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Abstract
People often encounter situations where they need to recall
past experiences from their daily life. In this paper, we aim to
construct a question answering system that enables human to
query their past experiences over personal knowledge base.
Previous works on knowledge base question answering fo-
cus on finding answers for answerable questions. In the real
world applications, however, people often muddle up facts
and ask those questions that cannot be answered with knowl-
edge base. This work presents a novel system consisting of
question answering model and question generation model.
It not only answers answerable questions, but also corrects
unanswerable questions if necessary. Our question answering
model recognizes the question that is inconsistent with the
state of the personal knowledge base and suggests facts that
can form a feasible question. Then, the facts are converted to
an answerable question by the question generation model. For
refining question, we propose a question generation model
based on the reinforcement learning (RL) with question edit-
ing mechanism. Experimental results show that our proposed
system is effective for correcting unanswerable questions in
personal knowledge base question answering.

Introduction
Knowledge base question answering (KBQA) is a task that
takes a natural language question as input and returns a fac-
tual answer using structured knowledge bases such as Free-
base (Bollacker et al. 2008) and DBpedia (Auer et al. 2007).
Previous researches in KBQA (Bordes et al. 2015; Bao et al.
2016; Iyyer, Yih, and Chang 2017; Sorokin and Gurevych
2018; Luo et al. 2018) focus on retrieving information over
knowledge base (KB) about world knowledge. An applica-
tion of human living support that enables people to retrieve
personal knowledge, such as daily life experiences and the
facts about themselves, remains to be explored.

Question answering over personal knowledge base
(PKBQA) is an emerging research topic that provides sup-
port for people who may have difficulty recalling past ex-
periences. People often forget something over time, and en-
counter the situations where they need to recall past experi-
ences in their daily life. Forgetting the names of exact enti-
ties from their life is common. Memex (Bush 1945), a con-
cept of lifelogging introduced by Vannevar Bush in 1945,
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is a hypothetical system for organizing the knowledge of a
person in her/his life time. The system is aimed at serving
as memory assistance to an individual for querying her/his
lifelog in a flexible and effective manner. In our previous
work (Yen, Huang, and Chen 2019a,b), we propose a multi-
modal joint learning approach to construct a personal KB of
an individual by extracting personal life events from social
media posts. Based on our public personal KB,1 we address
the topic of constructing a system that allows a user to query
past experiences in natural language over personal KB. For
instance, a user forgets the name of the place he visited last
year. The service tries to identify the name of the place by
searching the KB about the individual’s life events.

In a real application scenario, however, people might ask
questions that are unanswerable since people cannot remem-
ber each piece of information in her/his past experiences and
form a correct question. The reasons why questions cannot
be answered over KBs may include (1) KB is incomplete to
cover all facts required by the questions (Xiong et al. 2019),
(2) the user-generated questions are ill-formed, such as en-
tities or predicates are missing, and contain ungrammatical
phrases (Christmann et al. 2019), (3) questions are ambigu-
ous and have more than one interpretation, since different
entities may be mapped to the same surface form, and a
predicate expressed in natural language may be mapped to
various relations (Yahya et al. 2016; Xu et al. 2019), and (4)
entities and/or relations mentioned in the question are incon-
sistent with the facts in the KB. In this paper, we focus on
tackling the unanswerable questions caused by the last rea-
son, i.e., the events expressed in the question inconsistent
with the facts in the personal KB.

The issue of unanswerable questions has attracted atten-
tion in recent years. Rajpurkar et al. (2018) release a ma-
chine reading comprehension dataset named SQuAD 2.0,
which contains both answerable and unanswerable ques-
tions. In SQuAD 2.0, the answer of a question is a span
in the given paragraph. The unanswerable questions are de-
fined as a scenario where the answer is not a part of the con-
text. Therefore, the model has no way to select a text span
to the question. Different from SQuAD 2.0, the questions in
this work require reasoning across multiple facts in the KB,
instead of finding the answer span from sentences in a sin-

1http://nlg.csie.ntu.edu.tw/nlpresource/LiveKB/
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Figure 1: Scenario of PKBQAC for Unanswerable Question.

gle paragraph. In addition, rather than returning no answers
to users, it is much better to recommend users the possible
questions they might want to ask.

We address the issue of unanswerable questions in
PKBQA and aim to suggest users corrected questions. We
construct an active PKBQA system that not only retrieves
answers from a personal KB for answerable questions, but
also suggests possible corrections for unanswerable ques-
tions. We refer to such a kind of systems as personal knowl-
edge base question answering with correction (PKBQAC)
hereafter. Figure 1 shows a scenario of the use of the
PKBQAC system when the question is unanswerable. A user
attempts to recall the name of the palace she visited with her
friend last year. However, she mixed up with friends’ name.
That leads to a question that does not match any events
stored in her own personal KB. Our system corrects unan-
swerable questions to help the user recall experiences based
on the personal KB.

Specifically, our PKBQAC system consists of a ques-
tion answering model and a question generation model. The
question answering model is aimed at extracting answers
from personal KB by generating n candidate query graphs
{g1, g2, ..., gn}. If none of gi (1 ≤ i ≤ n) is a sub-graph of
the knowledge graph, i.e., the question is unanswerable by
the candidate query graphs, the question generation model
will be triggered to generate a question according to a cor-
rected query graph g′ and the original question.

There are two main challenge issues in this work: (1) how
users express questions to recall their past experiences, and
(2) how to evaluate if the corrected questions reflect users’
intents. Because the recall questions and the corrections for
unanswerable questions are hard to collect, we construct a
question answering dataset by utilizing a public available
personal KB released by Yen et al. (2019a; 2019b). We man-
ually label question answering pairs to simulate the scenario
where people query their experiences. The dataset covers
several question types, and contains unanswerable questions
and their possible corrections. The details will be described
in the dataset construction section.

The contributions of this paper are threefold. (1) This
work introduces a novel task that extends the detection of
unanswerable questions to the correction based on personal
KB. (2) We construct a dataset for unanswerable question
correction over personal KB. (3) We propose a reinforce-

ment learning (RL) based question generation model with
editing mechanism for this task. Experimental results show
promising performances are achieved.

Related Work
In this work, we aim to construct a system that can answer
user’s questions about her/his past experiences over per-
sonal KB. The core task can be regarded as general KBQA.
Most works in KBQA focus on extracting answers from
world KB. Recently, several researches try to develop sys-
tems for people to recall the past memory. Jiang et al. (2017)
construct a MemexQA dataset, which consists of questions
about real-world personal photo albums, and propose a mul-
timodal end-to-end neural network model with an attention
kernel for answering questions. Gurrin et al. (2016; 2017;
2019) and Dang-Nguyen et al. (2019) introduce an evalua-
tion dataset for lifelog retrieval systems dealing with query-
ing specific moments in a lifelogger’s life. Instead of focus-
ing on retrieving life events from visual data, we construct a
question answering dataset based on personal KB.

The previous works on question answering over world KB
or lifelogging retrieval focus on answerable questions. In the
real world application, people may ask unanswerable ques-
tions when recall their experiences. Some researches have
addressed the issue of unanswerable questions in machine
reading comprehension. Hu et al. (2019) propose an ap-
proach to detect unanswerable questions by computing no-
answer loss in the objective function. Sun et al. (2018) pro-
pose a multi-task learning model to identify the unanswer-
ability of a question. In contrast to answer the right questions
only, our system aims at answering questions over KB cor-
rectly and actively generate corrected questions related to
what the user wants to ask based on her/his personal KB.

Some works improve the performance of KBQA by
rewriting or reformulating the input queries. Dong et al.
(2017) propose a method to rewrite the input question for
increasing the probability of yielding the correct answer.
Yahya et al. (2016) propose a framework to relax the user
queries by rewriting for achieving higher recall. Xiong et al.
(2019) reformulate the query by utilizing the input question
representation and the KB knowledge. Buck et al. (2018)
propose a RL based system to reformulate the original ques-
tion for retrieving more candidate answers. These works aim
to enhance the ability of retrieving the correct answers by in-
corporating query expansion mechanism. However, expand-
ing or relaxing unanswerable questions is not suitable to our
work, since events described in the original questions are in-
consistent with the personal KB. In this paper, we correct
the unanswerable questions to answerable ones based on the
personal KB.

The difference between our work and the tasks of question
generation (Nema et al. 2019; Elsahar, Gravier, and Laforest
2018) and sequence editing (Zhao et al. 2019; Malmi et al.
2019) is that we focus on generating grammatical and an-
swerable questions based on the facts in the KB. Many ques-
tion generation models have the issues of generating syntac-
tically incorrect or incomplete questions. Seq2seq models
(Nema et al. 2019; Chen, Wu, and Zaki 2019) augmented
with external reward scores using REINFORCE with the
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Combination Event A Event B Event C Wh-question Question

EaEb (User, Ingestion, Espresso, ts) (User, Presence, Eiffel Tower, ts) N/A what What did I drink when I went to the Eiffel Tower?

EaEbEc (User, Presence, Eiffel Tower, ts) (User, Ingestion, Espresso, ts) (User, Presence, Champ de Mars, ts) where Where did I go after I went to the Champ de Mars
for coffee?

Table 1: Examples of the combinations of complex questions. (ts denotes timestamp.)

baseline algorithm can generate more valid questions. In-
spired by this idea, we propose a question generation model
based on the RL with question editing.

Dataset Construction
We utilize our publicly available personal KB to construct
the dataset.2 The personal KB consists of 137 relations and
15,525 events written in Chinese collected from 18 users.
In the construction of the dataset, we refer to the anno-
tation workflow by Dubey et al. (2019). We first generate
a seed question set by applying several hand-crafted tem-
plates based on the events from the personal KB. The hand-
crafted templates generate seven types of questions, includ-
ing “who”, “what”, “where”, “when”, “how many”, “dura-
tion”, and “True or False”. For each type of the questions,
we construct 4 templates. Thus, we have 28 templates in to-
tal. We also allow human annotators to write questions on
their own if the generated question is ungrammatical or in-
fluential. In this way, the generated questions are checked
and paraphrased by human annotators to ensure the ques-
tions are grammatical. Note that an entity may have multiple
surface forms, and KB relations may be expressed in various
natural language forms. In addition to the paraphrasing for
grammaticality, we also ask human annotators to paraphrase
the subjects, the objects, and the predicates in the questions
for avoiding exactly matching the entities and relation de-
scriptions in the personal KB.

The types of questions can be further classified into sim-
ple questions and complex questions. The simple question
(Bordes et al. 2015) means the question can be answered
based on only one single relation in the KB. In contrast,
complex question (Bao et al. 2016) can be answered by
searching from an entity to other entities via two or three re-
lations in the KB. There are two types of complex questions,
EaEb and EaEbEc, where symbols Ea, Eb, and Ec denote
different events in the KB. For example, EaEbEc means the
question is answered by using three events in the personal
KB. The answer must be subject, object, or time in event Ea.
Table 1 shows examples of the two combinations generated
from the personal KB.

The true or false questions can be generated by the rules
described above. Taking the first row in Table 1 as an ex-
ample, the true question is “Have I ever been to the Eiffel
Tower for Espresso?” The false question can be generated by
replacing one of the events. For instance, we replace (User,
Ingestion, Espresso, ts) with (User, Ingestion, Tequila, ts),
so that the false question is “Have I ever been to the Eiffel
Tower to drink Tequila?”

The process mentioned above generates answerable ques-
tions. Similar to the idea of generating false questions, unan-

2http://nlg.csie.ntu.edu.tw/nlpresource/PKBQAC dataset/

Combination Ea EaEb EaEbEc

Answerable Yes Yes No Yes No

when 6,238 6,512 916 2,095 279
where 1,218 1,808 300 1,617 330
what 1,636 9,758 1,139 3,376 614
who 274 627 74 310 62
how many 20 114 8 55 10
duration 5 74 9 110 18
T/F 572 1,308 0 474 0

Table 2: The distribution of questions in our dataset.

swerable questions are generated by replacing one of the
events or the time of the events in answerable questions.
For example, replacing event B of the second row in Ta-
ble 1, the unanswerable question is “Where did I go after
I went to the Champ de Mar to drink Tequila?” In order to
avoid the problem of generating questions that users would
never ask, we generate the unanswerable questions based on
a principle that a question should contain at least one entity
selected from the KB. That is, we assume that the question
asked by the user in real practice contains at least one event
that has been experienced before. In this way, the unanswer-
able questions are not generated from simple questions. The
annotators are asked to check if the new combination is def-
initely different from the original one and unrelated to what
the user has experienced.

In summary, there are two types of answerable questions:
(1) the answers can be retrieved from the KB, and (2) the
questions can be answered with “True” or “False” based on
the KB. The rest of the questions are unanswerable. As a
result, the dataset contains 41,960 distinct questions, where
the numbers of answerable and unanswerable questions are
38,201 and 3,759, respectively. Table 2 shows the distribu-
tion of the seven question types with different combinations.

Personal Knowledge Base Question Answering
with Correction Mechanism

Figure 2 shows an overview of our PKBQAC system. The
PKBQAC system is composed of two stages. In the first
stage, the question answering model is aimed at generat-
ing candidate query graphs to extract the answer from the
KB for the input question. If no answer can be found, it
is recognized as an unanswerable question. After correcting
query graphs, the question generation model in the second
stage generates fluent questions with question editing. We
will elaborate each stage in the following sections in detail.
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Figure 2: Overview of Our PKBQAC System.

First Stage: Question Answering with
Unanswerable Recognition
We propose a question answering model based on semantic
parsing, which aims to learn query graphs for representing
semantic structures of a question. The candidate query graph
is formed as a tree graph, where the root of the tree is the
answer node representing the real answer entity. The other
nodes in the tree are the entities extracted from the question,
which constrain the answer node by relations in the KB. We
compute the semantic similarity between the question and
each candidate query graph. The query graph with the high-
est score will be reported as the answer.

Event Extraction For generating the candidate query
graphs, we propose a text tagger based on the BERT model
with condition random field layer to extract predicates and
entity mentions in the question and transform them to the
events in the form of (subject, predicate, object, time). The
tasks of entity mention and predicate extraction are viewed
as the problem of sequence labeling with the BIO scheme.

Since our dataset contains seven types of questions, an-
other classifier, also based on BERT, is constructed to clas-
sify the type of a question. This task is regarded as a multi-
class classification. Given a question q, our goal is to de-
velop a model to predict the category of q, formulated as
argmaxy∈Q P (y|q), where Q is the set of seven question
types in our dataset. We use the softmax layer to compute
the probabilities of the seven question types.

Query Graph Generation Considering an entity having
multiple surface forms, and the gap between natural lan-
guage predicate and KB relation, we propose another BERT-
based model to align the extracted predicates and mentions
to the relations and entities in the personal KB, respectively.
Formally, we align those extracted entity mentions m to the
entities e in KB by using the BERT model, where m and e
are represented by 128 tokens. They are input to the BERT
model as a sequence pair with start and separator tokens:
([CLS] m [SEP] e [SEP]). The process of aligning those ex-
tracted predicates to the relations in KB is the same as the
method described above. For the query graph generation,
we view the entities as nodes, and the relation is the edge

Espresso Ingestion

Presence

PresenceUser Eiffel
Tower

souvenir
Champ	de
Mars

Commerce_by

Figure 3: Example of a Candidate Query Graph.
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Figure 4: Structure of Our Question Answering Model.

connected with two nodes. We perform breadth-first search
(BFS) to find the entities connected with e for generating
n candidate query graphs {g1, g2, ..., gn}. For example, a
candidate query graph of the second question in Table 1 is
shown in Figure 3. The solid arrow and solid circle denote
the events identified from the question. The dotted arrow de-
notes the possible path connected with the identified events.

Question Answering Model Figure 4 shows the neural
network architecture of our question answering model. At
the word-level, we encode a question and a query graph by
two BERT models. Note that we assume a query graph con-
sists of at most three events from the personal KB. When a
query graph consists of only two events, the third input event
is represented as a zero vector.

Graph neural networks have proven to be effective in
question answering tasks (Dhingra et al. 2018; Qiu et al.
2019). In addition to semantic representations, the node em-
beddings generated by GraphSAGE (Hamilton, Ying, and
Leskovec 2017) are incorporated into our question answer-
ing model to enrich features. GraphSAGE is an inductive
framework that leverages features from a node’s local neigh-
borhood to generate embeddings. We utilize GraphSAGE to
obtain the embedding of each node in the KB. We compute
the cosine similarity between object nodes of events A, B
and C. The similarity scores are used as the weight of each
event:

wA = cos(vA, vB) + cos(vA, vC) (1)
wB = cos(vA, vB) + cos(vB , vC) (2)
wC = cos(vA, vC) + cos(vB , vC) (3)

Xg = [wA × hA;wB × hB ;wC × hC ] (4)
zg = tanh(Wg ·Xg + bg) (5)
scoreq,g = cos(hq, zg) (6)
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Figure 5: Example of Corrected Query Graphs from Unan-
swerable Question.

where vα is node embedding of the object in the event α
generated from GraphSAGE, α denotes events of A, B or
C, and hα is the final hidden state output from the BERT of
input event α. We multiply the hidden state of each event
hα by its own weight wα as the feature representation. We
then obtain the final representation zg of the candidate query
graph g by concatenating the feature representation of each
event and connecting with a dense layer. If the events are
unrelated, the weights of events will be low. That makes the
event vectors no contribution to the dense layer. The nota-
tion scoreq,g denotes the similarity score between the final
hidden state of question hq and zg . We refer this model as
Graph Weighted Semantic Matching Network (GWSMNet).

If the question is predicted as the type of “who”, “what”,
“where”, or “when”, the highest similarity score of the can-
didate query graph g is extracted as the answer. If the ques-
tion is predicted as the type of “how many” or “duration”,
we compute the frequency or duration of the events given
the candidate query graph with the highest similarity score.
For the question predicted as the type of “True or False”,
the system returns “True” if the highest similarity score is
higher than 0.5. Otherwise, the system returns “False”. If
the type of question is not predicted as “True or False” and
the highest similarity score is lower than 0.5, the question is
regraded as unanswerable.

For those questions that cannot be answered, our goal is to
generate questions related to what the user may want to ask.
Figure 5 shows an example of two corrected query graphs
g′ of an unanswerable question. The blue and green circles
represent the two different events of the user, which are irrel-
evant to each other. The circles filled with colors denote the
entities mentioned in the question. Formally, the personal
knowledge graph of the user is transformed to an adjacency
matrix A. We find out all possible k-length paths from the
given entity node to the connected node as corrected query
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Figure 6: Structure of Question Generation Model.

graphs by computing Ak. Each corrected query graph g′ is
input to the question generation model for converting to a
natural language question.

Second Stage: Question Generation
We propose a RL based question generation model with
question editing to generate feasible questions. It consists of
a question construction model and a question editing model.
The network structure is shown in Figure 6.

RL Based Question Generation Model with Question
Editing The question construction model takes a corrected
query graph g′ and the question type as input and constructs
a natural language question q̂. The question type is taken
as input to make the types of corrected questions consis-
tent with those of unanswerable questions. First, we convert
events in the corrected query graph to a word sequence that
is referred as the event sequence hereafter. Taking the cor-
rected query graph (b) in Figure 5 as an example, the event
sequence is “I Presence Eiffel Tower I Ingestion Espresso.”
Given the event sequences and question types, the question
construction model generates preliminary questions. Since
there may be grammatical errors in the questions, we pro-
pose a question editing model based on the sequence-to-
sequence (seq2seq) architecture for correcting the prelimi-
nary questions. The question generation model is called Du-
alGenNet to specify that dual generators are used.

The training process of the RL based question generation
model with question editing is detailed in Algorithm 1. At
each epoch, we first input n examples of event sequences and
question types to the question construction model for gen-
erating preliminary questions q′. We utilize log-likelihood
as the objective function Closs of the question construction
model to update parameters.

The question editing model takes q′ as input to generate
an edited question q̂ as the final outcome. In order to reward
the question editing model for refining questions to make
it better than the preliminary questions, we first evaluate flu-
ency using BLEU and evaluate answerability using the score
proposed by Nema and Khapra (2018). The reward function
is defined in Equation 7.

R(.) = Answerability + BLEU4 (7)
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Algorithm 1: Training process of question genera-
tion model.

Input: Question construction model C, Question
editing model E, Event sequences with their
corresponding question types S

Output: Edited question q̂
for number of epochs do

for number of batches do
Sample n examples from S;
Use C to generate q′;
Update C parameters by Closs;
Use E to edit q′ and generate q̂;
Use the outputs of C and E to calculate
reward in Equation 7;

Update E parameters by Eloss;
end

end

The reward function is computed by comparing the ques-
tions before and after the refinement. In this way, the ques-
tion editing model will learn how to edit the preliminary
question generated by the question construction model in the
training process, and make the final generated question more
fluent.

Then, we use the “REINFORCE with a baseline” algo-
rithm (Williams 1992) to reward the question editing model.
The training lossEloss combines both log-likelihood and re-
ward score, defined as follows.

Eloss = λ(R(q̂)−R(q′))

+ (1− λ)
T∑

t=1

log p(wt|wt−1, ..., w1, q
′)

(8)

where R(q̂) and R(q′) are the rewards of edited questions q̂
and preliminary questions q′ comparing with the reference
questions written by annotators, respectively. λ ∈ {0, 1} is a
trade-off between log-likelihood and reward. After tuning λ
by using validation data, we set λ to 0.6. To sum up, the
log-likelihood score is used to measure whether the gen-
erated question is similar to the ground-truth. It is a basic
function for training the sequence generation model. The re-
ward score is used to measure whether the question editing
model can refine the errors in the preliminary questions. It
encourages the question editing model to generate more flu-
ent questions.

For determining the hyperparameters of our question con-
struction model and question editing model, we have experi-
mented with the encoder and the decoder layers ranged from
1 to 12. Finally, the question construction model combines
a BERT encoder with 12 self-attention layers, and a 2-layer
Transformer decoder on the top of the BERT encoder. In the
question editing model, the encoder is a 12-layer BERT-base
model, and the decoder is a single-layer Transformer de-
coder. We use Adam optimizer with a learning rate of 0.002
and train our models for 20 epochs.

Sequence Tagging as Question Editing Inspired by
LASERTAGGER (Malmi et al. 2019), a model for text edit-

ing by tagging three operations of keeping, deleting, and
adding a word, we propose another question editing model
based on the sequence tagging architecture. We refer this
question generation model as GenTagNet, which uses a se-
quence tagging model after a generator. In GenTagNet, the
editing tags generated by a tag labeler is used as ground truth
for training. After obtaining a predicted tag sequence from
the question editing model, we realize it to a question.

Our tag labeler generates a tag sequence by assigning
a tag for each token in the preliminary question that is
the same as LASERTAGGER: KEEP, DELETE, and ADD
word. KEEP and DELETE indicate whether to keep the to-
ken in the output question. ADD word indicates which word
x should be inserted to the preliminary question. x belongs
to a Vocabulary W which is constructed by sorting the words
in our dataset based on their frequencies and picking the top-
N words that can cover 80% of tokens. A word not in W will
not be put into the tag sequence. Although this may lead
to incomplete questions, most of the questions generated by
the question editing model are more reasonable than the pre-
liminary questions. The benefit of tagging edit operations is
that we can train the model with a much smaller vocabu-
lary when only a small amount of human-annotated dataset
is available.

Pre-training Question Editing Model In addition to train
the question editing model only on our dataset, we pre-train
the model on the ClueWeb09 corpus (Callan et al. 2009). We
first collect questions from the ClueWeb09 corpus. Then, we
produce ungrammatical questions that would be generated
by the question construction model. Specifically, we man-
ually produce ungrammatical questions based on our ob-
servations on the generated questions by the question con-
struction model. The main error patterns in the ungrammat-
ical questions are repeated phrases and improper wording.
Therefore, we produce ungrammatical questions by para-
phrasing questions from the external corpus according to
the observed error patterns. Finally, we construct one mil-
lion (ungrammatical question, correct question) pairs for
pre-training the question editing model, where the correct
question is the ground truth of the ungrammatical question.
In other words, the ground-truth grammatical questions are
the original questions in the ClueWeb09 corpus. The correct
questions in sequence tagging model and seq2seq model are
the tag sequences from the tag labeler and the original ques-
tions in the corpus, respectively.

Experiments
In this section, we evaluate the performances of the question
answering model and the question generation model in our
PKBQAC system, respectively. The best performance is in
bold.

Evaluation of the Question Answering Model with
Unanswerable Recognition
This section presents the performance of our question an-
swering model. The sizes of the training, validation, and
test sets are 18,137, 9,103, and 14,720 questions, respec-
tively. The test set consists of 13,415 answerable questions
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Answerable Unanswerable

Model hit@1 hit@3 MRR Accuracy

Luo et al. (2018) 74.35 74.56 0.7447 41.08%
BERT 75.93 76.14 0.7606 41.95%

GMNet (mean) 71.19 71.31 0.7127 50.82%
GMNet (LSTM) 71.34 71.48 0.7144 60.14%
GMNet (meanpool) 71.06 71.22 0.7117 50.02%
GMNet (maxpool) 71.30 71.45 0.7141 53.98%

GWSMNet (mean) 78.69 81.9 0.8033 69.82%
GWSMNet (LSTM) 80.27 83.91 0.8212 69.89%
GWSMNet (meanpool) 80.07 83.71 0.8192 68.79%
GWSMNet (maxpool) 78.51 82.00 0.8027 69.67%

Table 3: Performance on question answering with unanswer-
able recognition.

and 1,305 unanswerable questions. The performances are
shown in Table 3. We adopt hit@1, hit@3, and mean recip-
rocal rank (MRR) for answerable questions, and accuracy
for unanswerable questions.

Three models based on features at different levels are
compared. We reproduce the model proposed by Luo et al.
(2018) on our dataset as baseline model. The model pro-
posed by Luo et al. (2018) and BERT are semantic match-
ing network that only computes the similarity between the
question and the candidate query graph at the semantic level.
Graph Matching Network (GMNet) extracts the answer by
computing the similarity between semantic features of the
question and node embeddings in the corrected query graph.
Graph Weighted Semantic Matching Network (GWSMNet)
combines features at both the semantic and the graph lev-
els to extract the answer. We also compare the performances
of using different aggregator funtions in GraphSAGE which
include mean operator, LSTM architecture, and pooling ap-
proach. We observe that GMNet with LSTM aggregator is
better than with other aggregators. The reason may be that
the LSTM aggregator has the advantage of the larger expres-
sive capability.

In Table 3, GWSMNet with LSTM aggregator achieves
an MRR score of 0.8212 on answerable questions and an
accuracy of 69.89% on unanswerable questions, and signif-
icantly outperforms all baseline models with p < 0.001 us-
ing the McNemar’s test. We find that incorporating semantic
and graph level information is able to enrich feature rep-
resentations and improve performances of both answerable
and unanswerable questions.

Evaluation of the Question Generation Model
Our dataset contains 32,425 query graphs for the answer-
able questions, and 3,514 corrected query graphs for the
unanswerable questions. The corrected query graphs are col-
lected by setting the power of the adjacency matrix k to
2 for extracting 2-length paths from the entity to the con-
nected entities. For evaluating the question editing model,
we use 3,514 corrected query graphs as test data. In answer-
able questions, 90% of query graphs are used for training,

Model BLEU4 ROUGE-L QBLEU4

RefNet (Nema et al. 2019) 37.09 54.74 50.93
Transformer 40.01 60.10 54.49

DualGenNet w/o pre-train 42.38 61.68 56.74
GenTagNet w/o pre-train 43.01 63.10 57.49

DualGenNet w/ pre-train 43.39 64.71 57.83
GenTagNet w/ pre-train 45.18 66.75 59.64

Table 4: Performance of question generation.

and 10% for validation. Table 4 shows the performances of
the question generation models.

In the experiments, we employ the beam search with a
beam size of 3. The models are evaluated based on BLEU4,
ROUGE-L, and Q-BLEU4 (Nema and Khapra 2018). We
use Transformer as a seq2seq baseline model. Both of the
encoder and the decoder are the BERT-based model. The
latest question generation model RefNet (Nema et al. 2019)
is also reproduced on our dataset as a baseline model. For
applying RefNet to our dataset, we input the answer entity
to the answer encoder, and input the word sequence of the
remaining corrected query graph to the passage encoder.

The impact of pre-training the question editing model is
also confirmed. In Table 4, the performances of the RL based
models are better than all baseline models. Comparing Du-
alGenNet and GenTagNet, we find that utilizing sequence
tagging as the question editing model is better than using
seq2seq model. Moreover, pre-training the question editing
model improves the performance.

We also evaluate the performance of the pipeline work-
flow by combining the best models in the two stages,
GWSMNet (LSTM) for question answering and GenTag-
Net for question generation. The performance of the ques-
tion generation model is measured by

∑M
i=1 f(gqi,gti)

M , where
M is the number of unanswerable questions correctly pre-
dicted by GWSMNet (LSTM), gqi is the i-th question gen-
erated by GenTagNet, gti is the ground-truth question, and
f is the metric (e.g., BLEU4). With the impact of error prop-
agation, the BLEU4, ROUGE-L, and QBLEU4 of GenTag-
Net are 44.72, 65.31, and 59.11, respectively.

Discussion
In this section, we first analyze the performances of the ques-
tion answering model on different question types of answer-
able and unanswerable questions. Then, we analyze the per-
formances of the question generation model trained in the
pipeline workflow and in the end-to-end fashion. Finally, We
analyze the impacts of the question generation model with
different reward functions.

Evaluation of Question Answering Models on
Different Question Types
As shown in Table 2, the distribution of question types is
imbalanced. We further analyze the performances of the
question answering model in different question types. The
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Type Frequency Luo et al. (2018) BERT GMNet GWSMNet

when 14,845 76.03% 76.48% 74.71% 80.57%
where 4,643 68.90% 69.85% 53.87% 80.34%
what 14,770 74.40% 77.83% 73.75% 80.90%
who 1,211 76.14% 74.40% 73.82% 77.29%
how many 189 41.80% 42.33% 48.68% 63.49%
duration 189 38.62% 41.27% 46.03% 52.91%
T/F 2,354 78.76% 78.76% 72.01% 79.44%

Table 5: Performance of Question Answering on Different
Question Types of Answerable Questions.

Type Frequency Luo et al. (2018) BERT GMNet GWSMNet

when 1,195 41.76% 42.18% 65.19% 74.90%
where 630 50.16% 49.84% 65.40% 79.05%
what 1,753 36.91% 37.99% 54.54% 63.15%
who 136 51.47% 58.09% 67.65% 75.74%
how many 18 27.78% 22.22% 50.00% 55.56%
duration 27 25.93% 37.04% 48.15% 51.85%

Table 6: Performance of Question Answering on Different
Question Types of Unanswerable Questions.

performances for answerable and unanswerable questions
are shown in Table 5 and Table 6, respectively. We com-
pare the performances of the models proposed by Luo et al.
(2018), BERT, GMNet, and GWSMNet, where the aggre-
gators of GMNet and GWSMNet are LSTM. Experimental
results show that the imbalance of different question types
does affect the performance of the models. However, we
find that all models achieve promising performances on the
question types “T/F” compared with the two larger ques-
tion types “when” and “what”. Besides, the models incorpo-
rated with graph level information, i.e., GMNet and GWSM-
Net, achieve better performances on the question types of
“how many” and “duration”, which require inference be-
tween multiple events in the KB.

Evaluation of Pipeline Models and End-to-End
Model in Question Generation
The RL based models, such as DualGenNet and GenTag-
Net, are end-to-end trainable models. We implement trans-
former and LASERTAGGER in pipeline workflow as base-
line models. That is, we regard question construction and
question editing as two sub-tasks in the question generation
model. Table 7 shows the performances of the models in the
pipeline workflow and in the end-to-end fashion. The model
followed by the * symbol denotes the model trained in the
pipeline workflow. Experimental results show that using the
REINFORCE with a baseline algorithm to reward the ques-
tion editing model based on the output from the question
construction model can benefit the final results.

The human evaluation is also conducted to validate the
measurement. We randomly sampled 100 corrected query
graphs from our dataset. Questions generated from models
in the two sub-tasks are shown to three annotators, and they
are asked to select which one is better considering complete-

Subtask Model BLEU4 ROUGE-L QBLEU4 Human

Question
Construction

Transformer* 40.01 60.10 54.49 31.5%
DualGenNet 40.98 61.85 55.53 33.4%
GenTagNet 41.94 63.14 56.53 35.1%

Question
Editing

Transformer* 41.38 62.23 55.85 13.4%
LaserTagger* 42.26 63.51 56.83 15.7%
DualGenNet 43.39 64.71 57.83 27.4%
GenTagNet 45.18 66.75 59.64 43.5%

Table 7: Performance of models in the pipeline workflow
and end-to-end fashion.

Reward BLEU4 ROUGE-L QBLEU4 Human

Answerability+BLEU4 45.18 66.75 59.64 55.1%
Answerability 44.96 66.39 59.41 22.7%
BLEU4 44.02 65.42 58.59 15.3%
N/A 43.98 65.33 58.60 6.9%

Table 8: Performances of Different Reward in GenTagNet.

ness, fluency, and answerability. We report the evaluation re-
sults that annotators prefer the generated questions by each
model. In the question construction and the question edit-
ing, annotators prefer GenTagNet, especially in the question
editing.

Performances of Reward Function
We use the reward function in the question generation
model, which combines the answerability score and BLEU.
The answerability score measures whether the question con-
tains question type, entities, and relations. In contrast, the
BLEU score measures the overlaps of n-grams in candidate
and reference sentences. In this section, we perform an ab-
lation study to analyze the impact of reward function. In Ta-
ble 8, we compare our question generation model GenTag-
Net under different reward functions. N/A denotes no reward
function is used in the model.

Table 8 shows that the performances degrade when both
reward functions for answerability and fluency are not con-
sidered at the same time. We randomly sample 100 cor-
rected query graphs and show the questions generated by
GenTagNet with four reward functions to three annotators.
The annotators are asked to select which one is better. As
a result, annotators prefer the GenTagNet model using both
answerability and fluency as the reward function.The evalu-
ation result shows the answerability score can better evaluate
whether the generated questions are fluent and reasonable.

Conclusion
In this paper, we focus on developing a complete system for
people querying their past experiences, which can be viewed
as an application of PKBQA. Since people often muddle up
events and ask questions that cannot be answered over per-
sonal KB, we address the topic of correcting unanswerable
question based on personal KB. We propose a system con-
sisting of a question answering model and a question genera-
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tion model. The question answering model extracts answers
based on personal KB by generating candidate query graphs.
For the unanswerable questions, the corrected query graphs
related to the user’s intent will be suggested. The question
generation model takes the corrected query graphs as input
to generate answerable questions in natural language. Ex-
perimental results show the promising results.

In this work, our system corrects unanswerable ques-
tions for helping users query the facts they want to know in
a single-turn only. Correcting unanswerable question with
user interactions is a challenging issue to be resolved in the
future.
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