)), (4)

where σ is the sigmoid function and MLP is multi-layer per-
ceptron without active function at the top. The denoiser is
expected to output a larger f(x) (i.e., more close to 1) if the
instance is more likely to be a correctly labeled instance (i.e.,
an correct entity mention), while output a smaller f(x) (i.e.,
more close to 0) if this instance is a noisy one.

Hypergeometric Learning for Denoiser Training
Commonly, neural network-based models are trained in a
supervised learning paradigm using batch-wise learning al-
gorithm. However, due to the lack of correct/noisy annota-
tion data, it is impractical to directly train our denoiser using
conventional neural network learning criteria.

Hypergeometric Probabilistic Model. In this paper, in-
stead of using annotated data, we propose to tackle this
problem by exploiting the noise distribution during denoiser
training. Specifically, if there are N weakly-labeled in-
stances in total and the accuracy of this dataset is expected
to be p (i.e., the noise rate is 1 − p). During neural network
training, a common practice is to sample B instances from
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the overall N population. Then the number of correctly la-
beled entity mentions S in each batch will naturally follow
the hypergeometric distribution:

S ∼ H(N,K,B), (5)

where K = N × p is the expected size of correctly labeled
instances and H is the hypergeometric distribution, which
can be computed as:

P (S = k) =

(
K
k

)(
N−K
B−k

)(
N
B

) , (6)

where
(
A
B

)
= A!

B!(A−B)! . For clarity, we will use Qk to de-
note P (S = k) in the rest of this paper.

Hypergeometric Learning for DS-NER. Once we know
the distribution of correct/noise sample size in each batch,
we will evaluate the potential of each instance being a cor-
rect or noisy one according to its label confidence derived
from previous training step as well as the noise distribution
in the current batch. For example, if in this batch there are
only 5 instances expected to be the correct instances accord-
ing to the hypergeometric distribution, we will regard in-
stances with top-5 confidence (i.e., f(x; θ) in Equation 4)
as the entity mentions, while other instances in this batch
will be regarded as noisy instances. The loss function dur-
ing training will be marginalized over the hypergeometric
distribution to consider all potential noise distribution.

Formally, let {x(1),x(2), ...,x(B)} denote the instances in
the current sampled batch in a descending order according to
their correct confidence in the previous step. Our Hyperge-
ometric Learning will optimize the denoiser in the current
training set according to the following loss function:

L(θ) =

B∑
i=1

ωi log f(x
(i))+ (1−ωi) log(1− f(x(i))), (7)

where f(x) and 1−f(x) are the denoiser output of the prob-
ability of instance x being a correct or noisy instance respec-
tively. ωi is the weight that indicates instance x(i) should
be regarded as a correct entity mention or a noisy instance,
which is derived from the hypergeometric distribution by:

ωi =
B∑

k=i

Qk. (8)

This equation indicates that if an instance ranks at kth ac-
cording to the confidence, it will be regarded as a correct in-
stance only if at least k instances in this batch are expected to
be correct instances. Therefore, HGL is able to exploit both
the instance-level confidence and the overall noise distribu-
tion in a unified training procedure, and thus can achieve
robust performance on various settings only by adaptively
adjusting the expected noise rate according to the underly-
ing noise distributions.

Dealing with Extremely Low False Negative Rate
with Mention Blocking

As described above, the Hypergeometric Learning mainly
focuses on the circumstance where the dictionary is with
high recall rate. However, in practice the applied dictionary
commonly cannot cover all mentions in the dataset, and
therefore requires the model to also deal with false nega-
tive instances. Considering the fact that entity mentions of a
specific type only cover a very minority of all noun phrases
(commonly less than 1%), it is quite difficult to distinguish
false negative instances from the true negative ones using
standard denoising techniques. To tackle this problem, we
further propose a Mention Blocking approach, which first
screens possible entity mentions of a specific type by lever-
aging the mention compositional knowledge learned from
the dictionary, then the potential mentions will be further in-
troduced into Hypergeometric Learning procedure, so that
false negatives can also be denoised.

Specifically, we regard all noun phrases in the entire cor-
pus (except mentions matched by the distant supervision
dictionary) as the potential mentions. Then inspired by Lin
et al. (2019b), we learn a Bert-based classifier from given
dictionaries, which takes a context-free noun phrase (men-
tion utterance) as the input, and outputs a score indicating
how possible the input phrase could be a valid mention of
such entity type. For example, assigning “Washington” a
high PER score and “New York” a low PER score. After
that, we collect the noun phrases with high classification
scores as the possible entity mention block. And only the
instances within the block will be regarded as potential false
negative mentions. Then Hypergeometric Learning will be
applied to denoise these potential mentions, which tries to
further distinguish false negative instances (i.e., the noises
in true negative instances) from all noun phrases screened
out. The learning procedure regards the false negative in-
stances as the noise out of all blocked noun phrases. And
the denoiser is learned jointly from denoising both positive
and negative instances, which means that we will learn one
denoiser with the loss from both these blocked noun phrases
and the instances from distant supervision.

Experiments with Synthetic Dictionaries
In this section, we conducted experiments to verify the ef-
ficacy of the proposed Hypergeometric Learning algorithm.
Specifically, we evaluate our method to answer the following
three questions:

• Can Hypergeometric Learning-based denoiser effectively
identify the noisy instances in the weakly-labeled training
data?

• Can the proposed Mention Blocking approach effectively
detect false negative instances and improves the denoising
performance?

• Can using the dataset denoised by HGL significantly im-
prove the performance of conventional NER models such
as Bert-CRF tagger?

14484



Experimental Settings
Dataset. We conduct experiments on ACE2005 (Walker
et al. 2006) benchmark, which contains 7 entity categories.
We use the same experimental setup as (Ju, Miwa, and Ana-
niadou 2018; Katiyar and Cardie 2018; Wang and Lu 2018;
Straková, Straka, and Hajič 2019; Lin et al. 2019a), where
the entire dataset is split into 8:1:1 for training, developing
and testing respectively. We keep only the outmost entity
mentions and therefore ignore the overlapping mentions of
the same type. To verify the adaptiveness of the proposed
methods, we conducted experiments based on two settings:
1) Vanilla ACE2005, which considers all named, nominal
and pronominal mentions; 2) ACE2005 NAM1, which con-
siders only named mentions in the original dataset, while ig-
nores nominal and pronominal mentions. We refer to these
two settings as ACE ALL and ACE NAM respectively.
Generally speaking, ACE ALL is with relatively large noise
ratio compared with ACE NAM due to the stronger ambigu-
ity of nominal and pronominal utterances.

Distant Supervision. To effectively verify the adaptive-
ness of Hypergeometric Learning under different dictionary
quality settings, in this section we conducted experiments
using synthetic dictionaries extracted from the training data.
And in the next section we will conduct an experiment on
the real-world dictionaries to further verify the effectiveness
of HGL.

Specifically, in this section we used all mentions extracted
from the original training data as our distant supervision
source dictionary. We then used the dictionary to label all
documents in the original training set to obtain weakly-
labeled training instance for our denoiser. This guarantees
that the dictionary used in our experiment is with high re-
call rate. The macro-averaged noise rate on ACE ALL and
ACE NAM are 0.79 and 0.20, respectively. This indicates
the necessity of introducing denoising algorithm to distant
supervision NER, even when a golden dictionary is applied.

Noise Rate Estimation. For HGL, we estimate the noise
ratio of each entity type from the development set. Because
we may not estimate noises rate exactly accurately in reality,
we approximate noise rates with its nearest 5% percentile.
For example, if the noise rate is 34.1% in the development
set, we will use 35% as the noise rate during HGL learning.

Implementation Detail. We use Allennlp (Gardner et al.
2018), an open-source NLP research library to implement
our method and conduct experiments. For HGL, we set batch
size to 150 and use Adam (Kingma and Ba 2015) as op-
timizer, the learning rate is 1 × 10−5. We used cased L-
24 H-1024 A-16 as pretrained encoder. We openly release
our source code at github.com/zwkatgithub/HGL.

1For ACE2005 NAM, we only conduct experiments on PER,
ORG and GPE because other entity types do not have sufficient
instances in both training and test set.

Baselines
We compared HGL with the following baselines:
• Supervised Learning (Supervised), which used fully-

annotated data to directly train the NER model, which can
serve as the upper bound of all denoising methods.

• Naive Distant Supervision (Naive), which directly used
the dictionary to label the plain texts and does not conduct
any denoising on the annotation results.

• Instance-level Expectation Maximization (In-
stance) (Moon 1996), which identifies noisy training
instances in a self-supervision manner according to the
instance-level confidence. Specifically, the loss of each
instance is reshaped by:

L(x) =f(x; θt) log f(x)

+ [1− f(x; θt)] log[1− f(x)].
(9)

This can be regarded as a baseline that only considers
instance-level confidence but ignores the overall noise
distribution during the training procedure.

• XR-Loss (Ben Noach and Goldberg 2019) (XR), which
considers the proportional mapping between distant su-
pervision label mentions to correctly labeled and noisy in-
stances. In other words, this method takes only the overall
noise rate into consideration but ignores the instance-level
confidence.

• Positive-Unlabeled Learning (Peng et al. 2019) (PU-
Learning), which tackles the mislabeling in distant su-
pervision by regarding it as a positive-unlabeled learn-
ing problem and reshapes the training procedure with a
regularizer considers the mislabeling ratio. Note that this
method is to learn a NER model directly on DS-NER
datasets, which is unable to identify the exact noise in-
stance during learning.

Denoising Performance
The first group of our experiments was conducted to evalu-
ate how well the proposed HGL and baseline methods can
denoise the weakly labeled data. We evaluate the denoising
performance using ranking based metrics to see how well
the algorithms can identify correct instances out of noisy in-
stances.
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Figure 3: Precision-Recall curves of different denoising al-
gorithms on ACE2005 datasets. We can see that HGL signif-
icantly outperforms other baselines, especially on high noise
rate ACE ALL setting.
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Dataset ACE ALL ACE NAM
Method PER ORG GPE LOC FAC VEH WEA PER ORG GPE
Instance 63.97 72.88 66.15 83.75 77.61 79.23 80.92 71.65 50.07 52.41
XR 56.51 77.42 67.35 82.03 78.62 84.63 74.47 66.97 55.30 59.46
HGL 80.35 82.28 86.50 93.86 90.56 90.03 94.00 71.68 59.22 64.35

Table 1: The AUC scores of denoising performance of different algorithms on ACE ALL and ACE NAM. We can see that HGL
significantly outperfoms other methods by a large margin.

Figure 3 shows the macro-averaged precision-recall
curves of HGL and other baselines on ACE ALL and
ACE NAM respectively, while Table 1 shows the overall
AUC scores of all systems. We can see that the proposed
HGL algorithm significantly outperforms other denoising
algorithms. For AUC scores, HGL outperforms other base-
lines by a large margin on almost all settings, which demon-
strates the effectiveness of our method. Furthermore, we
can see that from the Precision-Recall curves, the per-
formance of other baselines dramatically drops as the re-
call increases, which indicates that HGL performs signifi-
cantly better, especially on correct instances that are hard to
be distinguished from noise. Besides, from both the AUC
scores and the Precision-Recall curves, the improvement of
HGL, compared with other baselines, is more remarkable on
ACE ALL than on ACE NAM. This is because, as we men-
tioned above, the overall noise rate of ACE ALL is much
larger than ACE NAM, which makes previous methods that
do not consider both instance confidence and noise distribu-
tion can not achieve promising performance in this circum-
stance. Generally speaking, owing to the effective exploit
both instance-level confidence and the overall noise distri-
bution, HGL can achieve much better and robust denoising
performance for distant supervision NER.

Learning NER models with Denoised Data
In this section, we investigate whether denoised data can
effectively improve the training of a commonly-used NER
model. Specifically, for each denoising algorithm, we re-
garded N × p weakly-labeled instances in the training set
with the highest confidence derived from the denoiser as the
golden entity mentions. Then the denoised data is used to
train widely-used BERT-CRF NER taggers to evaluate the
performance. The performance is evaluated using the final
F1-score achieved in the original test set.

Table 2 shows the results. We can see that:
1) Denoising is critical for distant supervision NER.

Compared with the naive distant supervision setting, using
denoised data to train Bert-CRF tagger achieves significant
improvements.

2) HGL outperforms all other denoising baselines on
all settings by a large margin, especially on those set-
tings with larger noise rates. This result is not surprising
because, as we have shown before, the denoising perfor-
mance of HGL is significantly better than other baselines.
This again demonstrates the effectiveness of HGL in model-
ing noise distribution and instance-level confidence.

3) There is still a gap between the supervised learning
and distant supervision. This is because even remarkable

progress has been made by HGL, there still exists some er-
rors in denoising. This indicates the potential improvement
in denoising distant supervision NER in the future.
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Figure 4: The coverage of false negative instances w.r.t. noun
phrase screening rate. We can see that Mention Blocking can
cover more than 50% false negative instances by considering
less than 10% noun phrases.

Efficacy of Mention Blocking
This section conducted experiments to verify the effective-
ness of the proposed Mention Blocking approach and how
well HGL can work when false negative exists. For this, we
randomly dropped 50% mentions in the dictionary derived
from the ACE2005 training data. Therefore, the weakly-
labelled data will contain a number of both false positive and
false negative instances. We compared HGL with or without
Mention Blocking to verify the effectiveness of processing
false negative instances. We keep noun phrases that with top
10% confidence in Mention Blocking as the potential false
negative mentions, and introduce them into the HGL proce-
dure.

Table 3 shows the AUC scores of denoising performance
under this setting 2. We can see that HGL with Mention
Blocking significantly outperforms the one that only focus
on false positive instances, as well as other baselines. This
shows the effectiveness of the proposed Mention Blocking
approach. To further demonstrate this, Figure 4 shows the
coverage of the false negative instances with respect to the
total noun phrases screened out. From this figure, we can
see that Mention Blocking is very effective to find the po-
tential entity mentions: top 10% noun phrases screened out

2The AUC scores does not consider the noun phrases that are
not identified by either distant supervision or Mention Blocking,
because all methods will treat them as negative instances and they
will not influence the evaluation results.
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ACE ALL ACE NAM
Model PER ORG GPE LOC FAC VEH WEA PER ORG GPE
Supervised 85.51 66.45 76.92 65.96 58.97 52.29 73.12 84.80 76.55 89.89
Naive 60.78 32.70 33.28 7.91 15.22 8.12 7.47 81.03 70.36 75.63
Instance 54.52 32.53 34.43 30.99 28.07 11.32 18.75 82.84 51.83 76.53
XR 50.60 38.10 28.38 22.54 27.43 35.21 14.46 80.12 57.92 71.40
PU-Learning 56.54 23.91 24.63 5.32 11.96 7.13 6.81 76.36 53.86 75.79
HGL 69.65 47.09 59.94 60.87 51.56 42.18 59.77 84.45 67.51 77.56

Table 2: The F1 scores of Bert-CRF models with different denoising algorithms on ACE2005 test sets. We can see that the
proposed HGL significantly outperforms other baselines, especially on those high noise-ratio settings.

Method PER ORG GPE
Instance 74.79 71.70 69.85
XR 79.07 72.93 73.13
HGL (False Positive Only) 78.88 72.69 76.06
HGL + Mention Blocking 79.80 73.97 76.13

Table 3: The AUC scores of denoising performance on
ACE2005 NAM when false negative instances exist.

PER ORG LOC MISC Overall
XR 91.97 64.46 71.00 55.11 73.65
PU-Learning 93.93 67.34 65.58 50.94 72.34
HGL 92.78 68.30 71.62 56.69 74.87

Table 4: DS-NER performance on CoNLL03 test set eval-
uated using span-based micro-F1 scores. We can see that
HGL significantly outperform other denoising algorithms.

can cover more than 50% false negative mentions. This ver-
ify the efficacy of Mention Blocking method.

Experiments with Real-world Dictionaries
To further verify the effectiveness of the proposed hypergeo-
metric learning method on real-world DS-NER settings. We
follow Peng et al. (2019) to further conduct an experiments
on CoNLL2003 dataset, using a real-world dictionary as the
source of distant supervision.

Distant Supervision. We followed Peng et al. (2019) and
used their extracted dictionary to conduct the evaluation.
The dictionary was extracted from government websites 3

and Wikipedia pages 4. We then used the dictionaries to ob-
tain weakly-labeled training instances using forward maxi-
mum matching. According to Peng et al. (2019), this dictio-
nary is with very high precision but relatively low coverage
rate on CoNLL03, and the denoising algorithm should be
conducted to distinguish false negative instances. Therefore,
we directly apply HGL on the negative instances.

Overall Performance. Table 4 shows the overall experi-
mental results measured using standard span-based micro-

3http://www.ons.gov.uk/ons/index.html
4https://en.wikipedia.org/wiki/List of countries by natio

nal capital largest and secondlargest cities

Recall Model PER ORG LOC MISC

25%
XR 99.00 71.41 85.38 65.32

PU-Learning 95.73 87.22 86.45 90.03
HGL 96.73 85.12 96.33 90.82

50%
XR 98.32 60.20 82.25 62.26

PU-Learning 92.76 77.03 75.90 80.72
HGL 97.96 78.22 90.29 66.68

75%
XR 96.70 48.88 69.13 45.32

PU-Learning 86.89 55.88 41.78 20.36
HGL 97.93 70.40 70.98 43.04

Table 5: The token-level precisions under different recall
rates on the denoised distantly-supervised CoNLL03 train-
ing set. We can see that HGL achieved the best performance
on the majority of settings.

F15. We can see that HGL significantly outperforms other
baselines. Furthermore, Table 5 shows the change of preci-
sion w.r.t. different target recall rates. We can see that un-
der the majority of experiment groups, HGL can achieve
better precision than other previous methods. This demon-
strate that HGL can achieve steadily better performance un-
der ranking measurements, i.e., instances obtained high con-
fidence from HGL are more likely to be true entity mentions.
All these experimental results consist with results in the pre-
vious section, which further demonstrate the effectiveness of
HGL.

Conclusions
This paper proposes a new denoising algorithm – Hyper-
geometric Learning, which can model and exploit both the
instance-level evidence and the underlying noise distribu-
tion for denoising DS-NER. Experimental results on both
high-precision and high-recall DS-NER settings show that,
by further taking the corpus-level noise distribution into con-
sideration, HGL can effectively denoise the DS-labeled data,
learn an effective NER model, and achieve robust perfor-
mance on different entity types and different dataset settings.

5From the source code provided by Peng et al. (2019) on
Github, we find that they used a token-based evaluation criteria,
which is different from the most widely-used span-based criteria
and therefore over-estimated NER performance. In this paper, we
reproduced their results using the provided source code and com-
pared it with HGL/XR using the standard span-based micrio-F1
metric.
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