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Abstract

As an important research issue in affective computing com-
munity, multi-modal emotion recognition has become a hot
topic in the last few years. However, almost all existing
studies perform multiple binary classification for each emo-
tion with focus on complete time series data. In this paper,
we focus on multi-modal emotion recognition in a multi-
label scenario. In this scenario, we consider not only the
label-to-label dependency, but also the feature-to-label and
modality-to-label dependencies. Particularly, we propose a
heterogeneous hierarchical message passing network to effec-
tively model above dependencies. Furthermore, we propose a
new multi-modal multi-label emotion dataset based on par-
tial time-series content to show predominant generalization
of our model. Detailed evaluation demonstrates the effective-
ness of our approach.

Introduction
Multi-modal Emotion Recognition has drawn more and
more attention in natural language processing (Wang et al.
2019; Zhang et al. 2020a), speech analysis (Albanie et al.
2018; Priyasad et al. 2020), computer vision (Ruan et al.
2020; Deng et al. 2020) and multimedia analysis (Zhang
et al. 2019a; Mai, Hu, and Xing 2020) communities. This
is mainly due to not only its great facility to relevant tasks,
such as emotional response generation and recommendation
(Tsai et al. 2019), but also its wide applications, such as chat-
bot and sentiment systems (Chauhan et al. 2020).

Although a considerable amount of approaches have been
proposed to handle multi-modal emotion recognition, there
still exist two issues for this task:

On the one hand, conventional studies normally either
perform multi-modal emotion recognition based on a domi-
nant emotion or perform binary relevance for multiple emo-
tions of a sample (Ju et al. 2020; Zhang et al. 2020a). How-
ever, an utterance of people or the contents of music tends
to show multiple co-occurring emotions with potential cor-
relations. Intuitively, multi-modal emotion recognition in a
multi-label scenario brings greater challenges. In addition
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Figure 1: Two examples of multi-modal multi-label (a) com-
plete time series instance and (b) partial time series instance.

to various dependencies among emotion labels (label-to-
label dependency), we should admit that the features from
different modalities contribute differentially to each poten-
tial emotion (feature-to-label and modality-to-label depen-
dencies). Therefore, we believe that a well-behaved ap-
proach should be unified to simultaneously model all de-
pendencies at feature-to-label, modality-to-label and label-
to-label levels for multi-modal multi-label emotion recogni-
tion (MMER).

On the other hand, conventional studies normally em-
ploy sequential modeling (Zhang et al. 2020b) for multi-
modal inputs (i.e., language, audio and video sequences) as
shown in Figure 1(a). However, some utterances in multi-
modal emotion analysis data may have no sequential rela-
tionships. As a result, the approaches with sequential mod-
eling cannot be directly extended to this type of data, leading
to performance loss. As shown in Figure 1(b), each piece of
comment is independent, and there is no contextual relation.
Therefore, we believe that a well-behaved approach should
be applied to both complete time series data and partial time
series data.

To handle above issues, we propose a novel heteroge-
neous hierarchical approach based on a neural message pass-
ing mechanism. The contributions of this paper can be sum-
marized as follows:

• We propose a unified MMER approach, namely Hetero-
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geneous Hierarchical Message Passing Network (HHMPN),
which can simultaneously model the feature-to-label, label-
to-label and modality-to-label dependencies via graph mes-
sage passing.

• We not only evaluate our approach on the existing multi-
modal multi-label emotion dataset based on complete time
series human utterances (MOSEI), but also propose a new
multi-modal multi-label emotion dataset based on partial
time series music (NEMu) for better evaluating the gener-
alization of our model.

• Systematic experimentation on two benchmark datasets
show that our approach can effectively address the chal-
lenges faced by MMER, and advance the state-of-the-art
with a large margin.

Related Work
As an interdisciplinary research field, emotion recognition
becomes popular in both linguistic, non-linguistic and multi-
modal disciplines (Zhang et al. 2019b). In the linguistic
community, most existing studies of multi-label emotion
recognition rely on special knowledge of emotion, such as
context information (Li et al. 2015), cross domain (Yu et al.
2018) and external resource (Ying, Xiang, and Lu 2019). Be-
sides, multi-label text classification approaches (Kim, Lee,
and Jung 2018) are also employed for this task with the same
principle. In the non-linguistic community, speech or vi-
sual features are normally used to perform multi-label emo-
tion recognition with label dependence modeling (You et al.
2020). In the multi-modal community, related studies nor-
mally focus on single-label emotion task, whereas multi-
label emotion task is typically limited to be transformed into
multiple binary classification (Sun et al. 2020). In the fol-
lowing, we mainly overview multi-label emotion recogni-
tion and multi-modal emotion recognition.

Multi-label Emotion Recognition. 1) Linguistic: Recent
studies normally cast multi-label emotion recognition task
as a classification problem and leverage the special knowl-
edge as auxiliary information (Ying, Xiang, and Lu 2019).
These approaches may not be easily extended to those tasks
without external knowledge. To this end, the multi-label text
classification approaches can be quickly applied to emotion
recognition (Chen et al. 2020; Fei et al. 2020). Recently,
Yang et al. (2019) leverage a reinforced approach to find
a better sequence than a baseline sequence, but it still re-
lies on the pre-trained seq2seq model with a pre-defined or-
der of ground-truth. 2) Non-linguistic: Ando et al. (2019)
present a novel dominant emotion recognition method that
improves on conventional hard-/soft-target based methods
by directly handling the ambiguity of emotions for speech.
Chen et al. (2019) propose a multi-label image classification
model based on GCN. The model builds a directed graph
over the object labels, where each node (label) is represented
by word embeddings of a label, and GCN is learned to map
this label graph into a set of inter-dependent object classi-
fiers. This study is the most relevant to multi-label analysis
with image information via graph-based network modeling.

Different from the above studies, we focus on multi-label
emotion recognition in a multi-modal scenario by consid-

ering both feature-to-label and modality-to-label dependen-
cies besides the label-to-label dependency.

Multi-modal Emotion Recognition. Recent studies on
multi-modal emotion recognition largely depend on multi-
modal fusion framework to perform binary classification
within each emotion category. Chauhan et al. (2019) pro-
pose a contextual interactive attention network to learn the
inter-modal interaction among the participating modalities.
More recently, Mittal et al. (2020) uses canonical correla-
tional analysis (CCA) to differentiate between an ineffec-
tual and effectual input modality signal. However, they still
handle the multi-label emotion recognition in a multi-modal
scenario with binary relevance between one emotion and
other emotions.

Different from the above studies, we focus on multi-
modal emotion recognition in a multi-label scenario by con-
sidering label-to-label dependency besides feature-to-label
and modality-to-label dependencies. Furthermore, we gen-
eralize our approach to newly collected partial time series
data of MMER. To our best knowledge, it is the first attempt
to explore this issue.

Heterogeneous Hierarchical Message Passing
Network for MMER

In this section, we introduce our approach for multi-modal
multi-label emotion recognition, namely Heterogeneous Hi-
erarchical Message Passing Network (HHMPN). In the fol-
lowing, we first give the background of message passing
neural networks, then define the notations and introduce the
specific functions of MP and UPD, finally give the details
of four main hierarchical modules.

Background. Message Passing Neural Networks
(MPNNs) (Gilmer et al. 2017) are a generalization of
graph-based neural networks (GNN) (Scarselli et al. 2009).
MPNNs model variables as nodes on a graph G. Here
G = (V, E), where V describes the set of nodes (variables)
and E denotes the set of edges (about how variables interact
with other variables). In an MPNN, joint representations
of nodes and edges are modeled using message passing
rather than explicit probabilistic formulations, allowing for
efficient inference. MPNNs model the joint dependencies
using message passing function MPt and node updating
function UPDt for T time steps, where t is the current time
step. The hidden state vti ∈ Rd of node i ∈ G is updated
based on messages gti from its neighboring nodes {vtj∈N (i)}
defined by neighborhood N (i):

gti =
∑

j∈N (i)

MPt(vti , v
t
j) (1)

vt+1
i = UPDt(vti , g

t
i) (2)

After T rounds of iterative updates to spread information
to distant nodes, a readout function ROUT is used to form
a specific vector on the updated node embeddings to make
predictions like classifying nodes or classifying properties
of the graph (Lanchantin, Sekhon, and Qi 2019).
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Figure 2: The overview of our proposed HHMPN (T=1). Note that 1) we take three modalities (Transcripts, Audio, and Facial
expressions) in a video as an example, our model can support more modalities; 2) Our model can support both the sequential
features and discrete features; 3) the feature number of different modalities in a sample tend to be different though we illustrate
with the equal length.

Definitions
We define the following notations, used throughout the pa-
per. Let D = {(xn,yn)}Nn=1 be the set of data sam-
ples. Inputs xm ∈ x are a set of Sm components
{xm1 , xm2 , · · · , xmSm} of modality m ∈ M, and outputs y
are a set of L labels {y1, y2, · · · , yL}, where yi ∈ {0, 1}. In
general, we can assume to represent the input feature com-
ponents as embedded vectors {vm1 , vm2 , · · · , vmSm}, vmi ∈
Rd of modality m, using the learned embedding matrix
Wm
x ∈ Rεm×d. Here d is the embedding size and εm is the

size of xmi .
Similarly, labels can be first represented as embedded vec-

tors ut=0
1 , ut=0

2 , · · · , ut=0
L , uti ∈ Rd, through a learned em-

bedding matrix Wy ∈ RL×d. Here we use t to represent the
‘state’ of the embedding after the t-th update step. This is
because in HHMPN network, each label embedding is up-
dated for t steps before the predictions are made. For differ-
ent modalities, um,ti are all the same by initialization (t = 0)
and next iteration.

Message Passing Function. We specifically choose self-
attention for message passing, which enables nodes to attend
over their neighborhoods differentially. This allows for the
network to learn different importance for different nodes in
a neighborhood, without depending on knowing the graph
structure upfront. Formally,

αtij = softmaxj(e
t
ij) =

exp(etij)∑
k∈N (i) exp(e

t
ik)

(3)

etij = a(vti , v
t
j) =

(W v1vti)
>(W v2vtj)√
d

(4)

where etij are normalized across all neighboring nodes of

node i using a softmax function. For the attention function
a(·), we used a scaled dot product with node-wise linear
transformations W v1 ∈ Rd×d on node vi and W v2 ∈ Rd×d
on node vj . Scaling by

√
d is used to mitigate training issues.

Then, the message passing function in our approach can
be defined as:

MPatt(v
t
i , v

t
j ;W

1) = αtijW
vvtj (5)

gti = vti +
∑

j∈N (i)

MPatt(v
t
i , v

t
j ;W

1) (6)

where gti denotes the full message for node vti by linearly
combining messages from all neighbor nodes j ∈ N (i)
with a residual connection on current node. Message passing
function is parameterized with matrices {W v1,W v2,W v}

Updating Function. Following (Lanchantin, Sekhon, and
Qi 2019), node vti is updated to next state vt+1

i using mes-
sage gti by a multi-layer perceptron (MLP) update function
UPDmlp, plus a gti residual connection:

UPDmlp(g
t
i ;W

2) = ReLU(W rgti + b1)
>W b + b2 (7)

v
(t+1)
i = gti +UPDmlp(g

t
i ;W

2) (8)

where function UPDmlp is parameterized with matrices
{W r,W b}.

Heterogeneous Hierarchical Message Passing
Network
In this section, we mainly detail the core components of our
HHMPN hierarchically.

Feature-to-Feature Level. In this module, we cast each
extracted feature of each modality as a node in the graph
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Gxx = {Vxx, Exx}. To model both the self- and cross-
modal influence among multi-modal inputs, each node will
be connected with other self-modal nodes and all cross-
modal nodes, but separately as modality, which is shown
in the “Feature-to-Feature Level” module of Figure 2. This
feature-to-feature message passing (F2FMP) process can be
defined as follows,

gti =
⊕
m∈M

∑
j∈Nm(i)

MPatt(v
t
i , v

t
j ;W

1
xx) (9)

zti = gti +UPDmlp(g
t
i ;W

2
xx) (10)

where M denotes the set of multiple modalities (e.g.,
{Text, V ision,Audio}). Nm(i) denotes the neighbors of
node vmi in modality m. ⊕ denotes the concatenation op-
eration. The weight W r in this process, i.e., W r

xx has the
dimension of d× 3d, the dimension of other weights are all
the same as each module.

Feature-to-Label Level. For different modalities,
we obtain the corresponding updated embedding
{zm1 , zm2 , ..., zmSm} of modality m from F2FMP with
both self- and cross-modal interactions. On this basis, we
cast each updated feature and each label as nodes in the
graph Gxy = {Vxy, Exy}. Then, we set out to update the
label embeddings by passing messages from the interactive
multi-modal embeddings to the label embeddings, as shown
in the “Feature-to-Label Level” module of Figure 2. Since
both different features and different modalities contribute
differently to a potential emotion label, we discriminatively
perform feature-to-label message passing (F2LMP) as each
modality. In this step, messages are only passed from the
input nodes to the label nodes, and not vice versa (i.e.,
Feature-to-Label level message passing is directed). More
specifically, to update label embedding uti, we define as
follows,

gm,ti = um,ti +

Sm∑
j=1

MPatt(u
m,t
i , zmj ;W 1

xy) (11)

um,t
′

i = gm,ti +UPDmlp(g
m,t
i ;W 2

xy) (12)

Label-to-Label Level. In order to consider label depen-
dencies, we model interactions between the label nodes
{ut′1:L} using label-to-label message passing (L2LMP) and
update them accordingly, as shown in the “Label-to-Label
Level” module of Figure 2. We assume there exist a label
interaction graph Gyy = (Vyy, Eyy), Vyy = y1:L, and Eyy
includes all undirected pairwise edges connecting node yi
and node yj . This message passing process can be defined
as follows,

gm,ti = um,t
′

i +
∑

j∈Nm(i)

MPatt(u
m,t′

i , um,t
′

j ;W 1
yy) (13)

um,t+1
i = gm,ti +UPDmlp(g

m,t
i ;W 2

yy) (14)

whereNm(i) denotes the label neighbors of label node i for
modality m.

Modality-to-Label Level. To handle the modality-to-
label dependency, we adaptively combine label embed-
dings from different modalities. Specifically, we leverage

modality-to-label readout attention to learn the different im-
portance of each modality, as shown in the “Modality-to-
Label Level” module of Figure 2. Formally,

ut+1
i =

∑
m∈M

αmi u
m,t+1
i (15)

αmi =
exp(W lum,t+1

i )∑
m′∈M exp(W lum

′,t+1
i )

(16)

Loss Function
After T updates to the label embeddings, the last module
predicts each label {ŷ1, · · · , ŷL} = ŷ. A prediction function
projects each of the L label embeddings uTi using projection
matrix W o ∈ RL×d, where row W o

i ∈ Rd is the learned
output vector for label i. The calculated vector of size L ×
1 is then fed through an element-wise sigmoid function to
produce probabilities of each label being positive:

ŷi = sigmoid(W o
i u

T
i ) (17)

The final output of our model is trained using the mean
binary cross entropy (BCE) over all targets. For one sample,
given true binary label vector y and predicted labels ŷ, the
output loss is:

Jout =
1

L

L∑
i=1

−(yilog(ŷi) + (1− yi)log(1− ŷi)) (18)

We also leverage an auxiliary loss item to explore the la-
bel nodes at each intermediate state from t = 1 to T − 1.
Specifically, we use the same matrix W o to extract the inter-
mediate prediction ŷt at state t. Then, we use the same BCE
loss on these predictions to compute intermediate loss:

Jint =
1

L

L∑
i=1

−(yilog(ŷti) + (1− yi)log(1− ŷti)) (19)

Therefore, the final loss is a combination of both the
original and intermediate, where the intermediate loss is
weighted by λ:

Jall = Jout + λ
T−1∑
t=1

Jint (20)

Experimentation
Experimental Settings
Dataset. 1) MOSEI is the only public benchmark for
MMER in English. The document-level videos of this
dataset are segmented into utterances with three modalities,
i.e., the textual, visual and acoustic modalities, while the
emotion categories contain happiness, sadness, anger, fear,
disgust and surprise. 2) To further demonstrate the gener-
alization of our approach, we collect a partial time series
dataset for MMER from NetEase Cloud Music1, namely
NEMu. Each sample of this dataset includes lyric, com-
ments, audio, images (e.g., cover and posters) and meta-data,

1music.163.com
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Dataset Split Multi-label Other
Train Valid Test One Two and more Avg. Time(s) Language Labels Avg. Words/Sentence

MOSEI 16326 1871 4659 11121 8339 7.28/Utterance English 6 19.1
NEMu 15125 1891 1891 5587 13320 115/Sample Chinese 12 24.0

Table 1: The statistics summary on the CMU-MOSEI and NEMu datasets.

as well as the corresponding emotion label set2, such as Sad,
Excited and Happy, etc. In our settings, we mainly use lyrics,
comments, audio and images, which are considered as four
different modalities. The statistics of these two datasets are
shown in Table 1.

Feature Extraction and Embeddings. For MOSEI, we
refer to the original paper3 (Zadeh et al. 2018). For NEMu,
lyrics and comments modalities are pre-processed with
glove embeddings (εL and εC = 300). The audio modality is
pre-processed with Librosa for MFCCs (εA = 74). The im-
age modality is pre-processed with ResNet (He et al. 2016)
(εV = 2048).

Implementation Details. For both datasets, we use the
same hyper-parameters: the size d of the hidden layer in each
modality is 256, iteration times T is set 3, batch size is 64
and λ in joint loss is 0.2. We train HHMPN in an end-to-
end manner by minimizing the joint loss function with the
Adam optimizer (Kingma and Ba 2015). Besides, we make
use of the dropout regularization (Srivastava et al. 2014) to
avoid overfitting and clip the gradients (Pascanu, Mikolov,
and Bengio 2013) to the maximum norm of 10.0. During
training, we train each model for a fixed number of epochs
50 and monitor its performance on the validation set. Once
the training is finished, we select the model with the best
F1 score on the validation set as our final model and evalu-
ate its performance on the test set. For a better comparison,
we perform 10 fold cross-validation in all our experiments.
To motivate future research, both code and dataset will be
released4.

Evaluation Metrics. In our study, we employ four eval-
uation metrics to measure the performance of different ap-
proaches to MMER, i.e., multi-label Accuracy (Acc), Ham-
ming Loss (HL), micro F1 measure (miF1), macro F1 mea-
sure (maF1). These metrics have been popularly used in
some multi-label classification problems (Li et al. 2015; Wu,
Xiong, and Wang 2019; Lanchantin, Sekhon, and Qi 2019;
Ma et al. 2020). Note that smaller HL corresponds to bet-
ter classification quality, while larger Acc, miF1 and maF1

correspond to better classification quality.

Baselines
To our best knowledge, there are no unified multi-modal
multi-label approaches for emotion recognition. Therefore,
we mainly compare the uni-modal multi-label emotion
recognition approaches, which early fuse the multi-modal

2Although there are other labels of music style, we just retain
the samples only containing emotion labels.

3https://github.com/A2Zadeh/CMU-MultimodalSDK
4https://github.com/MANLP-suda/HHMPN

sequences as new input, and multi-modal single-label emo-
tion recognition approaches, which leverage multi-modal fu-
sion to generate a final representation and use a linear layer
ofL dimensions with sigmoid activation to predict the emo-
tions.

The first group can be also splitted as the classical, lin-
guistic and non-linguistic multi-label approaches. Classical:
(1) BR (Shen et al. 2004), binary relevance, which ignores
the correlations between labels. (2) CC (Read et al. 2011),
classifier chain, which considers high-order label correla-
tions. (3) LP (Tsoumakas, Katakis, and Vlahavas 2011),
which breaks the initial set of labels into a number of
small random subsets and training a corresponding classi-
fier. Linguistic multi-label: (4) LSAN (Xiao et al. 2019),
which takes advantage of label semantic information to de-
termine the semantic connection between labels and docu-
ments for constructing label-specific document representa-
tion. (5) Seq2Set (Yang et al. 2019), which leverages deep
reinforcement learning to find a most probable sequence
as the target label set based on a pre-trained sequence-to-
sequence model of RNN. (6) KRF (Ma et al. 2020), which
jointly exploits the inherent relations between music styles
according to external knowledge and their statistical rela-
tions by review-driven modeling. Non-linguistic multi-label:
(7) ML-GCN (Chen et al. 2019), which predicts a set of ob-
ject labels that present in an image in a task of multi-label
image recognition. As objects normally co-occur in an im-
age, it is desirable to model the label dependencies to im-
prove the recognition performance. (8) MLEE (Ando et al.
2019), which adopts a multi-task framework to jointly pre-
dict multi-label emotions and dominant emotion, which pro-
vides the auxiliary information for each other. Thus, this ap-
proach relies on the annotated dominant emotion, which can
not be obtained in NEMu dataset. This reason explains why
no results on NEMu for this approach.

The second group mainly focus on multi-modal fusion.
(9) MulT (Tsai et al. 2019), which addresses the issues
about inherent data non-alignment due to variable sampling
rates for the sequences from each modality and long-range
dependencies between elements across modalities in an end-
to-end manner without explicitly aligning the data. This ap-
proach is considered as the state-of-the-art in multi-modal
emotion recognition. (10) CIA (Chauhan et al. 2019), which
learns the inter-modal interaction among the participating
modalities through an auto-encoder mechanism and em-
ploys a context-aware attention module to exploit the cor-
respondence among the neighboring utterances. (11) M3ER
(Mittal et al. 2020), which models a data-driven multiplica-
tive fusion method to emphasize the more reliable cues and
suppress others on a per-sample basis. This approach is con-
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Approach MOSEI NEMu
Acc(%) HL miF1(%) maF1(%) Acc(%) HL miF1(%) maF1(%)

Classical
BR (Shen et al. 2004) 22.2 0.371 38.6 34.7 23.0 0.457 41.1 40.5
CC (Read et al. 2011) 22.5 0.377 38.6 34.1 23.5 0.465 41.7 41.1
LP (Tsoumakas et al. 2011) 15.9 0.426 28.6 28.8 21.1 0.414 37.2 35.0

Linguistic
LASN (Xiao et al. 2019) 39.3 0.209 50.1 32.3 19.5 0.332 39.7 35.7
Seq2set (Yang et al. 2019) 45.7 0.231 53.8 34.0 24.8 0.424 42.1 39.7
KRF (Ma et al. 2020) 45.3 0.226 51.5 29.0 23.1 0.496 42.0 39.7

Non-linguistic ML-GCN (Chen et al. 2019) 41.1 0.207 50.9 29.7 15.8 0.293 34.4 27.8
MLEE (Ando et al. 2019) 43.7 0.211 52.8 38.6 - - - -

Multi-modal

MulT (Tsai et al. 2019) 44.5 0.190 53.1 34.4 17.9 0.293 42.6 39.0
CIA (Chauhan et al. 2019) 42.9 0.214 45.5 11.7 11.1 0.336 29.6 34.0
M3ER (Mittal et al. 2020) 40.9 0.195 51.9 34.9 19.4 0.281 40.6 36.4
HHMPN (Ours) 45.9 0.189 55.6†‡ 43.0 †‡ 24.9 0.270 46.1†‡ 43.5†‡

HHMPN w/o F2F 41.1 0.190 52.2 33.6 22.3 0.341 43.1 39.5
HHMPN w/o F2L 44.8 0.204 53.5 35.4 23.7 0.370 43.8 41.8
HHMPN w/o L2L 41.9 0.323 53.5 35.7 19.6 0.326 42.4 39.5
HHMPN w/o M2L 44.0 0.232 54.3 40.2 24.6 0.359 45.4 43.1

Table 2: Performance of different approaches to MMER on both MOSEI and NEMu datasets. Note that 1) although the classical,
linguistic and non-linguistic multi-label approaches are originally designed for uni-modal data, we early fuse the multi-modal
data as a new input in our implementation for a fair comparison. 2) KRF and ML-GCN support the non-time series data as input,
which are the representative baselines for non-sequential modeling. The marker † refers to significant test p-value < 0.05 when
comparing with MulT, and the marker ‡ refers to significant test p-value < 0.05 when comparing with M3ER.

sidered as the state-of-the-art on MOSEI dataset.

Experimental Results
Comparison with Representative Baselines. Table 2
shows the performance of different approaches to multi-
modal multi-label emotion recognition on both MOSEI and
NEMu datasets. From this table, we can see that: First,
recent linguistic and non-linguistic multi-label approaches
outperform classical multi-label approaches in most cases
on MOSEI, they do not show obvious advantages on NEMu
and are even inferior to the classical multi-label approaches
in some metrics. For example, regarding miF1, LASN per-
forms better than CC by 1.15% on MOSEI, but obvi-
ously worse than CC on NEMu. This suggests that there
is a difference between temporal and partial temporal data.
Second, compared with uni-modal multi-label approaches,
multi-modal approaches typically perform better, especially
MulT. This indicates multi-modal data need to well model
interactions among different modalities. Third, although par-
tial temporal data can be roughly fused into a complete se-
quential (LASN) or non-sequential (ML-GCN) model, the
performance shows a worse trend. This is mainly because
the existing models are not general to these two types of
data. Finally, among all approaches, our HHMPN performs
best and significantly better than SOTA in both multi-label
and multi-modal emotion recognition areas.

Ablation Study. We also implement the ablated ap-
proaches without one specific component of our full model.
1) HHMPN w/o F2F, a variation of our approach, which
removes feature-to-feature level message passing and re-
tains the other modules. 2) HHMPN w/o F2L, a variation
of our approach, which removes feature-to-label level mes-
sage passing and retains the other modules. 3) HHMPN w/o
L2L, a variation of our approach, which removes label-to-

label level message passing and retains the other modules.
4) HHMPN w/o M2L, a variation of our approach, which
replaces the modality-to-label readout with sum readout and
retains the other modules.

As shown in Table 2, no matter which module is removed,
the performance of model variants shows varying degrees of
degradation. This suggests the importance of our approach
consisting of these four modules. In addition, the importance
of the four modules is different. For example, the perfor-
mance degradation caused by HHMPN w/o F2F is the most,
which indicates that effective multi-modal interactions are
the most important in MMER. With respect to HHMPN w/o
L2L, it shows the second rank of a performance drop, which
verifies the correctness of our motivation.

Analysis and Discussion
Since single-modal, bi-modal, visualization and other analy-
sis on MOSEI has been well investigated by previous studies
(Chauhan et al. 2019; Mittal et al. 2020), we mainly provides
further analysis of partial time series dataset NEMu.

Case Study and Visualization. Figure 3 illustrates a
case that visualizes the importance of features (sentences)
in comments passing to label nodes. From this figure, we
can see that the fifth sentence “5) although I am single and
weak · · · ” plays a most important role for label Sad. Besides,
the second sentence from the bottom “14) · · · no longer re-
lated to me · · · ” conveys the most information about emo-
tion Lonely. These learned attention are consistent with hu-
man decision, which suggests that our F2LMP module can
effectively pass important information into different label
representations.

Figure 4 visualizes the dependency degree among dif-
ferent labels. We can observe that Miss and Sad, Relaxed
and Happy co-exist with large probabilities learned by our
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Figure 3: Visualization of F2LMP.

Modalities Acc(%) HL miF1(%) maF1(%)
L-A-C 20.9 0.297 43.2 39.2
L-A-V 20.9 0.342 38.9 35.6
L-C-V 20.5 0.284 41.7 33.1
A-C-V 18.7 0.306 39.4 34.7
L-A 17.4 0.310 36.0 33.0
L-C 20.1 0.305 38.8 35.9
L-V 19.9 0.348 37.8 32.5
A-C 18.1 0.310 38.2 35.2
A-V 20.8 0.353 37.4 34.1
C-V 20.0 0.333 37.9 35.0
L 15.0 0.311 33.9 28.8
A 13.8 0.276 30.7 22.2
C 15.1 0.297 35.1 30.5
V 19.9 0.346 34.8 30.7

Table 3: Performance of uni-modality, bi-modality or tri-
modality as input into our approach on NEMu dataset. L:
lyrics, C: comments, V: vision, A: audio.

model, which indicates the effectiveness of label-to-label
message passing.

Impact of Less Modalities. To further valid the neces-
sity of our multi-modal approach in a multi-label scenario,
we also report whether the lack of one or more modalities
has a great impact on emotion recognition, as shown in Ta-
ble 3. From this table, we can observe that no matter which
one or more modalities are removed, the performance of
multi-label emotion recognition will decrease to varying de-
grees. This suggests that it is necessary to propose a proper
modality-aware approach for multi-label emotion recogni-
tion.

Figure 4: Visualization of L2LMP.

Most Emotions % of Samples Micro F1(%)
Healing 43.9 58.9
Miss 35.0 54.9
Moving 31.0 55.7
Fewest Emotions % of Samples Micro F1(%)
Happy 22.8 33.8
Relaxed 22.4 36.8
Excited 14.4 20.9

Table 4: The performance of the proposed approach on the
most and fewest emotion labels for NEMu dataset.

Error Analysis. Although the proposed HHMPN has
achieved significant improvements, we also notice that there
are some limitations. For example, the proposed approach
performs worse on the emotions with low frequency in the
training set. Table 4 compares the performance on the top
3 music emotions of the highest and lowest frequencies. As
we can see, the top 3 fewest emotions get much worse re-
sults than the top 3 most emotions. This is because the label
distribution is highly imbalanced where unpopular emotions
in music have too little training data.

Conclusion

To handle the challenges faced by multi-modal multi-label
emotion recognition, this paper proposes a heterogeneous
hierarchical message passing network (HHMPN). This ap-
proach can be easily performed on both complete time se-
ries data and partial time series data. Besides, the depen-
dency issues of feature-to-feature, feature-to-label, label-to-
label and modality-to-label can be well captured through the
core modules in our approach. Furthermore, we collect a
new multi-modal multi-label dataset of partial time series
for better evaluating our approach.
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