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Abstract
Existing speech to speech translation systems heavily rely on
the text of target language: they usually translate source lan-
guage either to target text and then synthesize target speech
from text, or directly to target speech with target text for aux-
iliary training. However, those methods cannot be applied
to unwritten target languages, which have no written text
or phoneme available. In this paper, we develop a transla-
tion system for unwritten languages, named as UWSpeech,
which converts target unwritten speech into discrete tokens
with a converter, and then translates source-language speech
into target discrete tokens with a translator, and finally syn-
thesizes target speech from target discrete tokens with an
inverter. We propose a method called XL-VAE, which en-
hances vector quantized variational autoencoder (VQ-VAE)
with cross-lingual (XL) speech recognition, to train the con-
verter and inverter of UWSpeech jointly. Experiments on
Fisher Spanish-English conversation translation dataset show
that UWSpeech outperforms direct translation and VQ-VAE
baseline by about 16 and 10 BLEU points respectively, which
demonstrate the advantages and potentials of UWSpeech.

1 Introduction
Speech to speech translation (Lavie et al. 1997; Nakamura
et al. 2006; Wahlster 2013; Jia et al. 2019) is important to
help the understanding of cross-lingual spoken conversa-
tions and lectures, and has been used in scenarios such as
international travel or conference. Existing speech to speech
translation systems either rely on target text as a pivot (they
first translate source speech into target text and then syn-
thesize target speech given the translated text (Lavie et al.
1997; Nakamura et al. 2006; Wahlster 2013)), or directly
translate source speech into target speech (Jia et al. 2019).
In these translation systems, the text corresponding to the
target speech is leveraged as either pivots or auxiliary train-
ing data (Jia et al. 2019); otherwise, the translation would
not be possible or the translation accuracy would drop dra-
matically (Jia et al. 2019).

However, there are thousands of unwritten languages in
the world (?Scharenborg et al. 2020; Godard et al. 2017),
which are purely spoken and have no written text. It is chal-
lenging to build speech translation systems for these unwrit-
ten languages without text as pivots or auxiliary training data
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like in Jia et al. (2019). Continuous speech (which usually
contains content, context, speaking style, etc.) is much more
flexible to represent semantic meanings than discrete sym-
bols (text) (van den Oord, Vinyals et al. 2017; Vigliocco
et al. 2004), which makes the translation into speech harder
than translation into text. Therefore, the key to ease the
speech translation for unwritten languages is to reduce the
flexible continuous space of speech into a more restricted
discrete space.

A variety of previous works (Muthukumar and Black
2014; Chen et al. 2015; Wilkinson, Zhao, and Black 2016;
Kamper, Livescu, and Goldwater 2017; Dunbar et al. 2017;
Eloff et al. 2019; Tjandra et al. 2019; Duong et al. 2016;
Salesky, Sperber, and Black 2019) have investigated the
conversion between speech and their corresponding pho-
netic categories (discrete tokens) in an unsupervised man-
ner, which mimics the way that human infants learn acous-
tic models in their mother tongue during their early years of
life (Versteegh et al. 2016) (some of them only focus on a
much easier task such as speech-to-text translation (Duong
et al. 2016; Salesky, Sperber, and Black 2019)). Among
these works, vector quantized variational autoencoder (VQ-
VAE) (van den Oord, Vinyals et al. 2017; Dunbar et al. 2019;
Tjandra et al. 2019; Chorowski et al. 2019; Liu et al. 2019;
Tjandra, Sakti, and Nakamura 2019; Baevski, Schneider,
and Auli 2019) has been widely adopted and shown advan-
tages over other methods. However, VQ-VAE is still purely
unsupervised and cannot ensure the quality of the learned
discrete representations. Therefore, although VQ-VAE per-
forms very well on relatively easier tasks like speech syn-
thesis (Dunbar et al. 2019), it cannot achieve good accuracy
on more complicated speech to speech translation where se-
mantic representations of speech are important and more
accurate phonetic representations are required. Few works
tackle on speech to speech translation for unwritten lan-
guages (Tjandra, Sakti, and Nakamura 2019) since it is ex-
tremely challenging.

In this paper, we develop UWSpeech (UW is short for Un-
Written), a translation system for unwritten languages with
three key components: 1) a converter that transforms unwrit-
ten target speech into discrete tokens, 2) a translator that
translates source-language speech into target-language dis-
crete tokens, and 3) an inverter that converts the translated
discrete tokens back to unwritten target speech. As can be
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seen, the discretization (transform speech into discrete to-
kens using converter) and reconstruction (synthesize speech
from discrete tokens using inverter) steps in UWSpeech is
important to ensure translation accuracy.

To this end, we propose XL-VAE, which improves the
discretization and reconstruction capability based on VQ-
VAE. Different from VQ-VAE that purely relies on unsuper-
vised methods for discrete representation learning, XL-VAE
leverages written languages with phonetic labels to improve
the vector quantization (discrete representations learning)
of unwritten languages through cross-lingual (XL) transfer.
As human beings share similar vocal organs and pronun-
ciations (Wind 1989), no matter which spoken languages
they use, the phonetic representations learned in one lan-
guage can more or less (depending on the language similar-
ity) help the learning of phonetic representations in another
language (Kuhl et al. 2008). Therefore, XL-VAE can benefit
from other written languages and outperform purely unsu-
pervised VQ-VAE on discretizing speech into discrete to-
kens and synthesizing speech from discrete tokens, and thus
enable UWSpeech to achieve better translation accuracy.

Our contributions can be summarized as follows:

• We develop UWSpeech, a speech to speech translation
system for unwritten languages, and design a novel XL-
VAE to train the converter and inverter in UWSpeech
jointly for discrete speech representations.

• We conduct experiments on Fisher Spanish-English
speech conversation dataset, assuming the target language
is unwritten. Experiment results show that UWSpeech
equipped with XL-VAE achieves 16 and 10 BLEU points
improvements over direct translation and VQ-VAE base-
line respectively, which demonstrates the advantages and
potentials of UWSpeech on speech to speech translation
for unwritten target languages. 1

• We further apply UWSpeech to text to speech trans-
lation and speech to text translation for unwritten lan-
guages. The improvements over direct translation and
VQ-VAE baseline demonstrate the general applicability
of UWSpeech beyond speech to speech translation.

2 Background
A Taxonomy of Speech Translation and Our Focused
Setting Based on the successes of text to text transla-
tion (Bahdanau, Cho, and Bengio 2014; Luong, Pham,
and Manning 2015; Vaswani et al. 2017), speech transla-
tion (Bérard et al. 2016; Weiss et al. 2017; Jia et al. 2019)
has been developed to handle speech as translation input
and/or output. Previous works on speech translations has
evolved from cascaded models (Ney 1999; Matusov, Kan-
thak, and Ney 2005; Lavie et al. 1997; Nakamura et al. 2006;
Wahlster 2013) to end-to-end models (Bérard et al. 2016;
Weiss et al. 2017; Vila et al. 2018; Sperber et al. 2019; Jia
et al. 2019), where the text corresponding to speech is lever-
aged as auxiliary training (Jia et al. 2019) for better accu-
racy. Depending on the speech is in the source or/and tar-

1Speech samples and experimental details can be found in
https://speechresearch.github.io/uwspeech/

get side, speech translation can be divided into three cate-
gories: speech to text translation, text to speech translation
and speech to speech translation. In this paper, we focus on
the most difficult setting: speech to speech translation for
unwritten languages. In this way, we can not leverage any
source or target text in auxiliary tasks like in Jia et al. (2019).
Furthermore, we also extend UWSpeech for text to speech
translation with unwritten target languages and speech to
text translation with unwritten source languages to demon-
strate the generalization ability of our method. Besides, our
method can also be applied to the written target languages
whose text or phonetic transcripts are not available in the
training data.

Discrete Speech Representations Learning discrete rep-
resentations of speech has long been studied for better
speech understanding and modeling. Previous works on
discrete speech representations include k-means cluster-
ing (Kamper, Livescu, and Goldwater 2017; Dunbar et al.
2017), Gaussian mixture model clustering (Chen et al.
2015), tree-based clustering (Muthukumar and Black 2014),
binarization with straight-through estimation (Eloff et al.
2019), categorical VAE (Eloff et al. 2019) and the more
advanced vector quantized VAE (VQ-VAE) (van den Oord,
Vinyals et al. 2017; Dunbar et al. 2019; Tjandra et al. 2019;
Chorowski et al. 2019; Liu et al. 2019; Tjandra, Sakti, and
Nakamura 2019; Baevski, Schneider, and Auli 2019). VQ-
VAE has been widely used to cluster/quantize the represen-
tations of speech and discretize into codebook sequence,
and has achieved good results on some tasks such as sub-
word units discovery from speech or text to speech synthe-
sis (Dunbar et al. 2019). However, VQ-VAE is a purely un-
supervised clustering method for discrete speech represen-
tations, which limits its effectiveness on harder tasks like
speech translation. In this paper, we improve VQ-VAE with
cross-lingual (XL) speech recognition and propose XL-VAE
to achieve better discrete speech representations.

3 UWSpeech
In this section, we introduce the design of our proposed
UWSpeech: a speech to speech translation system for un-
written target languages with the help of cross-lingual vector
quantized variational autoencoder (XL-VAE). We first de-
scribe the overall pipeline of UWSpeech, and then introduce
the detailed design of XL-VAE.

source speech

Translator

discrete tokens

target speech

Converter

target speech

Inverter

Training

Inference

Figure 1: The training and inference pipeline of UWSpeech.

14320



3.1 Pipeline Overview
For speech to speech translation where the target language
is unwritten, UWSpeech consists of three components as
shown in Figure 1: 1) a converter to transform the target-
language speech into discrete tokens; 2) a translator to trans-
late the source speech into target discrete tokens; 3) an in-
verter to convert the target discrete tokens back to target
speech. We introduce each component in the following sub-
sections.

Translator Denote the training corpus as {(x, y) ∈
(X ,Y)}, where x and y are the source and target speech se-
quence. According to the pipeline of UWSpeech, we convert
the target unwritten speech sequence y ∈ Y into discrete to-
ken sequence z ∈ Z to form a triple corpus (X ,Z,Y). We
train a machine translator θtrans by minimizing the negative
log-likelihood loss

Ltrans = −
∑

(x,z)∈(X ,Z)

logP (z|x; θtrans), (1)

where θtrans can be implemented as a standard encoder-
attention-decoder (Vaswani et al. 2017) based model with
several convolution layers in the encoder to handle speech
input, and will be described in the experiment setting.

Converter and Inverter The converter and inverter trans-
form the speech sequence y into discrete token sequence z
and transform z back to speech sequence y respectively, and
follow the form of autoencoder where the converter acts like
the encoder and the inverter acts like the decoder. Inspired
by VQ-VAE, we propose a novel XL-VAE to better train the
converter and inverter for speech translation.

3.2 XL-VAE
XL-VAE first encodes the speech sequence into hidden rep-
resentations to extract discrete tokens with a converter, and
reconstructs the original speech sequence given the repre-
sentations of discrete tokens with an inverter. Different from
VQ-VAE (van den Oord, Vinyals et al. 2017), XL-VAE ex-
tracts discrete representations not by unsupervised vector
clustering, but by speech/phoneme recognition, where the
recognition capability is transferred from other popular writ-
ten languages. We train the phoneme recognition on written
languages with speech and phoneme pairs based on the con-
verter. We illustrate XL-VAE in Figure 2 and formulate each
module in XL-VAE as follows.

Converter The converter of XL-VAE θconv takes speech
sequence y as input and generate continuous hidden repre-
sentations ẑ:

ẑ = f(y; θconv). (2)
ẑ is further converted into discrete latent variables z through
nearest neighbour search based on dot-product2:

q(z = k|y) =
{

1 for k = argmaxi (ẑ ∗ ei)
0 otherwise , (3)

2We use dot-product here instead of Euclidean distance in VQ-
VAE, in order to be consistent with the speech recognition where
the hidden representations ẑ′ are multiplied with the matrix e and

where q(z|y) denotes the categorical distribution of the dis-
crete variable z. e ∈ RK×D denotes the embedding space
of the discrete tokens, K denotes the number of discrete to-
kens and D denotes the size of each embedding vector ei for
i ∈ {1, 2, ...,K}.

As shown in Figure 2, the converter takes speech (mel-
spectrogram) sequence as input and uses several convolution
layers with strides to reduce the length of speech sequence
by 1/c. It then stacks N Transformer blocks (Vaswani et al.
2017), where each block contains a self-attention layer and a
feed-forward layer with a layer-normalization and a residual
connection on top of each layer. For a speech sequence with
length of l, the generated discrete tokens z has length of l/c.

Speech (mel-spectrogram)

Conv Layer
(down-sampling 1 𝑐	⁄ x)

Self-Attention

Speech
Recognition

Discrete tokens (IPA)

Discrete Embedding 𝑒&

Vocoder

Speech (waveform)

Feed-Forward

Discrete token
Look-up Table

×N

Self-Attention

Feed-Forward

×N

Transposed Conv Layer
(up-sampling 𝑐 x)

K

D

Speech (mel-spectrogram)

Cross-Lingual Speech Recognition

Speech Discretization & Reconstruction

𝑧

Discrete token
Look-up Table K

D

Converter Inverter

𝑧̂

P*+*

𝑦

𝑧

𝑦

𝑧̂-

𝑦-

𝑒

𝑒

Figure 2: The model structure of XL-VAE.

Inverter The inverter of XL-VAE θinv takes discrete to-
kens z as input and convert z into ez with discrete token
look-up table e (the same e as used in the converter). Then
ez is used to reconstruct the original speech sequence y:

Linv =
∑
y∈Y

(y − f(ez; θinv))
2. (4)

As shown in Figure 2, the inverter leverages several trans-
posed convolution layers (Dumoulin and Visin 2016) to
increase the length of ez by c× (opposed to the 1/c×
in the converter), to match the length of the original
mel-spectrogram sequence. It then stacks N Transformer
blocks (Vaswani et al. 2017) as used in the converter. The

then transformed through a softmax function to get the probability
of each phoneme category (which is described in the later part of
this subsection).
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inverter reconstructs the speech sequence in parallel. There-
fore, different from the conventional self-attention in Trans-
former decoder which cannot see the information in the
future positions, the self-attention in the inverter can see
the information in all positions, just like the converter. A
vocoder (Griffin and Lim 1984; Oord et al. 2016) is lever-
aged to further convert the mel-spectrogram into an audio
waveform.

Cross-Lingual (XL) Speech Recognition Instead of un-
supervised quantization in VQ-VAE, XL-VAE introduces
speech recognition in other written languages to help learn
the discrete representations, as shown in Figure 2. Given the
speech and phoneme sequence pairs (y′, t′) ∈ (Y ′, T ′) of
written languages, we use the converter θconv to transform
speech y′ into ẑ′, and then multiply ẑ′ with the discrete to-
ken embedding matrix e (e is denoted in Equation 3) and get
the probability distribution Pctc over K phoneme categories
with a softmax operation, where K is size of phoneme vo-
cabulary in the written languages, and also the number of
discrete tokens in e, which is similar with Li et al. (2020).
We train the phoneme recognition with connectionist tempo-
ral classification (CTC) loss (Graves et al. 2006). The formu-
lation of the cross-lingual speech recognition is as follows:

ẑ′ = f(y′; θconv), Pctc(r) =

|r|∏
i=1

softmax(ẑ′ ∗ e)ri ,

Lxl = −
∑

(x′,t′)∈(Y′,T ′)

∑
s∈φ(t′)

logPctc(r = s),

(5)

where φ(t′) denotes the set of valid CTC paths for phoneme
sequence t′, Pctc(r = s) denotes the probability of the
CTC path s, softmax(·)ri denotes the probability of observ-
ing label ri under the softmax function and |r| denotes the
length of sequence r. The loss function Lxl aims to mini-
mize the negative log-likelihood of all the valid CTC paths
in the training set. For more details of CTC, you can refer
to Graves et al. (2006), which is not the focus of this work.

Discrete Representation We choose international pho-
netic alphabet (IPA) (Association, Staff et al. 1999) as the
phoneme set of the written languages. In this way, the dis-
crete token embeddings e ∈ RK×D are exactly the embed-
dings of IPA where K is the size of IPA set and D is the
dimension of the embedding vector. The unwritten speech is
converted into discrete tokens which fall into the IPA set of
written languages. The discrete tokens z as well as the cor-
responding embedding vectors in e are taken as the discrete
representations of speech y.

Loss Function of XL-VAE Putting Equation 2, 3, 4 and 5
together, we have the loss function of XL-VAE:

Lxl-vae = Linv + λLxl, (6)

where λ is a hyperparameter to trade-off the two loss terms.

3.3 Training and Inference
Finally, we describe the training and inference procedure of
UWSpeech according to the formulations in the previous
two subsections. The detailed procedure is shown in Algo-
rithm 1.

Algorithm 1 UWSpeech Training and Inference
Training:
Input: Speech to speech translation corpus (X ,Y) where Y
represents target unwritten speech. Paired speech and phoneme
corpus (Y ′, T ′) in written languages where T ′ uses IPA as the
phoneme set.
Step 1: Train the XL-VAE model with corpus Y and (Y ′, T ′)
using loss in Equation 6 to obtain the converter θconv, inverter
θinv and discrete token look-up table e.
Step 2: Convert the unwritten speech corpus Y into discrete se-
quence corpus Z following Equation 2 and 3. Train the machine
translator θtrans with corpus (X ,Z) using loss in Equation 1.

Inference:
Input: Source speech corpus X , translator θtrans, discrete token
look-up table e and inverter θinv.
Step 1: For each speech sequence x ∈ X , generate target dis-
crete tokens: z ∼ P (z|x; θtrans).
Step 2: Convert z into ez through discrete token look-up table e,
and synthesize target speech: y = f(ez; θinv).

4 Experiments and Results
In this section, we first introduce the experimental setup
and then report the results of UWSpeech for speech to
speech translation. We further conduct some analyses of
UWSpeech. Finally, we also apply UWSpeech to text to
speech translation and speech to text translation settings.

4.1 Experimental Setup
Datasets Following the common practice in low-resource
and unsupervised speech and translation works (Lample
et al. 2018; Song et al. 2019; Ren et al. 2019), we con-
duct experiments on popular written languages but remove
the text of target speech to simulate unwritten languages.
We choose Fisher Spanish-English dataset (Post et al. 2013)
for translation. Considering 1) translation to unwritten lan-
guages is difficult and 2) the most useful translation sce-
narios for unwritten languages are daily communication,
travel translation, etc., where high-frequency and simple
words/sentences are usually used, we choose some common
sentences from the original full test set to form our test set
(denoted as common test set). But we still show the results
on the full test set of the main experiments setting in Table 1
and Table ?? for reference. For the written languages used
in XL-VAE, we choose French, German and Chinese with
speech data and corresponding phoneme sequence. Both
the German and French datasets are from Common Voice3,
where the German corpus contains about 280K training ex-
amples (325 hours) with 5007 different speakers and the
French corpus contains 150K training examples (173 hours)

3https://voice.mozilla.org/
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with 3005 different speakers. For the Chinese dataset, we use
AIShell (Bu et al. 2017) which contains about 140K training
examples (178 hours) with 400 different speakers.

Model Configuration We choose Transformer (Vaswani
et al. 2017) as the basic model structure for the converter,
inverter and translator, since it achieves good results on ma-
chine translation, speech recognition and speech synthesis
tasks.

Training Details We first train the converter, inverter and
discrete token embeddings in XL-VAE. We up-sample the
speech data of each written language (German, French, Chi-
nese) to the same amount, and then up-sample the speech
data of unwritten language (English or Spanish) to match
the total amount of written languages. We ensure there are
an equal amount of data in written and unwritten languages
in each mini-batch. We choose the λ in Equation 6 according
to the validation performance and set λ to 0.01. The batch
size is set to 25K frames for each GPU and the XL-VAE
training takes 200K steps on 4 Tesla V100 GPUs.

After the training of XL-VAE, the phoneme error rates
(PER) of three written languages (German, French and Chi-
nese) on the development set are 16%, 21% and 12% respec-
tively. We convert the target unwritten speech into the dis-
crete token sequence and keep the output discrete token se-
quence as it is, without removing any special or repeated to-
kens. We use the discrete token sequence generated by XL-
VAE to train translator, with a batch size of 16K frames on
each GPU and 100K training steps on 4 Tesla V100 GPUs.

Our code is implemented based on tensor2tensor li-
brary (Vaswani et al. 2018)4.

Inference and Evaluation During inference, we use the
translator to generate discrete token sequences from source
speech with beam search. We set beam size to 4 and the
length penalty to 1.0. We then directly use the inverter to
transform the discrete token sequence back to target speech.

To evaluate the accuracy of the speech translation, follow-
ing the practice in Jia et al. (2019), we pre-train an automatic
speech recognition model (which can achieve 85.62 BLEU
points on our test set and is comparable with Jia et al. (2019))
to generate the corresponding text of the translated speech,
and then calculate the BLEU score (Papineni et al. 2002)
between the generated text and the reference text. We report
BLEU score using case insensitive BLEU with moses tok-
enizer5 and multi-bleu.perl6. Due to the Fisher corpus has
4 English references in the test set, we report 4-reference
BLEU score for Spanish to English setting, and still report
single-reference BLEU score for English to Spanish setting.

4https://github.com/tensorflow/tensor2tensor
5https://github.com/moses-smt/mosesdecoder/blob/master/

scripts/tokenizer/tokenizer.perl
6https://github.com/moses-smt/mosesdecoder/blob/master/

scripts/generic/multi-bleu.perl

4.2 Results
In this subsection, we report the experiment results of
UWSpeech. We compare UWSpeech mainly with two base-
lines: 1) Direct Translation (denoted as Direct), which di-
rectly translates the source speech into target speech in an
encoder-attention-decoder model without any text as auxil-
iary training data or pivots. 2) Discretization with VQ-VAE
(denoted as VQ-VAE), which follows the translation pipeline
in UWSpeech but replaces XL-VAE with original VQ-VAE
for speech discretization.

Method Direct VQ-VAE UWSpeech

Common (Es→En) 1.45 7.17 17.33
Full (Es→En) 0.8 3.42 9.35

Common (En→Es) 0.80 3.12 11.13
Full (En→Es) 0.62 1.45 8.27

Table 1: The BLEU scores of speech to speech translation on
two translation directions, where Common means common
test set and Full means full test set.

The speech to speech translation results on Spanish to En-
glish are shown in Table 1. As can be seen, Direct achieves
a very low BLEU score, which is consistent with the find-
ings in Jia et al. (2019) and demonstrates the difficulty of di-
rect speech to speech translation. VQ-VAE achieves slightly
better BLEU score than Direct, but still with poor accu-
racy, which demonstrates the limitations of the purely un-
supervised method for speech discretization when handling
speech translation. On the common test set as we described
in Section 4.1, UWSpeech achieves 17.33 BLEU points,
about 10 points higher than VQ-VAE and 16 points higher
than Direct. UWSpeech also shows a huge gain on the full
test set. We also find that the inverter in XL-VAE can get
a lower reconstruction loss than VQ-VAE on the valida-
tion set, demonstrating that the discrete tokens extracted by
XL-VAE can not only help the discrete token translation
in translator but can also benefit the speech reconstruction
in inverter, which together contributes to the better accu-
racy in speech translation. The above results demonstrate the
advantages of XL-VAE in leveraging cross-lingual speech
recognition for speech discretization and the effectiveness
of UWSpeech for unwritten speech translation.

The experiment results on English to Spanish translation
are also shown in Table 1. Similar to the results on Spanish to
English translation, Direct achieves a very low BLEU score
and UWSpeech achieves about 8 points higher than VQ-VAE
on the common test set and 7 points higher on the full test
set, demonstrating the effectiveness of UWSpeech.

4.3 Method Analyses
In this subsection, we conduct some experimental analyses
on the proposed UWSpeech. For simplicity, we only show
the results on the common test set we described in Sec-
tion 4.1.

UWSpeech with Multi-task Training Jia et al. (2019)
proposes a direct speech to speech translation model, which
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improves translation accuracy through multi-task training
(source speech to source text (automatic speech recogni-
tion), and source speech to target text (speech to text trans-
lation)). Originally, due to lack of text in both source and
target languages, speech to speech translation for unwritten
languages could not take advantage of the multi-task training
mechanism. However, our proposed XL-VAE can discretize
the speech into discrete tokens, which can be regarded as text
for multi-task training Therefore, we study how UWSpeech
performs when combining with multi-task training.

We combine UWSpeech with multi-task training in two
ways:

• SL ASR (Source Language ASR): Training a model that
has a shared speech encoder and two decoders: one is for
speech recognition on source unwritten languages (source
speech to the corresponding discrete tokens), and the
other is for speech translation on source unwritten lan-
guages (source speech to the discrete tokens in the target
language). Both of the discrete tokens corresponding to
the source and target unwritten languages are generated
by XL-VAE. In this way, we leverage automatic speech
recognition of source unwritten language (discrete token
sequences as target) as auxiliary loss in our Translator.

• WL ASR (Written Languages ASR): Training a model
that has a shared speech encoder and two decoders: one
is for phone-level automatic speech recognition on aux-
iliary written languages (e.g., German, French, and Chi-
nese in this paper), and the other is for speech to speech
translation on unwritten languages (e.g., translate Spanish
speech to English speech directly) at the same time, hop-
ing that ASR can help the speech encoder training better.

As we can see in Table 2, the SL ASR setting can only
improve slightly from 17.33 to 17.41, which also demon-
strates the discretization of source speech is not so neces-
sary. The BLEU score of the WL ASR setting is very low
(2.36), which indicates that the Direct Translation model
cannot make full use of the written languages, while XL-
VAE can do this well.

Method UWSpeech SL ASR WL ASR

BLEU 17.33 17.41 2.36

Table 2: The BLEU scores of Spanish to English speech to
speech translation, combines with multi-task training in dif-
ferent ways.

Analyses of Written Languages in XL-VAE We study
the influence of written languages in XL-VAE on the trans-
lation accuracy, mainly from two perspectives: 1) the data
amount of the written languages, and 2) the similarity be-
tween the written and unwritten languages. To this end, we
design several different experimental settings for this study,
as shown in Table 37.

7Someone may wonder the acoustic conditions of the speech in
different written languages may influence the comparison. We lis-
tened and compared the acoustic conditions in their speech data and
only found little difference. Therefore, we can focus more on the

From setting #1, #2 and #3, it can be seen that increasing
the data amount of written language (German) can improve
the speech translation accuracy. Comparing setting #4 with
#3, we can find that further adding other languages (French
and Chinese) to increase the total data amount can also im-
prove translation accuracy. Comparing setting #2, #5 and
#6, we can find that German helps more on the discretiza-
tion of English than French, and both German and French
help more than Chinese, which is consistent with the lan-
guage similarity. According to the language family (Lewis,
Simons, and Fennig 2009), German and English belong to
the same Germanic branch in the Indo-European family,
while French and English belong to the same Indo-European
family although not in the same branch. Chinese and English
belong to different families and are far apart from each other.
Even using distant Chinese as written language, our method
still achieves higher accuracy than VQ-VAE (9.38 vs 7.17).

Setting Configuration BLEU

#1 De (80h) 10.58
#2 De (160h) 12.12
#3 De (320h) 15.20
#4 De (320h) + Fr (160h) + Zh (160h) 17.33
#5 Fr (160h) 11.79
#6 Zh (160h) 9.38

Table 3: The BLEU scores of Spanish to English speech to
speech translation with different written languages as well
as different data amounts for XL-VAE. We denote German
as De, French as Fr and Chinese as Zh.

Varying Embedding Size D and Down-Sampling Ratio
c in XL-VAE We further evaluate how the discrete token
embedding size D and the speech down-sampling ratio c in
XL-VAE influence the translation accuracy. We set c = 4
when varying D and set D = 256 when varying c according
to preliminary experiments. As shown in Table 4, discrete
token embedding size D = 256 performs better and down-
sampling ratio c = 4 performs better.

Embedding Size D 64 128 256 512

BLEU 13.85 15.20 17.33 17.13

Down-Sampling Ratio c 1 2 4 8

BLEU 10.05 13.27 17.33 16.85

Table 4: The BLEU scores of Spanish to English translation
with different discrete token embedding sizes and down-
sampling ratios.

The Advantage of Training Converter and Inventer
Jointly To study the benefits of joint training the con-

data amount and language similarity instead of acoustic conditions
considering the good robustness of the ASR model.
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verter and inverter in XL-VAE, we separately train the con-
verter by speech recognition on written languages and the
inverter by reconstructing speech from discrete tokens. Sep-
arate training achieves 13.51 BLEU points on Spanish to
English translation, which is much lower than joint training
in XL-VAE (17.33), demonstrating the effectiveness of joint
training in XL-VAE. Also, the setting points out that even
if we pre-train VQ-VAE with the same unwritten language
data, it underperforms our UWSpeech.

Discretization of Source Speech To study the translation
accuracy if we also discretize the source speech into discrete
tokens at the same time, we conduct experiments on Span-
ish to English translation direction and achieve 17.45 BLEU
points, which is just slightly better than only discretizing tar-
get speech (17.33). The results demonstrate that direct trans-
lation from source speech is not as difficult as direct transla-
tion into target speech.

Case Analyses We further analyze some translation cases
by our UWSpeech system and the baseline methods on
Spanish to English translation. As shown in Table 5, we
list the source (Spanish) and target (English) reference text
corresponding to the speech, and convert the translated En-
glish speech into text with the pre-trained automatic speech
recognition model as used in the evaluation. For the first
case, both Direct Translation and VQ-VAE miss the mean-
ing of “what she said” while UWSpeech can translate the
meaning. For the second case, only UWSpeech can trans-
late the meaning of “How’s it going, where are you from?”
correctly. We also show the translated discrete token se-
quence (IPA) by the translator (denoted as IPA (UWSpeech))
as well as the discrete token sequence extracted from the
target speech (denoted as IPA (Target)) in Table 5. It can
be seen that the IPA translated by UWSpeech is close to
the target IPA, and both are close to the pronunciation of
English speech, which demonstrates the good accuracy of
the IPA extracted by XL-VAE and translated by the transla-
tor. We attach the corresponding speech and more cases at
https://speechresearch.github.io/uwspeech.

4.4 Extension of UWSpeech
Although UWSpeech is designed for speech to speech trans-
lation, it can also be applied to other two speech translation
settings for unwritten languages: text to speech translation
and speech to text translation. We conduct experiments on
these two settings on Spanish to English translation to verify
the broad applicability of UWSpeech for unwritten speech
translation, and show the results on the common test set we
described in Section 4.1 in Table 6.

In the text to speech setting, Direct Translation still
achieves very poor translation accuracy and UWSpeech
achieves about 14 BLEU points improvements over VQ-VAE
baseline, demonstrating the effectiveness of UWSpeech on
text to speech translation for unwritten languages.

In the speech to text setting, UWSpeech achieves much
higher accuracy than VQ-VAE and slightly better accuracy
than Direct Translation. While verifying the effectiveness

Spanish (Source) Yo no entendı́ lo que ella dijo.
English (Target) I didn’t understand what she said.

Direct Translation I don’t know.
VQ-VAE I didn’t understand.
UWSpeech I didn’t understand what she say.

IPA (Target) ai ai n | d I g n n z E | 5 n Y s t t @ l 5 n n
t t | v O t | t i: s | E E: n

IPA (UWSpeech) ai ai | d e n n n | a n n v y: s s t e n n n t
| v O 5 t | t d i: | E E l

Spanish (Source) Qué tal, ¿de dónde eres?
English (Target) How’s it going, where are you from?

Direct Translation Had a price.
VQ-VAE Like are you there are you from?
UWSpeech How are you, where are you from?

IPA (Target) h h a: s | b I t t | Oy n n | O | K | j | v a: K m
IPA (UWSpeech) h h au | 5 | j ø: | 5 | j e | v a: K m

Table 5: Some translation cases in Spanish to English speech
to speech translation.

of our UWSpeech, these results also demonstrate that it is
not that necessary to discretize the source speech in speech
translation, which is consistent with our findings in Sec-
tion 4.3, and is also consistent with the results in Weiss et al.
(2017) where even leveraging the ground-truth text corre-
sponding the source speech can only achieve a BLEU gain
less than 2 points.

Method Direct Translation VQ-VAE UWSpeech

Text to Speech 5.47 8.02 22.03
Speech to Text 33.87 29.98 34.05

Table 6: The BLEU scores of the text to speech and speech to
text setting on Spanish to English translation, where English
and Spanish is taken as the unwritten language in the text to
speech setting and speech to text setting respectively.

5 Conclusion
In this paper, we developed UWSpeech, a speech to speech
translation system for unwritten target languages, and de-
signed XL-VAE, an enhanced version of VQ-VAE based
on cross-lingual speech recognition, to jointly train the con-
verter and inverter to discretize and reconstruct the unwrit-
ten speech in UWSpeech. Experiments on Fisher Spanish-
English dataset demonstrate that UWSpeech equipped with
XL-VAE achieves significant improvements in translation
accuracy over the direct translation and VQ-VAE baseline.

In the future, we will enhance XL-VAE with domain ad-
versarial training to better transfer the speech recognition
ability from written languages to unwritten languages. We
will test UWSpeech on more complicated sentences and
language pairs. Furthermore, going beyond the proof-of-
concept experiments in this work (we assumed English or
Spanish is unwritten), we will apply UWSpeech on truly un-
written languages for speech to speech translation.
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