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Abstract

Previous work has shown the effectiveness of using event rep-
resentations for tasks such as script event prediction and stock
market prediction. It is however still challenging to learn the
subtle semantic differences between events based solely on
textual descriptions of events often represented as (subject,
predicate, object) triples. As an alternative, images offer a
more intuitive way of understanding event semantics. We ob-
serve that event described in text and in images show differ-
ent abstraction levels and therefore should be projected onto
heterogeneous embedding spaces, as opposed to what have
been done in previous approaches which project signals from
different modalities onto a homogeneous space. In this pa-
per, we propose a Multimodal Event Representation Learn-
ing framework (MERL) to learn event representations based
on both text and image modalities simultaneously. Event tex-
tual triples are projected as Gaussian density embeddings by
a dual-path Gaussian triple encoder, while event images are
projected as point embeddings by a visual event component-
aware image encoder. Moreover, a novel score function mo-
tivated by statistical hypothesis testing is introduced to co-
ordinate two embedding spaces. Experiments are conducted
on various multimodal event-related tasks and results show
that MERL outperforms a number of unimodal and multi-
modal baselines, demonstrating the effectiveness of the pro-
posed framework.

Introduction

In Natural Language Processing (NLP), it is important to
construct an event structure which represents what is going
on in text since it is crucial for language understanding and
reasoning. Transferring events into machine-readable form
is important for many NLP tasks such as question answer-
ing, discourse understanding, and information extraction. By
now, the mainstream practice is to represent prototype events
as low-dimensional dense vectors.

Notable progresses have been made in learning event rep-
resentations or embeddings from structured event triples ex-
pressed as (subject, predicate, object). Event embeddings
are typically learned in a compositional manner from their
constituent embeddings. Two types of commonly-used com-
position methods are additive-based and tensor-based. For
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(i)(she, attend, baby) (ii) (he, take care, kid) (iii)(she, attend, meeting)

(he, play, soccer)

Figure 1: Upper part: Event (i) and (iii) share the same sub-
Jject and predicate and yet bear different semantic meanings.
On the contrary, Event (i) and (ii), despite having no event
element in common, are semantically more similar. Event
semantics could be distinguished more easily from event-
associated images. Lower part: an event triple can be asso-
ciated with multiple images.

additive-based methods, the concatenation or addition of
event components (i.e. the subject, predicate and object) em-
beddings are projected onto an event embedding space with
a parameterized function using a neural network (Ashutosh
and Ivan 2014; Granroth-Wilding and Clark 2016; Modi
2016). For tensor-based methods, the event components are
composed by the tensor operation, where the multiplicative
interactions between event components could be captured
(Ding et al. 2015; Weber et al. 2018; Ding et al. 2019).
Despite the success of event representation learning ap-
proaches, it is still challenging for models to learn the subtle
semantic differences between events based solely on the text
modality. For example, as shown in the upper part of Figure
1, there are three events: (i) (she, attend, baby), (ii) (he, take
care, kid) and (iii) (she, attend, meeting). Both Event (i) and
(i1) share the same subject and predicate, however express-
ing totally different meanings. On the contrary, Event (i) and
(iii) do not have any event elements in common, yet they
describe the same event. In such situations, event seman-
tics can be better captured by event-associated images rather
than the text description of event triples as shown in Figure



1. It is thus crucial to utilize the image modality to enhance
event representation learning.

Multimodal representation learning method aims to learn
a unified representation of semantic units or information
conveyed in different modalities (e.g., text and image). Pre-
vious approaches often project information from different
modalities onto a homogeneous embedding space such as a
point embedding space or a density embedding space (Ven-
drov et al. 2016; Ben and Andrew 2018). However, in event
embedding learning, events depicted in images often convey
much more information than their counterpart text descrip-
tions. As illustrated in the lower part of Figure 1, the event
(he, play, soccer) can be depicted by more than one image.
In this example, we can view the event triple, expressed in
a more concise way, as an abstraction of its associated event
images; while each event image is an instantiation of the
event triple, which may contain some details beyond what
have been expressed in text.

In this paper, we propose a multimodal event represen-
tation learning framework (MERL) to project event triples
and their associated images onto heterogeneous embedding
spaces. More concretely, for each event, its event triple is
projected onto a Gaussian density embedding space with
a dual-path Gaussian triple encoder. The mean and vari-
ance of the Gaussian distribution is estimated using differ-
ent composition methods. For an event image, a visual event
components-aware image encoder is proposed to extract vi-
sual event components and generate an image point embed-
ding. As we assume that an event image is an instantiation
of an event triple, we want to ensure that the image point
embeddings behave as if they were sampled from the event
triple associated Gaussian embedding. To this end, a novel
score function motivated by statistical hypothesis test is pro-
posed, which is theoretically guaranteed and flexible to ex-
tend. Various experiments including multimodal event simi-
larity, script event prediction and multimodal event retrieval
have been conducted to evaluate the effectiveness of the pro-
posed method.

The main contributions of the paper are listed as follows:

A novel multimodal representation learning framework
to project event triples and images onto heterogeneous
embedding spaces is proposed, along with a statistically-
motivated score function to coordinate event triple em-
beddings and images embeddings residing in the hetero-
geneous embedding spaces.

Two novel encoders are designed for modeling event in-
formation from different modalities. The event triple en-
coder composes event components to estimate mean and
variance of Gaussian embeddings by two different encod-
ing paths. The image encoder extracts visual event fea-
tures to generate image point embeddings.

Experimental results on various tasks demonstrate that the
proposed framework outperforms a number of competi-
tive event representation learning and multimodal repre-
sentation learning methods, verifying the effectiveness of
multimodal learning of event representations.
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Related Work

This paper is related to the following two lines of research:

Event Representation Learning Event representation
learning approaches project prototype events represented
as triples or sentence into dense vectors using neural net-
works, where similar events are embedded close to each
other while distinct events are separated. Ding et al. (2015)
proposed a tensor-based event embedding model for stock
market prediction where components of structured events
are composed by 3-dimensional tensors. Granroth-Wilding
and Clark (2016) and Modi (2016) concatenated the embed-
dings of subject, predicate and object and fed them into a
neural network to generate event embeddings. Ding et al.
(2016) proposed to incorporate a knowledge graph into a
tensor-based event embedding model. Pichotta and Mooney
(2016) frame event prediction as a sequence to sequence
problem where the components of structured events are fed
into an LSTM model sequentially to predict the compo-
nents of next event. Weber, Balasubramanian, and Cham-
bers (2018) proposed another tensor-based event representa-
tion model, which learns to generate tensors based on em-
beddings of predicates. Lee and Goldwasser (2018) intro-
duced sentiment polarity and animacy of events as additional
event components and learn event embeddings. Ding et al.
(2019) proposed a multi-task learning framework to inject
sentiment and intent of events into the event embedding.
However, all aforesaid methods only considered a single text
modality and did not take into account other modalities such
as images.

Multimodal Representation Learning Multimodal rep-
resentation learning aims to learn representations of objects
from multiple information sources, such as text, image and
audio. Multimodal representation learning methods can be
categorized into two types, joint representation and coordi-
nated representation. Joint representation methods map uni-
modal signals from different modalities onto the same repre-
sentation space. Silberer and Lapata (2014) proposed to con-
catenate text embeddings and image embeddings to predict
object labels with stacked auto-encoders. Rajagopalan et al.
(2016) proposed to explicitly model the view-specific and
cross-view interactions over time for structured outputs. Co-
ordinated representation methods learn separate representa-
tions for each modality but coordinate them through a con-
straint. Frome et al. (2013) proposed to constrain textual em-
beddings and visual images with a similarity inner product.
Vendrov et al. (2016) proposed an order-preserving embed-
ding framework to learn the partial order relationships be-
tween texts and images. Ben and Andrew (2018) extended
this framework by replacing point embeddings with den-
sity embeddings. Li et al. (2020) introduced the multime-
dia event extraction task, which aims to extract events and
their arguments from multimedia documents. However, all
aforesaid methods represent images and texts in homoge-
neous spaces. To the best of our knowledge, this work rep-
resents the first attempt that considers multimodal represen-
tation learning in heterogeneous embedding spaces.
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Figure 2: The architecture of Multimodal Event Representa-
tion Learning framework (MERL) with heterogeneous em-
bedding spaces.

Methodologies

In this section, we will first introduce the overall architecture
of the proposed Multimodal Event Representation Learning
framework (MERL), followed by the details of the triple en-
coder and the image encoder. Finally, we describe the train-
ing procedure of the whole framework.

Multimodal Event Representation Learning on
Heterogeneous Embedding Spaces

As shown in Figure 2, the proposed framework can be cate-
gorized as a coordinated multimodal representation method.
In MERL, event triples and event images are projected
onto heterogeneous embedding spaces by the carefully-
designed triple encoder and image encoder with two intra-
modal learning objectives. To fuse knowledge from multiple
modalities, a cross-modal constraint is proposed to align the
triple embedding space and image embedding space.

Problem Setting Firstly, we formulate the problem of
multimodal event representation learning below. We assume
each event e is paired with one event triple t = {S, P,O}
and one or more image descriptions {v;|j = 1,...,k}.
MERL aims to achieve the following:

Semantically similar event triples are projected into
nearby locations in the embedding space;

Images of the same event are projected and clustered to-
gether in the embedding space, while semantic relations
of their corresponding event triples are preserved;

For the same event, event image point embeddings are dis-
tributed as if they were sampled from the event triple den-
sity embedding.

Heterogeneous Embedding Spaces As stated before, we
assume that an event triple is an abstraction of its associated
images while event images are instantiations of the event
triple. As such, MERL projects event data from different
modalities onto heterogeneous embedding spaces. An event
triple ¢ is projected onto a density embedding space D:

ey

That is, each event triple is associated with a density. Density
embedding learning is therefore equivalent to the estimation
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of density parameters. An event images v, on the contrary, is
projected onto a point embedding space P:

image

v=—=uveEP 2)
encoder
Coordinate the Heterogeneous Spaces Coordinated

multimodal representation methods usually employ homo-
geneous measurements such as cosine similarity or KL di-
vergence to align embeddings in homogeneous embedding
spaces. Such measurements are, however, not applicable
here since we are dealing with heterogeneous embedding
spaces. To measure between distributions and points, a nat-
ural way is to employ hypothesis testing. In statistics, a hy-
pothesis is an assumption about the population parameter
and a hypothesis testing is to assess the plausibility of the
hypothesis with sample data. A common choice of hypoth-
esis testing is the likelihood-ratio test (Casella and Berger
2002). For the null hypothesis H( and an alternative hypoth-
esis Hi:

Hy:0€0y vs. H :0c0f 3)
the test statistics of likelihood ratio test is:
Lo
Aa) = 2Pl 017) )

supe L(0|x)

where x denotes samples, § denotes parameters, L(-|-) de-
notes the likelihood, ©( denotes the parameter space of the
null hypothesis, and © denotes the full parameter space.
When the null hypothesis holds, the difference between the
maximum likelihood over ©g and the maximum likelihood
over O should not be greater than the random sampling error.
That is, the null hypothesis will be rejected when A\(x) < ¢
(c € (0, 1)). In other words, the larger the test statistics A(x)
is, the more likely the null hypothesis Hj, is true.

Motivated by the likelihood ratio test, we propose a score
function to measure between our density embedding ¢ and
multiple point embeddings v,. Taking log of both sides of
Equation (4), we have:

s(t,vs) = log(supe, L(t|vs)) — log(supe L(t|vs)) (5)

The larger value of Equation (5) is, the more likely the hy-
pothesis between distribution ¢ and data point v, to be true.

In MERL, we assume that event images are instantiations
of the event triple, which could be expressed as:

(6)

Considering that the optimal parameters of L(f|x) over
O could be estimated by maximum likelihood estimation
(MLE), which is also statistics of T'(x) of samples «, for
MERL, Equation (5) can be rewritten as:

s(t,vs) = log(N (vs| s, 02)) — log(N (vs|T(vs))  (7)

where N (x|u,0?) is likelihood of Gaussian distribution,
T(z) = {x,S?(x)} are the average and standard deviation
of sample x.

The score function can be interpreted as follows: the first
term should be maximized, which is intuitive because this
log likelihood measures the goodness of fit between a distri-
bution and samples; the second term should be minimized,

Hy : v,k ~ N (e, 07)
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Figure 3: Dual-path Gaussian Triple Encoder.

which can be interpreted as a penalty term that prevents sam-
ples to be clustered and encourages them to be dispersed and
therefore more representative.

With the embedding spaces and the measurement between
spaces defined, we can derive the intra-modal loss to learn
the geometry within each modality and the cross-modal loss
to coordinate between the modalities.

Dual-path Gaussian Triple Encoder

The goal of the triple encoder is to map an event triple
t = (S, P, 0) to a Gaussian embedding ¢, where S refers to
subject or actor, P refers to predicate or action and O is ob-
ject of the action. In this paper, to simplify the model, we set
the co-variance matrix of a Gaussian distribution diagonal.
The task is to compose the event components to calculate
the mean vector and variance vector t = (y, o%) of an event
density embedding.

Previous methods on neural Gaussian embeddings often
calculate mean and variance vector with a shared encoder
(Kendall and Gal 2017; Oh et al. 2018; Xiao and Wang
2019). However, we argue that the mean vector and the vari-
ance vector describe different aspects of the corresponding
Gaussian distribution, that the mean vector determines the
location of the Gaussian distribution in embedding space,
while the variance vector captures the shape and spread of
the Gaussian distribution. As such, we proposed a dual-path
Gaussian event triple encoder, shown in Figure 3, which pre-
dicts the mean vector and variance vector through different
paths.

For the mean vector, it is important to model the inter-
action between event components so as to capture any sub-
tle change of semantics. Therefore, we introduce a tensor-
composition-based path to calculate the mean vector of an
event Gaussian embedding. The input to the triple encoder
is word embeddings of S, P and O. For the event compo-
nents comprising of multiple words, the average of their con-
stituent word embeddings is applied. As shown in Figure 3,
S and P, P and O are firstly composed to produce the inter-
mediate representation my and meo:

my =T(s,p) = f(s" Urp + b1),
mo = T(pv 0) = f(pTU2O + b2)7

where f = tanh is a non-linear function applied element-
wise, b € R” is the bias vector, U € R¥*4Xd are tensors,

®)
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Figure 4: Visual Event Components-aware Image Encoder.

which are sets of matrices, each with d x d dimensions. The
tensor product s” Up will produce a vector h € R¥, where
hi =3 ik Uijrs;pr. Then the mean vector i is calculated
by the tensor composition of the intermediate representa-
tions my and mo:

p = T(my,my) = f(m] Usmy + bs) )

For the variance vector, we assume that it mainly captures
the variety of expressions relating to the same event, which
is mainly determined by the predicates of events, not the
multiplicative interactions between s and p or p and 0. We
thus introduce an additive-composition-based path to model
the variance vector of an event Gaussian embedding. First,
the intermediate representation mg and my4 are calculated in
a similar way as that in mean vector calculation:

m3 = A(Sap) = f(Wl[Svp] + b4)
my = A(p,0) = f(Wz[p, 0] + bs)
where W € R¥*24 is weight matrix. The variance vector 2

is calculated by the additive composition of the intermediate
representations mg3 and my:

0'2 = A(mg,m4) = f(Wg[m3,m4] + bg)

(10)

(1)

Visual Event Components-aware Image Encoder

The goals of image encoder is to map an event image v to a
point embedding v, where the image embeddings of similar
triples should be clustered and image embeddings of dissim-
ilar triples should be separated. To capture the event seman-
tics in the image, we proposed to detect visual event compo-
nents in the image and compose their representations to get
event image embedding. The architecture of our proposed
event image encoder is shown in Figure 4.

To enable the model to detect visual event components,
We first train an image classifier on the ImSitu dataset,
which introduces the task of situation recognition (Yatskar,
Zettlemoyer, and Farhadi 2016). In ImSitu, every image is
annotated with an activity and roles (called attributes) which
are participants in the activity. For example, an image of vet
clipping dog’s claw will be annotated as activity clipping
with ver as agent and dog as source. The task is to iden-
tify each attribute given an image. In this paper, we pre-train
the image encoder to identify three attributes in ImSitu, sub-
Ject, activity and source, which are corresponding to subject,
predicate and object in an event triple.

Since by now most of object detection methods can only
deal with a limited set of object types, thus failing to de-
tect a large variety of objects in real-world event images.



Inspired by (Li et al. 2020), we employ the attention mech-
anism to extract open-vocabulary event components. In our
model, we use a VGG-16 CNN to extract an overall image
feature g and a 7 x 7 convolutional feature map for each im-
age v: k; ; = CNN(v), which can be regarded as attention
keys for 7 x 7 local regions. Taking the subject as an exam-
ple, the role query vector ¢, is constructed by concatenating
the role embedding s with the image feature g as context:

ds = f(Wq[s,g] + bq) (12)

Then for an event image v, we calculate the attention score
of role subject s to each of the local regions:

exp(qskij)
me exp(Qs kmn)

The representation of subject s in an image v is obtained by:
Trs = Z hijtij
%]

The representation of source (object) r, is obtained with
the same procedure as that for subject. The representation of
activity (predicate) is obtained by feeding the overall image
feature ¢ into an MLP: r, = M LP(g). In the pre-training
stage, we feed the extracted representations of subject and
source as well as the representation g of the whole image ¢
into the classification layers to perform situation recognition
task. After pre-training, we replace the classification layer
with a fully-connected layer to compose the representations
of event arguments and obtain the final representation of an
image e;:

(14)

v=f(Wylrs,mp, o] + by) (15)
Training

In this part, we describe how the triple encoder and the im-
age encoder are jointly trained under the proposed MERL
framework. The training objective function consists of three
terms: the intra-triple loss the intra-image loss and the cross-
modal loss.

For the intra-triple loss, we introduce a max-margin loss
to encourage similar events having higher similarity score
than the negative pairs. The similarity score is measured by
the Bhattacharyya distance between two distributions:

A :Zd( )}

where t; denotes an event triple, t? denotes a positive sample
(an event similar to ¢;) and ¢’’ denotes a negative sample (an
event dissimilar to ¢;). For diagonal Gaussian distribution,
the Bhattacharyya distance can be simplified as:

tj, ) +max{0, o — d(t;, 1} (16)

det X

1 1
d(ty,t2) = = — Ty-1 _ +olog(—— ——
(t1,t2) S(Ml p2) (p1—p2) 5 og( /7det21det22)

A7)
where ¥ = % In our cases, all s are diagonal matri-
ces.

For the intra-image loss, the objective function is similar
to that of the triple encoder. A max-margin loss is introduced
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Algorithm 1: Training MERL

Input : multimodal event dataset:
T={t;},V=A{vie}
Output: multimodal event embeddings:
{t;} v}
fort; € T'do
update loss /; with positive and negative
event triple: tf 17
for v, € V; do
sample positive event image vg.’ >
sample negative event image v} ;
update loss Is.
end
update loss I3.

end

to encourage the encoder persevere the semantic relation-
ships of event images in the embeddings space:

lo =Y g, vy ll2 + max{0, & — Joju, vfi [} (18)
ik

where ||-||2 denotes Euclidean distance, v;;, denotes an event
image, v;.’ . denotes a positive sample (i.e. an image similar to
v;1) and v}, denotes a negative sample (an image dissimilar
to v E)-

The last loss is to align the results produced by the two
encoders, so that the knowledge from two modalities could
be utilized to mutually enhance the event density embed-
dings and image embeddings learned. Under our hypothesis,
Equation (7) could be rewritten as:

I3 = Zlog/\/(vjl, RIS 0?) — Zlog/\/’(’vjkﬁ, 5%)
J gk
19)

where 7 is the average of v, and S? is sample deviation.
They are MLE of the parameters of the Gaussian distribu-
tion.

The final objective function is the weighted sum of afore-
mentioned three losses plus the ls norm of all parameters:

I =aly + Bls + 45 + A|O]2 (20)

The whole training procedure is shown in Algorithm 1.

For joint training, we build a multimodal dataset by ex-
tending the hard similarity events dataset proposed in (Ding
et al. 2019). The original dataset consists of 1,000 event
triples, each event is paired with a positive sample and neg-
ative sample. The positive samples are events having strong
semantic relationships but with very little lexical overlap
(e.g., police catch robber / authorities apprehend suspect),
and the negative samples are events from distinct scenarios
but with high overlap (e.g., police catch robber / police catch
disease). To extend the dataset to multimodal, each event
triple is used to query Google Image to retrieve 20 candi-
date images, which are filtered by human annotators to keep
the top 10 most relevant ones. Our final multimodal event
similarity dataset consists of 3,000 event triples paired with
30,000 event images.



Multimodal Hard Similarity

Transitive Sentence

Method (Accuracy%) Similarity (p)
Additive 33.0 0.63
Tensor 40.0 0.60
Text Predicate Tensor 435 0.64
Role Factored Tensor 41.0 0.63
MERL _triple (unimodal training) 443 0.61
MERL _triple (multimodal training) 52.2 0.68
VGG-16 25.2 -
Image | MERL _image (unimodal training) 40.9 -
MERL _image (multimodal training) 47.0 -

Table 1: Experimental results on multimodal event similarity task. The best results are in bold.

Experiments

We evaluate our proposed MERL on a variety of down-
stream tasks, including multimodal event similarity, script
event prediction and cross-media event retrieval. We will re-
port the datasets, baselines for comparison, evaluation met-
rics and results in detail.

Multimodal Event Similarity

The main purpose of event representation learning is to pre-
serve the semantic information in events as much as possi-
ble, so that similar events are projected close to each other,
while dissimilar events are far away from each other in the
embedding space.

Datasets To evaluate MERL, we perform experiments on
the following datasets:

Multimodal hard similarity dataset: Weber et al. (2018)
propose a event similarity dataset which contains 230 pairs
of events (115 pairs of similar types and 115 pairs of dissim-
ilar types). We extend the Weber’s hard similarity dataset
to multimodal with the same procedure as described earlier
for the hard similarity events dataset, resulting in 345 event
triples paired with 3,450 event images. For each method, we
calculate the similarity score of event pairs under represen-
tation, and report the fraction of cases that a similar pair hav-
ing a higher score than a dissimilar one.

Transitive sentence similarity dataset, (Kartsaklis et al.,
2014), contains 108 pairs of transitive sentences (i.e. short
sentences contain a single subject, verb and object). Ev-
ery pair is annotated by several annotators with a similarity
score ranging from 1 to 7. For each method, we used the
Spearman’s correlation p between the similarity scores and
average annotation scores as evaluation metrics.

Baselines The following baselines are included in the mul-
timodal event similarity experiments:

Additive Compositional Model (Additive)

Tensor Compositional Model (Tensor)

Predicate Tensor Model (Predicate Tensor) (Weber et
al. (2018)): represents predicate as a tensor then compose
subject and object based on this tensor.

Role Factored Tensor Model (Role Factored Tensor)
(Weber et al. (2018)): replaces the tensor composition be-
tween intermediate representations of subject & predicate
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and predicate & object with a one-layer neural network to
obtain the final embedding.

VGG-16 CNN (VGG-16) (Simonyan and Zisserman
(2014)): serves as the feature extractor of our event im-
age encoder.

MERL: the triple encoder and image encoder of MERL
are used in the text and image modal evaluation respec-
tively.

Results From the results in Table 1 we can observe that
after multimodal training, our triple encoder and image en-
coder both outperform other baselines and the variant of
MERL trained with unimodal data only. This verifies our
hypothesis that leveraging knowledge from both modalities
enhances the quality of event embeddings learned in each
modality. We also notice that some methods based on exter-
nal knowledge bases achieve remarkable performance (Ding
et al. 2016, 2019). (Ding et al. 2019) even achieves a ac-
curacy over 70% on hard similarity task. However, multi-
modal learning of event representation is not conflict with
these methods. Combining multimodal event data and exter-
nal knowledge base may achieve better performance.

Script Event Prediction

Events carry world knowledge and play an important role
in natural language inference tasks. A common-sense rea-
soning task could be used to evaluate how much the world
knowledge information the learned event embeddings cap-
ture. Chambers and Jurafsky (2008) proposed the narrative
cloze task. In this task, a series of events are extracted from
one document, but one of the events is masked. The reason-
ing model is asked to predict the masked one out of two
candidate events. Granroth-Wilding and Clark (2016) ex-
tended this task to multiple-choices and proposed the mul-
tiple choice narrative cloze (MCNC) task. Following Li,
Ding, and Liu (2018), we evaluate the proposed method and
other baselines on the standard MCNC dataset.

Multiple choice narrative cloze dataset To perform
script event prediction, Li, Ding, and Liu (2018) extracted
event chains from the New York Gigaword corpus with
the same procedure as that in Granroth-Wilding and Clark
(2016). The dataset contains 140k samples for training and
10k samples for testing. For each event chain, 5 candidate
events are provided with 1 correct answer.



Method Accuracy %
Additive 49.57
PairLSTM 50.83
SGNN 52.45
SGNN(MERL) 53.47
SGNN-+Additive 54.15
SGNN+PairLSTM 52.71
SGNN+Additive+PairLSTM 54.93
SGNN(MERL)+Additive+PairLSTM 55.51

Table 2: Experimental results on script event prediction task.
+ denotes a combination of methods by aggregating the re-
sults of different methods statistically. The best results are in
bold.

Baselines Script event prediction requires the modeling of
sequential relations between events. As the Scaled Graph
Neural Network (SGNN) model proposed by Li, Ding, and
Liu (2018) provides a strong baseline of event sequence
modeling, we use the framework of SGNN and replace their
event embeddings with the ones generated by MERL.

Scaled Graph Neural Network (SGNN) (Li, Ding, and
Liu (2018)): constructs a narrative event graph and em-
ploys a graph network to model event chains.

PairLSTM (Wang et al. (2017)): simultaneously mod-
els pairwise relationship and sequential relationship of
events.

SGNN(MERL): replaces the event embeddings of SGNN
with the mean vector of Gaussian distributions of event
triples.

Results The top half of Table 2 shows the results of each
individual method, and the bottom half of the table shows
the aggregated results of multiple methods as has been pre-
viously done in (Li, Ding, and Liu 2018). We can observe
that MERL outperforms other baselines by a small mar-
gin. Nevertheless, as have been previously reported in (Li,
Ding, and Liu 2018), MCNC is a difficult task that even 1%
improvement is considerable. We can conclude that multi-
modal learning of event embeddings indeed generates better
event embeddings which benefit script event prediction.

Cross-modal Event Retrieval

Multimodal representation learning methods project infor-
mation from two modalities and learn their relationships,
making cross-modal retrieval possible. In this subsection,
we evaluate the performance of MERL on cross-modal event
retrieval.

Cross-modal event retrieval dataset We modify the mul-
timodal hard similarly dataset (Weber) to perform multi-
modal event retrieval. For event triple retrieval, we use a ran-
domly selected image as a query and aim to retrieve the best-
matched event triple out of a randomly-constructed event
triple set, which consists of the originally paired event triple
and 19 randomly sampled event triples. For event image re-
trieval, we follow a similar set up that given an event triple,
we aim to retrieve the best-matched event image out of a
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Triple Image
Methods Retrieval Retrieval
Order Embedding 54.8 51.3
Hierarchical Order Embedding 61.0 56.2
MERL 53.7 69.4

Table 3: Experimental results on multimodal event retrieval.
The best results are in bold.

randomly-constructed image set in which one of the images
is the desired one. We report the recall@ 10 results returned
by each retrieval method.

Baselines We assume an event triple is a more abstract de-
scription of its paired images. Such an assumption essen-
tially implies a hierarchical relationship between an event
triple and its associated images. In this set of experiments,
we mainly compare MERL with multimodal representations
learning methods that consider hierarchical relationships be-
tween text and image:

Order Embedding, (Vendrov et al. 2016), defines a par-
tial order relationship between text and image and repre-
sents texts and images only based on this asymmetric re-
lationship. In the evaluation, each event triple and image
pair is scored and ranked based on their respective order
embeddings.

Hierarchical Order Embedding, (Ben and Andrew
2018), extends the framework proposed by Vendrov et al.
(2016) by replacing the point estimations with density es-
timations.

MERL, the likelihood between image embedding and
triple density embedding is employed as measurement of
similarity.

Results As shown in Table 3, MERL outperforms other
two baselines on image retrieval by a large margin of over
13%, but performs worse compared to either Order Embed-
ding or Hierarchical Order Embedding. One possible reason
is that it is more natural to rank the relatedness of points
given a distribution, but not vice versa.

Conclusion

In this paper, we have proposed a multimodal event rep-
resentation learning framework (MERL) which maps event
triples and event-associated images onto heterogeneous em-
bedding spaces. More concretely, MERL projects event
triples onto a Gaussian embedding space with a dual-path
Gaussian triple encoder, and event images onto a point em-
bedding space by the visual event components-aware im-
age encoder. To measure between these two heterogeneous
spaces, a novel score function inspired by hypothesis testing
has been proposed. Our experiments demonstrate that learn-
ing event embeddings from two modalities generate more
informative embeddings compared with learning from text
only, leading to generally better results in downstream tasks
such as multimodal event similarity measurement, script
event prediction, and cross-modal event retrieval. Future
work may contain extend the proposed method in a Bayesian
learning framework.
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