Semantics-Aware Inferential Network for Natural Language Understanding
DOI:
https://doi.org/10.1609/aaai.v35i16.17697Keywords:
Question AnsweringAbstract
For natural language understanding tasks, either machine reading comprehension or natural language inference, both semantics-aware and inference are favorable features of the concerned modeling for better understanding performance. Thus we propose a Semantics-Aware Inferential Network (SAIN) to meet such a motivation. Taking explicit contextualized semantics as a complementary input, the inferential module of SAIN enables a series of reasoning steps over semantic clues through an attention mechanism. By stringing these steps, the inferential network effectively learns to perform iterative reasoning which incorporates both explicit semantics and contextualized representations. In terms of well pre-trained language models as front-end encoder, our model achieves significant improvement on 11 tasks including machine reading comprehension and natural language inference.Downloads
Published
2021-05-18
How to Cite
Zhang, S., Zhao, H., Zhou, J., Zhou, X., & Zhou, X. (2021). Semantics-Aware Inferential Network for Natural Language Understanding. Proceedings of the AAAI Conference on Artificial Intelligence, 35(16), 14437-14445. https://doi.org/10.1609/aaai.v35i16.17697
Issue
Section
AAAI Technical Track on Speech and Natural Language Processing III