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Abstract

In community-based question answering (CQA) platforms,
automatic answer ranking for a given question is critical
for finding potentially popular answers in early times. The
mainstream approaches learn to generate answer ranking
scores based on the matching degree between question and
answer representations as well as the influence of respon-
dents. However, they encounter two main limitations: (1) Cor-
relations between answers in the same question are often
overlooked. (2) Question and respondent representations are
built independently of specific answers before affecting an-
swer representations. To address the limitations, we devise
a novel graph-based tri-attention network, namely GTAN,
which has two innovations. First, GTAN proposes to con-
struct a graph for each question and learn answer correlations
from each graph through graph neural networks (GNNs).
Second, based on the representations learned from GNNs,
an alternating tri-attention method is developed to alterna-
tively build target-aware respondent representations, answer-
specific question representations, and context-aware answer
representations by attention computation. GTAN finally in-
tegrates the above representations to generate answer rank-
ing scores. Experiments on three real-world CQA datasets
demonstrate GTAN significantly outperforms state-of-the-art
answer ranking methods, validating the rationality of the net-
work architecture.

Introduction
Community-based question answering (CQA) is a pivotal
online service gathering the wisdom of the crowd. It enables
users to ask and answer questions, and draws much research
interest (Ji et al. 2012). Popular CQAs, including StackOver-
flow, Quora, and Zhihu, have been the crucial entries for
modern knowledge sharing and retrieval due to the accu-
mulated millions of questions and answers. Consequently, it
is of great importance for CQA platforms to support high-
quality answer selection for ordinary users. Although the
votes (e.g., thumbs-up) received by each answer can be the
standards to prioritize high-quality answers, their accumula-
tion inevitably needs notable time costs (see Figure 2). As
such, automatic answer ranking is indispensable for quickly
finding potentially popular answers with high quality.
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Input Answer B
Every bit auf code 
after a (unconditional) 
return statement of 
any function/method 
in C/C++ is…… 

Input Answer A
It's not difficult; just 
return a proxy object 
(rather than a pointer) 
which executes code 
in its destructor,……

Input Question Q
Execution of code in 
a function after the 
return statement has 
been accessed in c++.
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Figure 1: An illustrative example of automatic answer rank-
ing in CQA for one question and its answers.

To this end, some conventional approaches (Shah and
Pomerantz 2010; Hu et al. 2013; Tymoshenko and Mos-
chitti 2015; Omari et al. 2016) conduct tedious feature en-
gineering to find effective features, whereas they are labor-
intensive and have limited generalization ability. Thus re-
cent efforts (Shen et al. 2015; Qiu and Huang 2015; Fang
et al. 2016; Zhang et al. 2017; Zhao et al. 2017; Hu et al.
2018; Lyu et al. 2019) are devoted to deep representation
learning approaches for measuring the matching degree be-
tween target questions and answers. In particular, a few re-
cent studies (Zhao et al. 2017; Hu et al. 2018; Lyu et al.
2019; Xie et al. 2020) additionally build respondent repre-
sentations based on their IDs or historical answers, hoping
to reveal user expertise on answer quality. It is worth noting
that the respondent role embodies the unique characteristics
of CQA, as compared to general question answering.

However, the above approaches are subject to two inher-
ent limitations. Firstly, they learn each answer representa-
tion independently, yet the correlations between answers be-
longing to the same question are overlooked, which provide
some clues in characterizing answers (see Figure 3 where
top-ranked answers associated with the same question have
larger similarities). Secondly, each question and respondent
are assumed to only have one context-free representation for
affecting answer representations, which does not conform to
real situations. On the one hand, different parts of a question
might be addressed by its different answers. As shown in
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Figure 1, answer A gives more information w.r.t. the word
“execution” in the question, while answer B concentrates
more on the word “statement”. Thus it is more promising
to build answer-specific question representations to further
promote answer representations. On the other hand, a re-
spondent is usually with mixed professional interests, but
only a part of them is associated with a given question-
answer pair. As such, it might be better to build target-aware
representation for a respondent.

To address the above two limitations, we propose the
novel GTAN model (short for Graph-based Tri-Attention
Network) to take questions, answers, and respondents as in-
put, and output answer ranking scores. As shown in Figure 1,
we first construct a graph for the question and its answers,
wherein word nodes act as bridges to connect answers. Con-
sequently, GTAN customizes a CQA-based graph neural
network (GNN) to encode answer correlations into their rep-
resentations. Based on the graph-based representations ob-
tained by GNN, an alternating tri-attention method is devel-
oped to first build target-aware respondent representations
based on QA-guided attention gating and answer-specific
question representations through answer-guided question at-
tention. Then the two types of representations in turn af-
fect answers to form context-aware answer representations
by question and respondent-guided answer attention. As
such, representations of questions, respondents, and answers
are alternatively updated. GTAN ultimately integrates the
above-obtained representations to compute answer scores.
In summary, we make the following contributions:

(1) We highlight the two limitations of existing answer
ranking methods by showing the necessities of encoding an-
swer correlations into answer representations and learning
target-aware respondent representations and answer-specific
question representations.

(2) We propose GTAN that contains two innovations: a
customized GNN for encoding answer correlations and an
alternating tri-attention mechanism to learn question, re-
spondent, and answer representations. To our knowledge,
this is the first study to build heterogeneous graphs and ap-
plying GNN for answer ranking in CQA.

(3) We demonstrate GTAN achieves the superior perfor-
mance through extensive experiments on three real-world
datasets and validate overcoming each limitation indeed pro-
motes answer ranking performance.

Related Work
Existing approaches for answer ranking in CQA are mainly
categorized into aspects: feature-based approaches and
representation learning-based approaches. The first cate-
gory heavily relies on manual-crafted features. An early
study (Shah and Pomerantz 2010) proposes to use classi-
fication models (e.g., logistic regression) with the input of
the features constructed from questions, answers, and re-
spondents, such as the length of answer text and the number
of questions answered by a respondent. More complex and
advanced textual features, such as dependency-based struc-
tural features (Tymoshenko and Moschitti 2015) and nov-
elty based features (Omari et al. 2016) have also been in-
vestigated to improve their performance. Besides, more than

(a) Answer Occurrence (b) Vote Occurrence

Figure 2: Distributions of the occurrence of answers and
votes with respect to time interval in StackOverflow.

forty Boolean features are exploited to classify two answers
into the same class or not in a separate stage (Joty et al.
2015). However, these feature-based approaches have low
generalization ability due to the domain-specific features
and are labor-intensive.

To alleviate the above issues, representation learning-
based approaches have become the paradigm. Most of them
regard the problem as question-answer text matching and
learn low-dimensional feature representations for questions
and answers. The work (Shen et al. 2015) calculates word-
level cosine similarities based on word embeddings of ques-
tions and answers obtained by Skip-gram (Mikolov et al.
2013). Neural tensor network (Socher et al. 2013) is further
utilized to model the matching degree with a non-linear ten-
sor layer (Qiu and Huang 2015). To incorporate the role of
respondents, a few recent studies learn their representations
so as to better characterize the matching between questions
and answers. The work (Hu et al. 2018) considers multi-
modal content (e.g., text and image) and social relations be-
tween respondents to enrich the representations of their cor-
responding questions and answers. Both the studies (Zhao
et al. 2017) and (Lyu et al. 2019) decompose the matching
computation into two parts: question-answer matching (the
same as previous studies), and question-respondent match-
ing (newly added to incorporate the effect of respondents).
The enhancement part of the study (Lyu et al. 2019) over the
work (Zhao et al. 2017) is attributed to the answer represen-
tation learning with latent user expertise and hierarchical at-
tention mechanisms, as compared to the previous work that
models answer embeddings independent on their authors.
Moreover, AUANN (Xie et al. 2020) employs generative ad-
versarial networks (GANs) (Goodfellow et al. 2014) to help
to learn from user past answers for acquiring relevant user
representations, which are then directly fed into score com-
putation.

As aforementioned, the above representation learning-
based models have two limitations which motivate this study
to pursue more effective representations. GNNs (Kipf and
Welling 2017; Veličković et al. 2018), which have already
been applied to general question answering (Cao, Aziz, and
Titov 2019; Tu et al. 2019), and attention mechanism (Bah-
danau, Cho, and Bengio 2015; Zhang et al. 2018) are the
backbones to devise the CQA-based graph neural network
for the first limitation and alternating tri-attention mecha-
nism for the second limitation, respectively.
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Figure 3: Textual similarities between answers with similar
or different quality levels.

Preliminaries
Problem Formulation Assume we have a question set
Qtr for training. Taking question q ∈ Qtr as an illustrative
example throughout this paper, it consists of a textual de-
scription of length l(q), denoted as (wq1, w

q
2, ..., w

q
l(q)), and a

set of answers, denoted as Aq = {aq1, a
q
2, ..., a

q
n(q)}, where

n(q) is the number of answers. In reality, each answer is
provided by a user (a.k.a. respondent). Hence we have a cor-
responding user set Uq = {uq1, u

q
2, ..., u

q
n(q)} for question q.

Furthermore, we denote aqi as a composition of l(aqi ) words,
i.e., aqi = (wqi,1, w

q
i,2, ..., w

q
i,l(aqi )

). All the words come from
a pre-defined vocabulary setW .

Given the above notations, the aim of automatic answer
ranking in CQA is to learn a function: f(q, aqi , u

q
i ) → sqi to

generate score sqi of answer aqi , which is provided by user uqi
for question q. Since the set of ground-truth vote counts, i.e.,
Vq = {vq1, v

q
2, ..., v

q
n(q)}(v

q
i ∈ Z∗) is known in the training

set, it is used to train the score function. To be specific, given
two answers aqi , a

q
j ∈ Aq satisfying vqi > vqj , we aim to

learn a score function f(·) to make the scores sqi and sqj sat-
isfy the following inequality: sqi > sqj . The above procedure
holds true for every question in Qtr. Through the learned
score function, we can generate scores to automatically rank
answers for a newly arrived question. Without causing am-
biguity, we omit the superscript q in the remaining of the
paper for simplicity.

Data Analysis In this part, we conduct preliminary data
analysis for the following two aspects: 1) the distribution
of time intervals w.r.t. questions, answers, and votes; 2) the
existence of answer correlations. We have three real-world
CQA datasets (i.e., StackOverflow, Zhihu, and Quora) for
analysis, the details of which will be illustrated in the exper-
imental section.

Due to the lack of vote timestamps in Zhihu and Quora,
we only take StackOverflow for illustrating the first aspect.
We first depict the distributions of time intervals between the
timestamps when a question is raised and when its answers
occur. As Figure 2a shows, about 64% of the answers are
posted within 100 minutes after their questions are raised,
accounting for a large proportion of all the answers. By con-
trast, in Figure 2b, merely 18% of the votes are collected
within a time interval of 105 minutes (over 2 months) af-
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Figure 4: Architecture of GTAN (blue: questions, green: an-
swers, red: respondents, yellow: words).

ter the corresponding answers are provided. The dispropor-
tionate distribution implies that far before we can observe
enough votes for answer ranking, an automatic answer rank-
ing mechanism is needed to return potentially popular an-
swers, which lays the foundation of the problem.

Furthermore, the existence of answer correlations is ver-
ified by comparing the textual similarities calculated on an-
swers with different types of ranks. To accomplish this,
we represent each answer through a pretrained Doc2Vec
model (Le and Mikolov 2014) and use cosine similarity,
which is insensitive to text length. Given answers’ vote num-
ber, we rank them in descending order and thus high-quality
answers are in top positions. We regard the answers in the
range of the first 25-th percentile as “Top” ones and those af-
ter 75-th percentile as “Bottom” ones. For each question, we
compute the average cosine similarities between “Top” and
“Top” answers, “Top” and “’Bottom’ answers, and “Bot-
tom” and “Bottom” answers. Figure 3 reports that the simi-
larities between “Top” and “Top” answers (i.e., “Top-Top”)
are consistently larger than the other two kinds of similari-
ties in the three datasets. The law behind this phenomenon
might be that high-quality answers belonging to the same
question share some spirits, which is reflected by textual
similarities. We also measure the cosine similarity between
different types of answer corresponding to the figure. The
similarity values w.r.t. ”Top-Top” are greater than those
w.r.t. ”Bottom-Bottom” by 30.5%, 52.5%, and 20.9% on
the StackOverflow, Zhihu, and Quora datsets, respectively.
Therefore the intuition of good answers with larger similar-
ities then inspires us to build graphs to learn answer correla-
tions through representation propagation.

Proposed Methodology: GTAN
Model Overview: The architecture of GTAN is depicted in
Figure 4. It briefly presents the information flow from input
question, answer, and respondent, to answer score. Basically
speaking, the CQA-based graph neural network is first exe-
cuted for correlation modeling and getting the graph-based
question, answer, and word representations. Consequently,
respondent gating and question attention are conducted to
gain target-aware respondent representations and answer-
specific question representations, which are in turn used for
building context-aware answer representations through an-
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swer attention. Based on the above-obtained representations,
answer score generation can be ultimately performed.

CQA-Based Graph Neural Network
As the graph example shown in Figure 4, we build a text
graph for each given question, which has three types of
nodes, i.e., question, answer, and word. It is intuitive that
answer correlations are reflected by their shared words, and
this is also true for the relevance between a question and
its answers. With this intuition, we have answer-word edges
and question-word edges. The weights are assigned by term
frequency-inverse document frequency (TF-IDF) to capture
the word importance for answers and questions. For ease of
calculation, the adjacency matrix A is used to contain the
TF-IDF weights of the graph, wherein Ai,j = 1 if i = j.

Before introducing the CQA-based GNN, we first as-
sume the input representations of question q, question words
wj(j ∈ {1, ..., l(q)}), answers ai(i ∈ {1, ..., n(q)}), and
answer words wi,j(j ∈ {1, ..., l(ai)}) for each ai are repre-
sented as e, ewj , eai , and ewi,j , respectively. They are fixed
during the training stage, so as to remain consistent with test-
ing on new questions and answers. For ease of illustration,
we use an integrated embedding matrix E0 to include all of
them, where E0

i indicates the i-th node of the graph.
Firstly, taking node i as an example, CQA-based GNN

aggregates the representations of its neighboring nodes as:

H0
i =

∑
j∈Nr(i)

Ai,jE
0
j , (1)

where Nr(i) denotes the type-r neighboring set of node i.
Secondly, CQA-based GNN updates the target node rep-

resentation by differentiating node types as follows:

Ē1
i = ReLU(W1

τ [E0
i ⊕H0

i ⊕ [E0
i �H0

i ]]) , (2)

where [ ⊕ ] denotes a row-wise concatenation and [ � ]
represents the element-wise product. W1

τ is a type-specific
transformation matrix for either questions, answers, or
words (i.e., τ ∈ {1, 2, 3}), thus keeping aware of the
heterogeneity of the graph. Noting that CQA-based GNN
is simpler than complex heterogeneous graph neural net-
works (Zhang et al. 2019) and recent studies (Wu et al. 2019;
He et al. 2020) demonstrate simplified GNNs could retain
comparable performance as compared to complex GNNs.
To relieve over-smoothing issue (Li et al. 2019), we adopt
a gate to control information flows from previous layer.

E1
i = α ∗ Ē1

i + (1− α) ∗E0
i , (3)

α = σ(WG[Ē1
i ⊕E0

i ] + bG) , (4)

where WG and bG are trainable parameters, and σ stands
for sigmoid function.

The above two procedures are repeated multiple times
to realize high-order propagation. Supposing the num-
ber of propagation is set to T , GTAN ultimately re-
turns the embedding matrix ET , from which we extract
the graph-based representations ê, êai , êwj

, and êwi,j

corresponding to the input representations. The trainable
parameters in the module are summarized as ΘG =
{WG,bG,Wt

1,W
t
2,W

t
3}|Tt=1.

Alternating Tri-Attention Mechanism
This mechanism contains QA-guided attention gating for re-
spondent representations, answer-guided question attention
for question representations, and question and respondent-
guided answer attention for answer representations.

QA-guided Attention Gating To capture the expertise
relevant to the target question and answer, QA-guided at-
tention gating is proposed to filter irrelevant information in
each dimension of the respondent representation. Specifi-
cally, given the ID of respondent ui, a look-up table man-
ner is conducted over respondent embedding matrix EU to
get original respondent representation eui

. Note that we fo-
cus on respondents that already have answers in this paper
and regard modeling new respondents as future work. Con-
sequently, the attention gating calculates target-aware re-
spondent representation ēui based on graph-based ques-
tion and answer representations, which is defined as follows:

ēui
= σ(WU [ê⊕ êai ] + bU )� eui

(5)
where ΘU = {WU ,bU ,EU} are trainable parameters.

Answer-guided Question Attention Using a unique vec-
tor for each question limits its expressive ability when affect-
ing the representations of its different answers. Thus we pro-
pose to compute answer-specific question representation
ẽi. It is realized by regarding graph-based answer represen-
tations as queries in the following attention computation.
αj = Softmax(ωQ tanh(WQ[êai ⊕ êwj

] + bQ)), (6)

ẽi =

l(q)∑
j=1

αj êwj
, (7)

where αj is an attention weight. ΘQ = {ωQ,WQ,bQ} are
trainable parameters. Eq. 6 indicates that if a question word
has a closer relationship with the answer, it will contribute
more to the question representation. Though quite simple,
answer-specific question representations are indeed benefi-
cial (see Table 3). In local tests, we have tried to incorporate
respondent representations into queries but gain no signifi-
cant improvements. This is intuitive since the major role of
respondents is the expertise mainly reflected in the answer
part. At last, we integrate answer-specific question repre-
sentation ẽi with graph-based question representation ê for
answer ai, i.e., ēi = [ẽi ⊕ ê].

Question and Respondent-Guided Answer Attention
We provide answer attention here to grasp the impact of
the respondent and question on the answer representation. It
takes ēi and ēui

together as the query. As a result, the com-
putation of the attention weight βj over the target answer
word representation êwi,j

is formulated as follows:

βj = Softmax(ωA tanh(WA[ēi⊕ēui
⊕êwi,j

]+bA)). (8)
It reveals that an important answer word should have greater
relevance to both the question and the respondent. Similarly,
we have ΘA = {ωA,WA,bA} as learnable parameters.
The context-aware answer representation ẽai is gotten by:

ẽai =

l(ai)∑
j=1

βj êwi,j . (9)
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Although the methodological aspects in alternating tri-
attention mechanism shares partially similar spirits with ex-
isting studies attention-based studies (Lu et al. 2016; Nam,
Ha, and Kim 2017; Zhang et al. 2018), it is seamlessly inte-
grated with the GNN part for utilizing the graph-based rep-
resentations to alternately learn effective respondent, ques-
tion, and answer representations, showing some novel in-
sights. Finally, we obtain an integrated answer representa-
tion ēai = [ẽai ⊕ êai ].

Score Generation and Training
Answer Score Generation To generate the ranking score
of answer ai, we first concatenate the three representations
[ēi ⊕ ēai ⊕ ēui ] to have zi. Afterwards, we feed zi into a
feed-forward neural network with K fully-connected (FC)
layers. Hence the corresponding score is calculated as:

si = FCK

((
· · ·FC1(zi; θ1); · · ·

)
; θK

)
, (10)

where FCk denotes the k-th fully-connected layer. As
usual, we summarize the trainable parameters as ΘF =
{θ1, ..., θK}. In summary, we have the score function
f(q, ai, ui; Θ) to generate answer ranking score si, where
Θ = {ΘG,ΘU ,ΘQ,ΘA,ΘF } cover all trainable model pa-
rameters.

Model Training The aim of model training is to learn op-
timal parameters Θ by referring to the ground-truth vote
counts of answers. By convention (Zhao et al. 2017; Lyu
et al. 2019), we adopt pairwise learning to rank and define
the loss function for question q (q ∈ Qtr) as follows:

L =
∑

i,j (vi>vj)

max
(

0, c+f(q, aj , uj ; Θ)−f(q, ai, ui; Θ)
)
,

(11)
where c (c = 1 for experiments) is the specified margin for
pairwise ranking. The initialization of the input representa-
tions (e.g., word embeddings) and the used optimization al-
gorithm, as well as some hyper-parameter settings are clari-
fied in the experimental part.

Experiments
In this section, we elaborate the experimental setup and an-
alyze the experimental results, aiming to answer:
RQ1: Can GTAN achieve better answer ranking performance
than the state-of-the-art methods for answer ranking?
RQ2: How do the key model components and information
types used in GTAN contribute to the overall performance?

Experimental Setup
Datasets To ensure the reliability of the results, we
conduct experiments on three real-world datasets, i.e.,
StackOverflow1, Zhihu (collected from its website), and
Quora (Lyu et al. 2019). They correspond to three represen-
tative and complementary CQA platforms.

1https://archive.org/download/stackexchange/stackoverflow.
com-Posts.7z

Dataset #Que. #Ans. #Resp. Vocab. Avg. Len.

SO 139128 884261 40213 52457 81.6
Zhihu 19357 473338 133203 65880 85.6
Quora 12664 66779 6061 44149 64.4

Table 1: Detailed statistics of the three datasets. Avg. Len.
denotes the average length of answers.

For all the Chinese text in Zhihu, we adopt Jieba2 for word
segmentation. To filter some noisy data, we adopt the fol-
lowing procedures: (1) We filter respondents with less than
5 answers. (2) We remove answers with less than 5 words
and questions with less than 5 answers or too many answers
(e.g., 1000). (3) We discard words that appear infrequently
(e.g., less than 10 times). The above procedures could be re-
peated several times to have a stable data size. Finally, the
basic statistics of the three datasets are summarized in Ta-
ble ??. Particularly, the constructed graphs have on average
over 200 nodes for the StackOverflow and Quora datasets
and over 1000 nodes for the Zhihu dataset. We split the
datasets into training sets, validation sets, and test sets, ac-
cording to the ratios of about 8 to 1 to 1.

Evaluation Metrics To keep consistent with previous
studies (Lyu et al. 2019), we adopt the following ranking
metrics: (1) Mean Reciprocal Rank (MRR), which measures
how the best answer is ranked by different approaches; (2)
Normalized Discounted Cumulative Gain (NDCG), which
provides a position-aware performance; (3) P@1 (short for
Precision@1), which calculates the ratio that the best an-
swers are ranked at the first position. For each question, the
best answer used to calculate MRR and P@1 is the one with
the largest vote count within that question. Similarly, the
ground-truth positions of answers are determined by sorting
their vote counts in descending order.

Baselines The representative baselines are as follows:
- Doc2Vec (Le and Mikolov 2014) naturally extends
Word2Vec (Mikolov et al. 2013) by associating sentence-
level representations accompanied by word embeddings. We
utilize Doc2Vec to gain answer representations and add FC
layers on top of them to generate answer scores.
- S-matrix (Shen et al. 2015) gains a semantic similarity
matrix between a question and an answer in the word level.
It is followed by convolutional layers to model the matrix.
- CNTN (Qiu and Huang 2015) characterizes the com-
plex interactions between questions and answers with the
combination of convolutional networks and neural tensor
networks. Dynamic k-max pooling (Kalchbrenner, Grefen-
stette, and Blunsom 2014) is leveraged within it.
- AMRNL (Zhao et al. 2017) decomposes the similarity
computation into the question-answer part and question-
respondent part. Thus the role of respondents is first con-
sidered for the studied problem.
- UEAN (Lyu et al. 2019) performs both word-level and
sentence-level attention computations, which enable ques-
tion topic and user expertise to affect answer representa-

2https://github.com/fxsjy/jieba
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Method StackOverflow Zhihu Quora
P@1 MRR NDCG@3 P@1 MRR NDCG@3 P@1 MRR NDCG@3

Doc2vec 0.2985 0.5136 0.6664 0.1658 0.3555 0.3987 0.4387 0.6336 0.7179
S-matrix 0.3123 0.5353 0.6751 0.1817 0.3653 0.4022 0.4393 0.6383 0.7234
CNTN 0.3142 0.5400 0.6823 0.2013 0.3849 0.4275 0.4431 0.6414 0.7278

TextGCN 0.3248 0.5475 0.6867 0.2011 0.3739 0.4192 0.4128 0.6174 0.7032
AMRNL 0.3884 0.5971 0.7327 0.3134 0.4937 0.5657 0.6856 0.8110 0.8811
UEAN 0.3967 0.6068 0.7439 0.3354 0.5130 0.5887 0.6877 0.8123 0.8828

AUANN 0.4066 0.6132 0.7473 0.3418 0.5188 0.5958 0.6933 0.8152 0.8889
Ours (GTAN) 0.4230 0.6265 0.7597 0.3556 0.5313 0.6134 0.7235 0.8368 0.9003

Table 2: Performance comparison of all adopted approaches on the three datasets.

tions. The decomposition of similarity computation is inher-
ited from AMRNL for score generation.
- TextGCN slightly modifies original TextGCN (Yao, Mao,
and Luo 2019), a heterogeneous graph convolutional net-
work for document classification, to make it applicable to
the problem. Specifically, it replaces classification loss with
the pairwise ranking loss shown in Eq. 11.
- AUANN (Xie et al. 2020) utilizes GANs to help learning
representations of respondents based on their historical an-
swers. The relationships between questions and answers are
considered as well.

All the above baselines are tuned on validation datasets to
select the hyper-parameter configurations.

Implementation of GTAN The word representations for
CQA-based GNN are initialized by Word2Vec. We have also
tried BERT (Devlin et al. 2019) to provide pre-trained em-
beddings, but no significant gains are observed in the local
tests. The initial question and answer representations are ob-
tained by performing mean-pooling over their word embed-
dings, respectively. Based on the performance of GTAN on
validation datasets, we set the number of propagation layers
T = 2. The dimension of representations for words, ques-
tions, answers, and respondents are all set to 64. The num-
ber of FC layersK is set to 2 for a non-linear transformation.
Adam (Kingma and Ba 2015) is adopted for model optimiza-
tion, with the initial learning rate of 0.0005. We implement
the models by Tensorflow and run the experiments on a GPU
(Nvidia GeForce GTX 1080 Ti) with 11GB memory. All the
results are averaged over three runs.

Experimental Results
Overall Comparison (RQ1) Table 2 shows the overall
comparison of GTAN with different baselines. We observe
Doc2Vec performs poorly on the three datasets. This con-
forms to expectation since it only considers the answer as-
pect by learning answer representations, while neither ques-
tions nor respondents are utilized. By further comparing
Doc2Vec with S-matrix, we find the performance is im-
proved to a certain degree. This demonstrates the quality
of answer text largely determines the ranking positions and
considering the relations between answers and questions
could bring additional gains. Compared to S-matrix, CNTN
and TextGCN achieve better performance in most cases. It

makes sense because the two models have more advanced
text relevance modeling techniques (i.e., CNTN with neu-
ral tensor networks and TextGCN with GCN) than S-matrix
which is mainly based on word-level similarities.

For the models of AMRNL and UEAN, they calculate the
relevance between questions and respondents, and achieve
significantly better results than the above-mentioned meth-
ods which totally overlook the role of respondents. This can
be attributed to the fact that the expertise of respondents
heavily affects the quality of answers regarding specific top-
ics, since respondents might be knowledgeable of differ-
ent topics. Therefore, considering two different modalities
of answers, i.e., answer text and respondent, is critical for
better performance. Moreover, UEAN performs better than
AMRNL since the former one could acquire more expres-
sive answer representations. This is because UEAN incorpo-
rates respondent representations into the attention computa-
tion over answer words, but AMRNL does not directly cor-
relate answer and respondent representations AUANN fur-
ther improves the performance, thanks to the introduction of
GANs to learn better respondent representations.

In the end, our model GTAN consistently yields the best
answer ranking performance. To be specific, GTAN signifi-
cantly improves the best baseline AUANN from 40.66% to
42.30% by P@1 on StackOverflow, from 59.58% to 61.34%
by NDCG@3 on Zhihu, and from 81.52% to 83.68% by
MRR on Quora, which is verified by a paired t-test. Com-
pared to AUANN, GTAN is capable of explicitly encod-
ing answer correlations into their representations by GNN
modeling, and learning answer-specific question representa-
tions and target-aware respondent representations, which are
promising as demonstrated.

Ablation Study (RQ2) To investigate the contributions of
key components and information types adopted by GTAN,
we make the following variants of GTAN: (1) “w/o Graph”
denotes removing CQA-based GNN, equivalent to feeding
input representations directly into alternating tri-attention
computation. (2) “w/o T-MAT” means only using a shared
matrix in Eq. 2, without differentiating node types. (3)
“w/o Que” represents discarding all question information
in GTAN. (4) “w/o Res” denotes discarding all respondent
information. (5) “w/o Tri-Att” keeps the GNN part but re-
moves tri-attention computation, where the output repre-
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Method StackOverflow Zhihu Quora
P@1 MRR P@1 MRR P@1 MRR

Ours (GTAN) 0.4230 0.6265 0.3556 0.5313 0.7235 0.8368
- w/o Graph 0.3828 0.5958 0.3302 0.4894 0.7037 0.8173
- w/o T-MAT 0.4104 0.6156 0.3325 0.5109 0.7117 0.8275
- w/o Que 0.4108 0.6160 0.3372 0.5154 0.7123 0.8289
- w/o Res 0.3211 0.5448 0.1957 0.3784 0.4343 0.6342
- w/o Tri-Att 0.4027 0.6117 0.3356 0.5029 0.7085 0.8259
- w/o Que-Att 0.4127 0.6166 0.3432 0.5191 0.7162 0.8299
- w/o Res-Att 0.4122 0.6171 0.3363 0.5135 0.7130 0.8290
- w/o Res-Gate 0.4109 0.6160 0.3470 0.5202 0.7099 0.8273

Table 3: Ablation study of GTAN.

sentations of GNN, along with respondent representations,
directly form the integrated representations, as shown in
Eq. 10. (6) “w/o Que-Att” only removes the question at-
tention computation, denoting each question has only one
unique representation for similarity calculation. (7) “w/o
Res-Att” removes respondent representations from Eq. 8,
meaning not considering the role of respondents in answer
attention computation. (8) “w/o Res-Gate” removes QA-
guided Attention gating, meaning directly using original re-
spondent representations in GTAN.

Table 3 reports the results of the ablation study, from
which we have the following key observations:
* “w/o Graph” suffers from noticeable performance degra-
dation, showing the significant contribution of modeling an-
swer correlations for ranking answers. Therefore we con-
clude that addressing the first limitation is indeed beneficial.
Moreover, “w/o T-MAT” verifies that utilizing type-specific
transformation matrices promotes the performance.
* Both “w/o Que” and “w/o Res” consistently underperform
GTAN, conforming to the fact that in addition to answer text,
considering question text and respondents is indispensable.
One important observation is that “w/o Res” performs the
worst among the variants, indicating that the expertise of re-
spondents impacts a lot on answer popularity.
* The comparison between “w/o Que-Att” and GTAN val-
idates the necessity of introducing answer-specific question
representations. By further comparing “w/o Res-Gate” with
GTAN, we can see obtaining target-aware respondent rep-
resentations is effective as well. As such, we conclude that
handling the second limitation is effective.
* In addition, the results of “w/o Tri-Att” show the advan-
tages of the involved attention computations as a whole. And
the comparison between “w/o Res-Att” and GTAN indicates
the effectiveness of considering respondent effect on answer
representations (e.g., topic authority).

Impact of Propagation Layer Number We investigate
whether it is beneficial for encoding high-order relations,
not just the direct connections between answers and words.
We test the layer numbers in the range of {1, 2, 3, 4, 5}. Fig-
ure 5 depicts the variation trends of the results on the three
datasets, from which we observe that:
* When increasing the layer number from 1 to 2, the im-
provements are noticeable. This makes sense because two-
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Figure 5: Result variation w.r.t. different layer number.

layered propagation could enable correlation modeling be-
tween different answers via answer-word edges, while one-
layered propagation cannot achieve this. Thus it again veri-
fies the importance of encoding answer correlations.
* When further adding propagation layers, the performance
presents downward trends. The reason might be that adding
more layers leads to over-fitting issue and makes answer rep-
resentations not so distinguishable for judgment.

Training Efficiency We compare the training efficiency
of GTAN with the best baseline model AUANN. Table 4
demonstrates that training GTAN gains much higher effi-
ciency than training AUANN. This phenomenon is reason-
able because AUANN demands recurrent neural networks
for modeling word sequences, which incurs poor parallel
computing in GPUs.

Method StackOverflow Zhihu Quora

AUANN 63.33 128.56 41.22
Ours (GTAN) 17.02 25.71 12.95

Table 4: Average training time cost per question (ms).

Case Study To investigate how the tri-attention mecha-
nism works on real cases, we present one question exam-
ple and its two answers from StackOverflow and Zhihu,
and visualize the attention weights in Figure 6. We observe:
(1) Given a question, the mechanism enables its attention
weights to be adaptive to different answers. As the second
question example shows, its question is composed of two
parts. While the first answer only addresses the second part
about what is “Distance”, the second answer presents a more
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(a) One question and its two answers from StackOverflow.

(b) One question and its two answers from Zhihu.

Figure 6: Attention visualization on questions and their an-
swers. Darker colors mean larger attention weights.

comprehensive view of “Survival” in the first part and “Po-
etry” and “Distance” in the second part. As a result, the
question representations should be adaptable to their em-
phasis. (2) The attention mechanism could find some impor-
tant words in answers. For the first example about coding,
the two answers have opposite conclusions. The first answer
gives more details about the solutions. And its contained
technical terms “object” and “pointer” that do not appear in
the question text could be addressed by our mechanism.

Conclusion
In this paper, we study automatic answer ranking in CQA.
We address the two limitations overlooked by the conven-
tional studies by devising a novel graph-based tri-attention
network (GTAN). It has the innovations of combining CQA-
based GNN and alternating tri-attention mechanism to learn
answer correlations for the first limitation and answer-
specific question representations and target-aware respon-
dent representations for the second limitation. Moreover,
GTAN effectively integrates question, answer, and respon-
dent representations for answer score computation. We con-
duct extensive experiments on three real-world datasets col-
lected from representative CQA platforms and the results
demonstrate the superiority of the proposed model, validat-
ing the contributions of the key model components.
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