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Abstract

Contract consistency is important in ensuring the legal valid-
ity of the contract. In many scenarios, a contract is written by
filling the blanks in a precompiled form. Due to carelessness,
two blanks that should be filled with the same (or different)
content may be incorrectly filled with different (or same) con-
tent. This will result in the issue of contract inconsistencies,
which may severely impair the legal validity of the contract.
Traditional methods to address this issue mainly rely on man-
ual contract review, which is labor-intensive and costly. In this
work, we formulate a novel Contract Inconsistency Checking
(CIC) problem, and design an end-to-end framework, called
Pair-wise Blank Resolution (PBR), to solve the CIC prob-
lem with high accuracy. Our PBR model contains a novel
BlankCoder to address the challenge of modeling mean-
ingless blanks. BlankCoder adopts a two-stage attention
mechanism that adequately associates a meaningless blank
with its relevant descriptions while avoiding the incorpora-
tion of irrelevant context words. Experiments conducted on
real-world datasets show the promising performance of our
method with a balanced accuracy of 94.05% and an F1 score
of 90.90% in the CIC problem.

Introduction
A contract is a legally binding agreement that recognizes and
governs the rights and duties of the parties to the agreement.
Correctly composing contracts is crucial to ensure its legal
validity. In many real-world scenarios, a standard contract
is prepared by filling blanks in a precompiled form. Due to
carelessness, two blanks that should be filled with the same
(or different) content may be incorrectly filled with differ-
ent (or same) content. This will result in contract inconsis-
tencies, which may severely impair the legal validity of the
contract.

Contract review is widely used by companies to check
contract inconsistencies. However, contract review is labor-
intensive and costly. Big companies have to hire tens of
thousands of lawyers to conduct contract review, and it is
estimated that Fortune Global 2000 and Fortune 1000 com-
panies spend about $35 billion annually to review and ne-
gotiate contracts (Strom 2019). Therefore, it is desired to
design methods to automate the contract review process.
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SALES  CONTRACT

This Contract for the Sale of   ______   is made effecive 

on _____ . 

( )

Seller hereby agrees to sell ______    at a total price of 

RMB  ________  excluding 5%VAT on the Closing Date.

The total contract price is RMB   ________ only including

all taxes.

…

…

Name A

Name B

Number A

Number A

Date

Same reference, Different content

Different reference, Same content

Figure 1: Examples of contract inconsistencies. The two
blanks with red background refer to the same item for sale
but incorrectly filled with different content. The two blanks
with yellow background refer to two different prices (one
with tax and the other without tax) but incorrectly filled with
the same price.

In this work, we study the Contract Inconsistency Check-
ing (CIC) problem, and propose an end-to-end model to
solve the CIC problem with high accuracy. As far as we
know, the CIC problem has not yet been studied in the AI
community and no effective solution exists.

We consider contract inconsistencies caused by incor-
rectly filling blanks in a precompiled form. For example, in
Figure 1, the two blanks with red background actually refer
to the same item for sale, but incorrectly filled with different
content. The two blanks with yellow background actually
refer to two different prices (i.e., one with tax and the other
without tax), but incorrectly filled with the same price. Our
goal is to find methods that can automatically detect such
contract inconsistencies with high accuracy.

A straightforward method to solve the CIC problem is to
build a set of rules for each contract, and these rules regu-
larize the allowed content for each blank. Rule-based meth-
ods have been used for other contract-related tasks such as
checking obligation violations in contracts (Governatori and
Milosevic 2005), verifying electronic contracts (Abdelsadiq,
Molina-Jimenez, and Shrivastava 2011), and contract for-
malization (Joanni and Ratiu 2018). However, the rules have
to be built manually by experts, and they do not scale well
to diverse types of contracts.

Coreference resolution (CR) methods (Sukthanker et al.
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2020) aim to identify words or phrases that refer to the same
real-world entity in a document. At first glance, CR meth-
ods may solve the CIC problem if we view blanks as words
or phrases, and hence CR methods can be used to answer
whether two blanks refer to the same concept. However,
blanks are indeed not words or phrases which can be en-
coded using well studied word2vec methods, while blanks
are meaningless empties and have no semantic meaning at
all. Existing CR methods fail in modeling blanks in our case.

In this work, we propose a Pair-wise Blank Resolution
(PBR) framework to solve the CIC problem with high ac-
curacy. We formulate the CIC problem as a pair-wise bi-
nary classification problem. For a pair of blanks in the con-
tract document, our PBR model adopts the Siamese archi-
tecture (Bromley et al. 1994; Reimers and Gurevych 2019)
to encode each blank separately through the same blank en-
coder and then predict whether they should be filled with the
same content or not. Blank modeling is challenging since
it is hard to perform a semantic comparison to associate a
meaningless blank to its relevant descriptions. In our PBR
framework, we propose a novel BlankCoder that extends
the Transformer (Vaswani et al. 2017) encoder architecture
to address the above issue. BlankCoder adopts a two-
stage modeling strategy where a blank is first initialized with
the more related local context words and then updated by re-
currently incorporating relevant information from the global
context words. In this way, related descriptions of the blank
would be fully introduced and the irrelevant ones would be
ignored, yielding an informative blank representation.

To evaluate our method on the CIC task, we build a large-
scale Chinese contract dataset of 281 contract documents in-
cluding 299, 621 training samples (blank pairs). The English
contract dataset for element extraction released by Chalkidis
et al. (2017) is also used, and we view each element as a
filled blank. The experimental results show that our method
significantly and consistently outperforms all baseline meth-
ods with a promising performance of the balanced accuracy
of 94.05% and F1 of 90.90%.

Our contributions are summarized as follows:
(1) We formulate the Contract Inconsistency Checking

(CIC) problem. As far as we know, this problem has not yet
been studied in the AI community.

(2) We propose a novel Pair-wise Blank Resolution (PBR)
framework to address the CIC problem. In PBR, we propose
a BlankCoder that extends the Transformer encoder ar-
chitecture to efficiently model meaningless blanks.

(3) We collected and labeled a large-scale Chinese con-
tract corpus for CIC. The experimental results show the
promising performance of our PBR method.

Related Work
Our work is mainly related to three lines of recent re-
searches: automatic contract analysis, coreference resolu-
tion, and blank modeling.

Existing automatic contract analysis methods mainly as-
sist legal professionals by information extraction. Early ML-
based attempts performed sentence-level classification on
clause patterns (Indukuri and Krishna 2010) and service ex-
ceptions (Gao, Singh, and Mehra 2011). Recent DL-based

methods focus on fine-grained intra-document classifica-
tion of contract elements (Chalkidis et al. 2019), obligations
and prohibitions (Chalkidis, Androutsopoulos, and Michos
2018), and insurance policies (Sun et al. 2019), and cross-
document search of relevant clauses (Guo et al. 2020). Pre-
vious works do not perform a further comparison on the re-
trieved related sentences, leaving the detailed checking pro-
cess to lawyers. In this paper, we automate the CIC process
in a fully data-driven and end-to-end manner that signifi-
cantly speeds up the manual review process.

Coreference resolution (CR) aims to identify the words
or phrases (mentions) that refer to the same real-world en-
tity. Existing methods can be classified into three broad cat-
egories of mention-pair, entity-mention, and ranking mod-
els. Mention-pair models (Wiseman et al. 2015) predict the
coreference label for every two mentions. Entity-mention
models (Clark and Manning 2016) directly model an entity
by clustering mentions. Ranking models (Lee et al. 2017)
were further introduced to model the degree of coreference.
CIC can be view as a modified CR task that aims to iden-
tify the blanks that refer to the same content. However, CIC
is much more challenging since the blanks are meaningless
empties that can not be addressed with CR methods.

Blank modeling has been investigated in Text Infilling and
Zero Pronoun Resolution (ZPR). In text infilling, a blank is
usually treated as an out-of-vocabulary token and modeled
with sequence models such as BiLSTM (Fedus, Goodfellow,
and Dai 2018) and Transformer (Zhu, Hu, and Xing 2019).
However, these methods encode a blank with all its context
words that contain irrelevant noise descriptions. Similar to
CR, ZPR aims to identify words that co-refer with a gap (an
omitted pronoun). To encode the gap, Yin et al. (2016) de-
signed a CenteredLSTM that focuses on the more related lo-
cal words. In their later work (Yin et al. 2018), self-attention
was further utilized to enhance the performance. Recently,
Aloraini et al. (2020) adopted BERT (Devlin et al. 2019)
to encode the gap with its nearest two words. Though able
to avoid incorporating irrelevant descriptions, ZPR methods
would negligent faraway relevant descriptions.

Contract Inconsistency Checking Problem
We formulate the Contract Inconsistency Checking (CIC)
problem as a pair-wise binary classification problem, i.e.,
given a pair of blanks occurred in the contract document, we
want to predict whether they should be filled with the same
content or not.

Formally, let B denote a set of blanks in the contract
document. Each blank b ∈ B is included in a surround-
ing sentence s = {w1, w2, . . . , b, . . .} consisting of |s| − 1
words and one blank1. Given two blanks bi, bj ∈ B, the
CIC problem aims at predicting their consistency relation
rij ∈ {0, 1}, with rij = 1 meaning that the two blanks bi
and bj should be filled with the same content; and rij = 0
otherwise.

1If a sentence in the contract document contains multiple
blanks, we construct the surrounding sentence s by deleting the
other blanks and only keep the blank of interest and all the words
in the original sentence.
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bi ∈ B bj ∈ B

BlankCoder BlankCoder
weight sharing

bi ∈ Rd bj ∈ Rd

|bi − bj |

vector concatenation

binary classifier

r̂ij

Figure 2: The PBR framework.

Pair-wise Blank Resolution Framework
In this section, we propose a Pair-wise Blank Resolution
(PBR) framework to solve the CIC problem. The overall
structure of our PBR framework is illustrated in Figure 2.

Overview of the PBR Framework
The PBR framework is inspired by Coreference Resolution
(CR) (Sukthanker et al. 2020). CR aims at identifying words
or phrases that refer to the same real-world entity in a docu-
ment. However, as we explained previously, blanks are dif-
ferent from words or phrases because blanks have no seman-
tic meaning at all. The key challenge for CIC is to represent
the meaningless blanks in a contract document.

As illustrated in Figure 2, the proposed PBR framework
adopts the Siamese architecture with a novel BlankCoder
model to encode each blank, and predicts the consistency re-
lation of the blank pair by a binary classifier. The proposed
BlankCoder is a Transformer variant for blank modeling
that could easily generalize to other tasks such as text infill-
ing.

BlankCoder
The Transformer architecture (Vaswani et al. 2017) has
shown a powerful semantic modeling capability on vari-
ous natural language processing tasks including the rele-
vant task of text infilling (Zhu, Hu, and Xing 2019). We
extend the Transformer encoder architecture, and propose
BlankCoder to address the challenge of modeling mean-
ingless blanks.

In BlankCoder, in order to obtain a good blank embed-
ding, each blank is made to fully utilize its context informa-
tion in the surrounding sentence using a two-stage modeling
strategy, i.e., the blank is first initialized based on the lo-
cal context information (e.g., words in a local region of the
blank), and then refined and updated based on the global
context information (e.g., words outside of the local region
in the surrounding sentence).

Figure 3 depicts the architecture of BlankCoder, which
mainly consists of three modules: 1) multi-head context at-
tention, which associate relevant context words, 2) local vis-
ible pooling, which initiates the blank representation with

local keywords, and 3) global update, which refine and up-
date the blank representation with related context words.

In the following, we focus on describing how to obtain the
embedding of a blank b ∈ B.

Surrounding Sentence Representation Given a blank
b ∈ B and its surrounding sentence s consisting of n words
and one blank (i.e., |s| = n + 1), we embed the i-th word
wi ∈ s to a d-dimension vector ei ∈ Rd. Embeddings
{e1, . . . , en} are stacked up to form a matrix S ∈ Rd×n,
which will be the representation of the surrounding sentence.
Embedding vector ei is the sum of three different embedding
vectors capturing different semantic aspects.

The first embedding vector is the word embedding, de-
noted by eword

i ∈ Rd, which is obtained by using a pre-
trained word2vec model. Word embedding eword

i only con-
tains the linguistic information of word wi.

The second embedding vector is the positional embed-
ding, denoted by eposi ∈ Rd, which incorporates the order
information of wordwi in surrounding sentence s. We calcu-
late eposi using the same approach in the vanilla Transformer
model (Vaswani et al. 2017).

The third embedding vector is the segmentation embed-
ding, denoted by esegi ∈ Rd, which distinguishes the pre-
ceding and following context words of the blank. This can
be viewed that the blank separates the surrounding sentence
into two segments, and each segment has one segmentation
embedding. We adopted the learned segmentation embed-
dings as implemented in BERT (Devlin et al. 2019).

Following BERT, the final embedding of the i-th word
wi ∈ s is calculated by ei , eword

i + eposi + esegi .

Multi-Head Context Attention To adequately incorpo-
rate relevant descriptions for blank modeling, it’s essen-
tial to first model contextual information and correlate rel-
evant words in the surrounding sentence. To this end, in the
BlankCoder, we first adopt the powerful multi-head self-
attention mechanism as implemented in the Transformer en-
coder for contextual encoding.

The Transformer encoder takes the embedding matrix S
as input, and updates the embedding matrix layer by layer.
The i-th layer outputs a matrix H(i) ∈ Rd×n by

H(i) = FFN(MultiHeadAtt(H(i−1))), H(0) = S.

Here, FFN represents a feed-forward neural network, and
MultiHeadAtt is the multi-head version self-attention,
i.e.,

SelfAtt(S) = V · softmax(
KTQ√
dk

)

Q =WqS, K =WkS, V =WvS.

Here Q ∈ Rdk×n,K ∈ Rdk×n, and V ∈ Rd×n denote
the query, key and value matrix, respectively. Wq ∈ Rdk×d,
Wk ∈ Rdk×d, and Wv ∈ Rd×d are learnable parameters.
We refer to (Vaswani et al. 2017) for more details on the
Transformer encoder.

The output of the last Transformer encoder layer, denoted
by H ∈ Rd×n, is a better representation of the surrounding
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Figure 3: The architecture of BlankCoder. It extends the Transformer encoder architecture to model meaningless blanks.
First, we perform local visible pooling to build an initial blank embedding b(0) with the more related local context informa-
tion. Second, we perform global update to recurrently refine the initial blank embedding by gathering and injecting relevant
descriptions from the global context words.

sentence, that incorporates the linguistic information, posi-
tion information, and context information of the surround-
ing sentence. In the following, we discuss how to obtain the
blank embedding using the surrounding sentence embedding
H .

Local Visible Pooling Because a blank belongs to its sur-
rounding sentence, a straightforward way to obtain the blank
embedding is to sum the embeddings of all the words in the
surrounding sentence, i.e., sum the columns of H . However,
words in the surrounding sentence may have different im-
portance for describing the blank, and simply summing them
ignores their difference and may include too much noise.

Intuitively, the words that are close to the blank should
be more related to the blank than words that are faraway
in the surrounding sentence. Similar observation has been
reported in other language modeling tasks (Yin et al. 2016;
Aloraini and Poesio 2020). Therefore, we propose to sum
embeddings of these closer words to obtain an initial blank
embedding, which will be further refined. We refer to this
step as local visible pooling, as illustrated in Figure 3.

Ideally, we want to find a vector α ∈ Rn such that it has
larger values for words in a small local region around blank
b and almost zero values for words outside of this region.
Then, blank b’s initial embedding b(0) ∈ Rd can be repre-
sented as

b(0) = Hα.

We refer to α as the pooling weights, and we discuss how to
obtain pooling weights α In the following.

We first formally define this local region. Assume blank
b is between the i-th and (i+ 1)-th word in the surrounding
sentence, 0 ≤ i ≤ n.2 We define the k-visible zone of blank

2Here i = 0 (or i = n) means that the blank is at the beginning
(or end) of the surrounding sentence.

b as the set of (at most) 2k closest positions around b, i.e.,

zonek , {max(1, i− k + 1), . . . ,min(n, i+ k)}.

In our design, only words in this k-visible zone have non-
zero pooling weights, and even words in the k-visible zone
may have different pooling weights, depending on how in-
formative the word could describe the blank. We propose a
masked self-attention to calculate α, i.e.,

α = softmax(tanh(WH)Tqw + u).

Here u ∈ Rn is a mask vector and ui = 0 if i ∈ zonek;
ui = −∞ otherwise. qw ∈ Rdw and W ∈ Rdw×d will be
learned during training. That is, surrounding sentence rep-
resentation H is first fed to a one-layer perceptron to ob-
tain its hidden representation. Then we measure the simi-
larity between the hidden representation and vector qw. qw
can be viewed as a fixed query that queries important words
over a set of words represented by the hidden representation.
Therefore, our design will assign those words that are close
and informative to the blank larger pooling weights than far-
away and meaningless words in the surrounding sentence.
•Remark. The blank b now has an initial embedding b(0),
and words already have embedding matrix H . At this time,
we suggest adding the relative position embeddings (RPEs)
to these embeddings to incorporate the relative position in-
formation between words and the blank. RPEs are directly
adapted from the PEs in Transformer: the blank’s RPE is
simply PE0; if two words have the same distance x to the
blank, then the two words have the same RPE, i.e., PEx. We
will slightly abuse the notations and still use b(0) and H to
denote the embeddings that have been added RPEs.

Global Update The local visible pooling step only uses
blank b’s k-visible zone in the surrounding sentence to ob-
tain an initial embedding b(0). Note that some words outside
of the k-visible zone may be also informative and useful for
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describing the blank. We propose a global update step that
uses words in the entire surrounding sentence to further re-
fine the initial embedding b(0). After global update, blank
embedding will incorporate more contextual information in
the surrounding sentence, and hence will be more represen-
tative than b(0).

The global update step refines initial embedding b(0) in a
recurrent manner, and we denote the blank embedding after
t-th refinement by b(t). In the following, we describe how to
refine b(t) and obtain b(t+1), at the t-th global update step.

Given the current blank representation b(t) and surround-
ing sentence embedding H , we want to find words in the
surrounding sentence that are correlated to the blank. This
can be achieved by computing a correlation score between
the blank and a word, and we propose to compute the corre-
lation score in the following way, i.e.,

β(t) = σ

(
Kq(t)

√
dk

)
where q(t) =Wuqb

(t),K =WukH

Here σ denotes a sigmoid function, Wuq ∈ Rdk×d maps
vector b(t) to a query vector, Wuk ∈ Rdk×d maps matrix H
to a key matrix, and β(t) ∈ Rn is a scaled inner-product vec-
tor measuring the correlation score between the blank and
each word in the surrounding sentence. In practice, we use a
multi-head mechanism to calculate β(t) which will capture
similarities from different aspects, similar to Transformer.

β(t) = MultiHeadScore(b(t), H)

Note that we do not normalize elements of β(t) jointly by
a softmax operation, as is used in Transformer. Instead, we
normalize elements of β(t) individually by a sigmoid op-
eration because it is possible that none of the words in
the surrounding sentence is informative for describing the
blank. We refer to the above processing by multi-head blank-
context attention.

Score vector β(t) will be used as a memory gate to guard
whether we should memorize the corresponding vector inH
or not, i.e.,

m(t) = Hβ(t)

where m(t) ∈ Rd is the memorized embedding vectors in
H and those memorized vectors are correlated to the blank.
Hence m(t) is considered to be informative for describing
the blank and should be used to refine b(t). To this end, we
propose to apply the classic GRU (Cho et al. 2014) which
takes m(t) as input and b(t) as hidden state, i.e.,

b(t+1) = GRU(m(t),b(t)).

The above procedure will repeat N times. Thus the initial
blank embedding b(0) will be refined recurrently. We refer
to the processing as the gated sequential update. The final
output b(N) will be considered as the final embedding of
blank b, i.e., b , b(N). The multi-head blank-context at-
tention operation and gated sequential update operation are
illustrated in Figure 3.

Classifier
Armed with the elaborately designed BlankCoder, we are
now able to predict the consistency relation between two
blanks following the routing in Figure 2.

Given two blanks bi and bj , we first obtain their embed-
dings bi and bj using the BlankCoder, respectively. Then
we concatenate bi, bj , and also a comparative term |bi−bj |
as the representation of the input blank-pair. We adopt a
feed-forward neural network-based binary classifier to pre-
dict the consistency relation r̂i,j , i.e.,

r̂i,j = FFN([bi : bj : |bi − bj |]) ∈ [0, 1].

Here : denotes vector concatenation, | · | denotes element-
wise difference, and FFN is a feed-forward neural network
that the middle layer activation functions are ReLUs and the
last layer activation function is sigmoid. The comparative
term works as an implicit contrastive loss that forces consis-
tent blanks to have similar representations and vice versa.

During training, we choose the Focal Loss (Lin et al.
2017) as the objective to address the class imbalance issue
in the datasets.

FL(r̂i,j , ri,j) =

{
−α(1− r̂i,j)γ log(r̂i,j), ri,j = 1,

−(1− α)r̂γi,j log(1− r̂i,j), ri,j = 0.

Here, ri,j ∈ {0, 1} is the ground-truth consistency relation,
α and γ are the balanced factor and focusing parameter of
the focal loss, respectively.

Experiments
In this section, we conduct experiments on two real-world
contract datasets to evaluate our method.

Contract Datasets
•Chinese Contracts We have collected 246 open source
business contract templates and 35 real contracts from a
company. These contracts are written in Chinese, and cover
categories such as investment, lease, and labor. Annotation
details of templates are reported in our technical appendix.
• ICAIL Contracts by Chalkidis et al. (2017). These con-
tracts are written in English, and they were used for the task
of tagging contract elements. We treat these extracted ele-
ments as filled blanks. The contracts are anonymized where
the words are replaced with numbers for privacy concerns.

For each contract document, we collect all the blank pairs,
and obtain their consistency relation by comparing the filled
content. This allows us to build large training datasets. How-
ever, the class labels are imbalanced. For the Chinese Con-
tracts, the ratio between positive samples and negative sam-
ples is 1 : 59, and for the ICAIL Contracts, the ratio is 1 : 48.
The statistics of these datasets are summarized in Table 1.

contract dataset # contracts # blank-pairs pos : neg
Chinese Contracts 281 299, 621 1 : 59

ICAIL Contracts 1, 526 67, 765 1 : 48

Table 1: Data statistics
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Chinese Contracts ICAIL Contracts
model AUC accuracy precision recall F1 MCC AUC accuracy precision recall F1 MCC
BiLSTM 98.26 92.58 88.24 86.11 87.16 86.96 96.06 84.86 79.22 70.11 74.39 74.03
Transformer 94.45 88.51 79.47 77.36 78.40 78.04 93.37 83.09 74.36 66.67 70.30 69.82
Transformer-seg 97.15 92.32 85.15 86.90 86.01 85.78 95.26 83.99 77.78 68.39 72.78 72.40
CenteredLSTM 98.35 92.68 88.96 86.59 87.76 87.56 96.15 85.71 78.62 71.84 75.08 74.66
AttnLSTM 98.62 92.85 90.83 85.51 88.09 87.93 96.19 85.76 80.92 70.69 75.46 75.16
CorefBERT 93.06 90.20 53.85 81.58 64.87 65.61 − − − − − −
PBR 98.73 94.05 93.74 88.22 90.90 90.77 96.25 86.01 81.22 72.08 76.38 76.09
%Improvement 0.11 1.29 3.20 1.88 3.19 3.23 0.06 0.29 0.37 0.33 1.22 1.24

Table 2: Model evaluation results (%). Note that the accuracy above stands for the balanced accuracy.

Settings
Evaluation Metrics. We use AUC, precision, recall, F1
score, balanced accuracy, and Matthews correlation coeffi-
cient (MCC) (Boughorbel, Jarray, and El-Anbari 2017) as
evaluation metrics. Balanced accuracy is defined as the av-
erage of recall obtained in each class. MCC is a correlation
coefficient between the predicted and ground truth binary
classifications, and it has a value between −1 and +1, with
+1 representing a perfect prediction. Note that because the
datasets are highly imbalanced, we thus focus on comparing
balanced measures: F1 and MCC.

Baselines We compare our method with the following ap-
proaches in text infilling and zero pronoun resolution.
• BiLSTM (Graves, Mohamed, and Hinton 2013) is a

widely adopted bidirectional RNN in text infilling (Fe-
dus, Goodfellow, and Dai 2018; Liu et al. 2019), where a
blank is treated as an out-of-vocabulary token in the sen-
tence and modeled together with the context words.

• Transformer (Vaswani et al. 2017) is a SOTA atten-
tion based language representation model. We adopt the
vanilla Transformer encoder and perform blank modeling
in the same way as in BILSTM.

• Transformer-seg (Zhu, Hu, and Xing 2019) is a segment-
aware Transformer for text infilling, where the segments
are obtained by splitting the sentence at the blanks.

• CenteredLSTM (Yin et al. 2017) is a zero pronoun mod-
eling method that adopts two RNNs with one encoding the
preceding context sequentially and the other encoding the
following context reversely. A blank is represented with
the concatenation of the two last hidden vectors.

• AttnLSTM (Yin et al. 2018) extends CenteredLSTM
with a self-attention mechanism to generate segment rep-
resentations that are concatenated to encode the blank.

• CorefBERT (Aloraini and Poesio 2020) is a zero pronoun
modeling method that adopts a pre-trained BERT (Devlin
et al. 2019) for contextual encoding and represents a blank
by averaging the embeddings of its nearest two words.

Implementation Details We implement all the bench-
marks using Pytorch on a server equipped with 2 Nvidia
Tesla V100 GPUs, each with 32GB memory. For the Chi-
nese Contracts, we adopt the Chinese word2vec embed-
dings released by Li et al. (2018). For the ICAIL Con-
tracts, the word2vec embeddings are provided by Chalkidis

Metrics AUC accuracy precision recall F1 MCC
PBR 98.73 94.05 93.74 88.22 90.90 90.77
-no local 97.76 92.31 81.51 87.86 84.57 84.36
-no update 98.14 92.95 87.81 86.11 86.95 86.74
-no cmp 98.38 93.43 93.57 86.96 90.14 90.04

Table 3: Ablation analysis on the Chinese Contracts.

et al. (2017). We perform the hyper-parameter search to find
the best combinations for all the models. The details are
shown in the appendix.3

Model Evaluation

We compare the performance of different models, and show
the results in Table 2. Note that CorefBERT is not applicable
on the ICAIL Contracts due to data anonymization.

We observe that our PBR framework outperforms the
others in terms of all evaluation metrics. Specifically, for
balanced accuracy, PBR achieves 0.29 ∼ 1.29% improve-
ments, for F1 score, PBR achieves 1.22 ∼ 3.19% improve-
ments, and for MCC, PBR achieves 1.24 ∼ 3.23% improve-
ments.

Compared to the vanilla Transformer encoder and its
segment-aware version, our BlankCoder in PBR also
has significant improvement. The balanced accuracy is im-
proved by 1.87 ∼ 6.26%, the F1 score is improved by
4.95 ∼ 15.94%, and MCC is improved by 5.09 ∼ 16.31%.
This demonstrates the effectiveness of the two-stage seman-
tic modeling approach in our BlankCoder.

We also observe a general performance decline of all the
benchmarks and a limited performance gain of our PBR
framework on the ICAIL Contracts. We attribute this to data
anonymity and the ambiguous blank pair samples. In the
ICAIL dataset, the sentences are not split to fit the task of
tagging contract elements. Due to its anonymity, we have
to specify a region as a pseudo-sentence, which would con-
tain incomplete or redundant sentences that hinder the per-
formance. Besides, ambiguous blank pairs where both the
same and different contents are allowed can introduce extra
noise that impairs the performance. Details are illustrated in
our technical appendix due to space limitations.

3Codes available at https://github.com/ShuoZhangXJTU/CIC
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Figure 4: Hyper-parameter sensitivity

Ablation Experiments

To further investigate the performance of the two-stage
blank modeling strategy, we conducted ablation experiments
on PBR (see Table 3). Similar results on the ICAIL Con-
tracts are omitted because of space limitations.

To verify the effectiveness of the local visible pooling
layer, we build a no-local version PBR (i.e., “-no local”),
which directly assigns the whole sentence as the local visible
zone. To evaluate the importance of the word-level seman-
tic reasoning, we remove global update (i.e., “-no update”).
To evaluate the effectiveness of the comparative term (i.e.,
|bi − bj |), we build a base PBR with no comparative term
in the classifier (i.e., “-no cmp”).

In Table 3, we observe that both the local visible pool-
ing and global update are important components of the PBR
framework. The local visible pooling is more critical since
it determines if there exists noise information in the initial
embedding. We also observe that the absence of the com-
parative term in the classifier leads to performance decrease,
which implies the importance of contrastive supervision.

Hyper-parameter Sensitivity

In this section, we study how hyper-parameters in
BlankCoder affect the performance, i.e., the length of local
visible zone k, and the number of the stacked global update
blocks N . The results on the Chinese Contracts are shown
in Figure 4. We omit similar results on the ICAIL Contracts
due to space limitations.

In Figure 4, we show five different lines where each line
denotes the performance (F1) using different N and k. Fix-
ing k, we observe that the stack of multiple global update
blocks could consistently improve the performance, which
demonstrates the effectiveness of the recurrent update pro-
cess. Fixing N , we observe that the performance increases
with the size of the local region at first and then decreases.
This is due to the fact that a minimal local region does not
contain enough related information, while a large local re-
gion would introduce irrelevant noise words. To reach better
performance, a proper local visible zone shall be determined
for the BlankCoder.

Transformer Encoder

BlankCoder

T0

T1

T2

( 2)kLocal Visible Pooling  =

( 3)NGlobal Update =

Figure 5: The attention visualization on a case example in a
real-word sales contract.

Case Study: Attention in BlankCoder

To intuitively show the effectiveness that PBR can extract
representative features, we compare the attention of the
Transformer encoder and our BlankCoder. For simplic-
ity, we average the attention weights for all the Transformer
encoder layers and omit the context attention layers of our
BlankCoder.

Figure 5 shows a case example in a real-word sales con-
tract with the blank referring to the final payment amount,
where darker red shades indicate larger attention weights.
For the Transformer encoder, we see that irrelevant de-
scriptions like “days” and “delivery” are incorrectly high-
lighted, which would lead to biased blank representation
that hinders further consistency checking. Whereas in our
BlankCoder, the blank is first initialized with related lo-
cal keywords (e.g., “dollars”) and then recurrently updated
with other relevant descriptions (e.g., “final” and “ pay-
ment”), yielding an accurate and expressive blank represen-
tation without noise information.

Conclusion and Future Work
In this work, we formulate the Contract Inconsistency
Checking (CIC) problem, an automatic contract analysis
task with significant practical importance, and we propose a
novel end-to-end Pair-wise Blank Resolution (PBR) frame-
work to predict the consistency relation for every two blanks
with high accuracy. In PBR, we extend the Transformer en-
coder architecture and propose BlankCoder, an off-the-
shelf effective blank modeling method that could easily gen-
eralize to other tasks such as text infilling. Extensive exper-
iments show that our model can significantly and consis-
tently outperform existing baselines, yielding a promising
balanced accuracy of 94.05% and an F1 score of 90.90%.
In the future, we plan to consider more complex cases (e.g.,
ambiguous blank pairs) and explore more complex consis-
tency checking scenarios that require logical reasoning.

14452



Acknowledgments
The research presented in this paper is supported in part by
National Key R&D Program of China (2018YFC0830500),
National Natural Science Foundation of China (61922067,
U1736205, 61902305), MoE-CMCC “Artifical Intelligence”
Project (MCM20190701), Natural Science Basic Research
Plan in Shaanxi Province of China (2019JM-159), Natural
Science Basic Research Plan in Zhejiang Province of China
(LGG18F020016).

References
Abdelsadiq, A.; Molina-Jimenez, C.; and Shrivastava, S.
2011. A High Level Model Checking Tool for Verifying
Electronic Contracts. In School of Computing Science Tech-
nical Report Series.

Aloraini, A.; and Poesio, M. 2020. Cross-lingual Zero Pro-
noun Resolution. In LREC.

Boughorbel, S.; Jarray, F.; and El-Anbari, M. 2017. Optimal
classifier for imbalanced data using Matthews Correlation
Coefficient metric. PLOS ONE 12(6): 1–17.

Bromley, J.; Guyon, I.; LeCun, Y.; Säckinger, E.; and Shah,
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