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Abstract

The rapid development of such natural language processing
tasks as style transfer, paraphrase, and machine translation
often calls for the use of semantic similarity metrics. In re-
cent years a lot of methods to measure the semantic sim-
ilarity of two short texts were developed. This paper pro-
vides a comprehensive analysis for more than a dozen of such
methods. Using a new dataset of fourteen thousand sentence
pairs human-labeled according to their semantic similarity,
we demonstrate that none of the metrics widely used in the
literature is close enough to human judgment in these tasks.
A number of recently proposed metrics provide comparable
results, yet Word Mover Distance is shown to be the most
reasonable solution to measure semantic similarity in refor-
mulated texts at the moment.

Introduction

Style transfer and paraphrase are two tasks in Natural Lan-
guage Processing (NLP). Both of them are centered around
the problem of an automated reformulation. Given an input
text, the system tries to produce a new rewrite that resembles
the old text semantically. In the task of paraphrase, seman-
tic similarity is the only parameter that one tries to control.
Style transfer usually controls more aspects of the text and
could, therefore, be regarded as an extension of a paraphrase.
Intuitive understanding of style transfer problem is as fol-
lows: if an input text has some attribute A, say, politeness, a
system generates new text similar to the input semantically
but with attribute A changed to the target A. For example,
given a polite sentence “could you be so kind, give me a
hand” and a target ’not polite” the system produces a rewrite
”God damn, help me”.

The significant part of current works perform style trans-
fer via an encoder-decoder architecture with one or multi-
ple style discriminators to learn disentangled representations
(Hu et al. 2017). This basic architecture can have various
extensions, for example, can control POS-distance between
input and output (Tian, Hu, and Yu 2018), or have additional
discriminator or an extra loss term to improve the quality of
the latent representations (Yamshchikov et al. 2019). There
are also other approaches to this problem that do not use
ideas of disentangled latent representations but rather treat
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it as a machine translation problem; see, for example, (Sub-
ramanian et al. 2018). However, independently of a chosen
architecture, one has to control the semantic component of
the output text. It is expected to stay the same as the sys-
tem changes the style of the input. This aspect makes the
problem of style transfer naturally related to the problem of
paraphrase (Prakash et al. 2016), (Gupta et al. 2018), (Roy
and Grangier 2019). It also raises the question of how one
could automatically measure the semantic similarity of two
texts in these problems.

As with every NLP task that is relatively new, the widely
accepted baselines and evaluations metrics are still only
emerging. There are ongoing discussions on which aspects
of the texts are stylistic and could be changed by the style
transfer system and which are semantic and therefore are
technically out of the scope of the style transfer research
(Tikhonov and Yamshchikov 2018). This paper refrains
from these discussions. It instead attempts to systematize
existing methods of quality assessment for the tasks of style
transfer that are used in different state of art research results.
We also put these methods into the perspective of paraphrase
tasks. To our knowledge, that was not done before. The con-
tribution of the paper is four-fold:

e it compares more than a dozen of existing semantic simi-
larity metrics used by different researchers to measure the

performance of different style transfer methods;

using human assessment of 14 thousand pairs of sentences
it demonstrates that there is still no optimal semantic-
preservation metric that could be comparable with human
judgment in context of paraphrase and textual style trans-
fer, however Word Mover Distance (Kusner et al. 2015)
seems to be the most promising one;

it proposes a simple necessary condition that a metric
should comply with to be a valid semantic similarity met-
ric for the task of style transfer;

it shows that some metrics used in style transfer literature
should not be used in the context of style transfer at all.

Measuring Semantic Preservation

Style transfer, as well as a paraphrase, naturally demands the
preservation of the semantic component as the input sen-
tence is transformed into the desired output. Different re-



searchers use different methods to measure this preservation
of semantics.

Despite its disadvantages (Larsson, Nilsson, and
Kagebick 2017), one of the most widely used semantic sim-
ilarity metrics is BLEU. (Tikhonov et al. 2019) show that it
could be manipulated in a way that the system would show
higher values of BLEU on average, producing sentences
that are completely detached from the input semantically.
However, BLEU is easy to calculate and is broadly accepted
for various NLP tasks that demand semantic preservation
(Vaswani et al. 2017), (Hu et al. 2017), (Cohn-Gordon
and Goodman 2019). Alongside BLEU, there are other,
less broadly accepted metrics for semantic preservation.
For example, (Zhang, Ding, and Soricut 2018) work with
different versions of ROUGE.

(Fu et al. 2018), (John et al. 2018) or (Romanov et al.
2018) compute a sentence embedding by concatenating the
min, max, and mean of its word embeddings and use the co-
sine similarity between the source and generated sentence
embeddings as an indicator of content preservation. (Tian,
Hu, and Yu 2018) uses POS-distance alongside with BLEU
and BLEU between human-written reformulations and the
actual output of the system. One of the most recent contri-
butions in this area (Mir et al. 2019) evaluates several of the
metrics mentioned above as well as METEOR (Banerjee and
Lavie 2005) and Word Mover’s Distance (WMD). This met-
ric is calculated as the minimum distance” between word
embeddings of input and output (Kusner et al. 2015).

In this paper, we use these metrics of content-preservation
listed above alongside with several others that are used for
semantic similarity in other NLP tasks recently. We put all
these metrics into the context of paraphrase and style trans-
fer. These metrics are:

e POS-distance that looks for nouns in the input and out-
put and is calculated as a pairwise distance between the

embeddings of the found nouns;

Word overlap calculated as a number of words that occur
in both texts;

chrF (Popovi¢ 2015) — a character n-gram F-score that
measures number of n-grams that coincide in input and
output;

cosine similarity calculated in line with (Fu et al. 2018)
with pre-trained embeddings by GloVe (Pennington,
Socher, and Manning 2014);

cosine similarity calculated similarly but using FastText
word embeddings (Joulin et al. 2016);

L2 distance based on ELMo (Peters et al. 2018)

WMD (Kusner et al. 2015) that defines the distance be-
tween two documents as an optimal transport problem be-
tween the embedded words;

BLEU (Papineni et al. 2002);

ROUGE-1 (Lin and Hovy 2000) compares any text to
any other (typically human-generated) summary using a
recall-oriented approach and unigrams;

ROUGE-2 that uses bigrams;
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ROUGE-L (Lin and Och 2004) that identifies longest co-
occurring in sequence n-grams;

Meteor (Banerjee and Lavie 2005) metric that is based on
a harmonic mean of unigram precision and recall, with
recall weighted higher than precision and some additional
features, such as stemming and synonymy matching;

and the BERT score proposed in (Zhang et al. 2019) for
the estimation of the generated texts.

All these metrics are known to vary from dataset to dataset
but show consistent results within one data collection. In the
next section, we try to come up with a set of various para-
phrases and style transfer datasets that would allow us to
see qualitative differences between these metrics of seman-
tic similarity.

Data

The task of paraphrasing a given sentence is better formal-
ized than the task of style transfer. However, to our knowl-
edge, there were no attempts to look at these two tasks in
one context. There are several datasets designed to bench-
mark semantic similarity metrics. The most widely used is
STS-B, see (Cer et al. 2017). (Zhang, Baldridge, and He
2019) provide a dataset of sentences that have high lexical
overlap without being paraphrases. Quora Questions Para-
phrase dataset! provides paraphrases of Quora questions.
However, these datasets do not include style transfer exam-
ples whereas the focus of this paper is to align semantic sim-
ilarity metrics used for paraphrase with the one used in style
transfer community. Here we intend to work with the metrics
listed in the previous section and calculate them over three
paraphrase and two style transfer datasets that are often used
for these two NLP tasks. The paraphrase datasets include:

different versions of English Bibles (Carlson, Riddell, and
Rockmore 2017);

English Paralex dataset?;

English Paraphrase dataset®.
The style transfer datasets are:

Dataset of politeness introduced in (Rao and Tetreault
2018) that we in line with the original naming given by
the authors refer to as GYAFC later on;

Yelp! Reviews* enhanced with human written reviews
with opposite sentiment provided by (Tian, Hu, and Yu
2018).

We suggest to work with these datasets, since they are fre-
quently used for baseline measurements in paraphrase and
style transfer literature.

Out of all these listed datasets we sample 1000 sentence
pairs, where each pair of sentences consists of two para-
phrases or two sentences with different style and compara-
ble semantics. Experimental results that follow present aver-
ages of every measure of semantic similarity over these 1000

"https://www.kaggle.com/quora/question-pairs-dataset
Zhttp://knowitall.cs.washington.edu/paralex/
3http://paraphrase.org

*https://www.yelp.com/dataset



pairs for every dataset. Additionally to the paraphrases and
style-transfer datasets we provide several datasets that con-
sist of sentence pairs that have no common semantic com-
ponent yet are sampled from the same datasets. We do it for
several reasons: first, semantic similarity measure should be
at least capable to distinguish sentence pairs that have no
semantic similarity whatsoever from paraphrases or style-
transfer examples, second, variation of the semantic similar-
ity on random pairs for various corpora could show how a
given metric depends on the corpus’ vocabulary. These ran-
dom datasets could be used as a form of a benchmark to
estimate ’zero’ for every semantic similarity metric.

All the metrics that we include in this paper already have
undergone validation. These metrics hardly depend on the
size of the random data sample provided it is large enough.
They are also known to vary from one dataset to another.
However, due to the laborious nature of this project, we do
not know of any attempts to characterize these differences
across various datasets.

Assessment

This paper is focused on the applications of semantic simi-
larity to the tasks of style transfer and paraphrase, however
there are more NLP tasks that depend on semantic similarity
measures. We believe that the reasoning and measurements
presented in this paper are general enough to be transferred
to other NLP tasks that depend upon a semantic similarity
metric.

Table 1 and Table 2 show the results for fourteen datasets
and thirteen metrics as well as the results of the human eval-
uation of semantic similarity. It is essential to mention that
(Rao and Tetreault 2018) provide different reformulations of
the same text both in an informal and formal style. That al-
lows us to use the GYAFC dataset not only as a style trans-
fer dataset but also as a paraphrase dataset, and, therefore,
extend the number of datasets in the experiment. To stim-
ulate further research of semantic similarity measurements,
we publish® our dataset that consists of 14 000 different pairs
of sentences alongside with semantic similarity scores given
by the annotators.

Each sentence was annotated by at least three humans in-
dependently. There were 300+ English native speakers in-
volved in the assessment. Every annotator was presented
with two parallel sentences and was asked to assess how
similar their meaning is. We used AmazonTurk with several
restrictions on the turkers: these should be native speakers
of English in the top quintile of the internal rating. Humans
were to assess “how similar is the meaning of these two sen-
tences” on a scale from 1 to 5. This is a standard formu-
lation of semantic-similarity assessment task on Amazon-
Turk. Since annotators with high performance scores already
know this task, we didn’t change this standard formulation
to ensure that gathered data is representative for standard se-
mantic similarity problems. We publish all scores that were
provided by the annotators to enable further methodological
research. We hope that this dataset could be further used for
a deeper understanding of semantic similarity.

>https://github.com/VAShibaev/semantic_similarity_metrics
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Discussion

Let us briefly discuss the desired properties of a hypothetical
ideal content preservation metric. We do understand that this
metric can be noisy and differ from dataset to dataset. How-
ever, there are two basic principles with which such met-
rics should comply. First, every content preservation metric
that is aligned with actual ground truth semantic similarity
should induce similar order on any given set of datasets. In-
deed, let us regard two metrics M; and Ms both of which
claim to measure semantic preservation in two given paral-
lel datasets D, and Dy. Let us assume that M7 is the gold-
standard metric that perfectly measures semantic similarity.
Let us then assume that under the order that M7 induces on
the set of the datasets the following holds

M(Dg) < My(Dy)

. Then either
M(D,) < Ms(Dy)

would be true in terms of the order induced by M, as well
or My is an inferior semantic similarity metric.

Since style is a vague notion it is hard to intuitively predict
what would be the relative ranking of style transfer pairs of
sentences D, and paraphrase pairs D,,. However, it seems
more than natural to disqualify any metric that induces such
an order under which a randomized dataset ends up above
the paraphrase or style transfer dataset. Under order induced
by an ideal semantic preservation metric one expects to see
both these datasets to be ranked above the dataset D, that
consists of random pairs

M(D,) < M(Dy); M(D,) < M(D,). (1)

Table 1 and Table 2 show resulting values of every met-
ric across every dataset with standard deviations of the ob-
tained scores. Table 3 summarizes order induced on the
set of the paraphrase datasets, style transfer datasets, and
datasets consisting of random pairs of sentences. One can
see that humans rank random pairs as less semantically sim-
ilar than paraphrases or style-transfer rewrites. Generally,
human ranking corresponds to the intuition described in In-
equalities 1. Majority of the metrics under examination are
also in agreement with Inequalities 1.

What is particularly interesting is that humans assess
GYAFC reformulations (the sentences with supposedly sim-
ilar semantic but varying level of politeness) as the most se-
mantically similar sentence pairs. However Yelp! rewrites
that contain the same review of a restaurant but with a dif-
ferent sentiment are ranked as the least similar texts out of
all non-random sentence pairs. This illustrates the argument
made in (Tikhonov and Yamshchikov 2018) that sentiment
is perceived as an aspect of semantics rather than style by
human assessors. Therefore, addressing the sentiment trans-
fer problem as an example of the style transfer problem can
cause systemic errors in terms of semantic similarity as-
sessment. Unfortunately this often happens in modern style
transfer research and should be corrected.

Closely examining Table 3 one can make several con-
clusions. First of all, cosine similarity metrics based on



Dataset Human POS-distance  Word chrF Cosine Cosine WMD

Labeling overlap Similarity Similarity

Word2Vec FastText

Bibles 3.54+0.72 2.39+3.55 047+0.18 0.54+0.18 0.04+£0.04 0.04+£0.02 0.57+0.29
Paralex 3.28 £ 0.8 2.91 +4.28 0.43+0.18 0484+0.18 0.13+0.09 0.09+£0.04 0.62+0.3
Paraphrase 3.6 £0.79 2.29 £+ 2.85 0.31£0.2 0.41+£0.23 0.29+0.17 0.21+£0.12 0.77+0.34
GYAFC formal 3.63+0.75 2.274+3.97 0.5+0.22 0.53+0.22 0.06+0.04 0.05+0.03 0.57+0.35
GYAFC informal 3.41+£0.78 3.79+4.54 0.32+0.17 0.34+£0.17 0.09+£0.05 0.09+£0.04 0.76 +0.31
Yelp! rewrite 268 £0.83 1.11+2.34 045+0.25 0.51+£0.23 0.08+£0.06 0.08+£0.06 0.61=+0.31
GYAFC rewrite 3.83+£0.75 2.32+3.91 047+0.21 0.53+£0.22 0.06+£0.04 0.06£0.04 0.54+0.35
Bibles random 2.32+0.69 11.21 +£8.08 0.10£0.04 0.17+£0.05 0.10£0.07 0.1 £0.03 1.23 +0.07
Paralex random 1.954+0.71 1031 +£4.84 0.13£0.08 0.14£0.05 0.24+£0.09 0.18+£0.04 1.3+£0.07
Paraphrase random 1.97 £0.65 7.474+2.5 0.02+0.06 0.1£0.05 0.58+£0.18 0.46+0.13 0.34+0.07
GYAFC random 2.13+0.73 10.61 7.2 0.056+0.05 0.13+0.04 0.15+£0.05 0.15£0.04 1.24+£0.08
informal
GYAFC random 2.12+0.74 10.82+8.64 0.084+0.05 0.14+0.04 0.15+0.04 0.14+0.03 1.26 £ 0.07
formal
GYAFC random 2.07£0.7 10.58 £8.03 0.06+0.05 0.13+£0.04 0.154+0.04 0.14+0.03 1.25+0.07
rewrite
Yelp! random 2.14+£0.79 897+4.35 0.06 £0.06 0.144+0.04 0.19+£0.06 0.17=+0.05 1.26 £ 0.08
rewrite

Table 1: Various metrics of content preservation with standard deviations calculated across three paraphrase datasets, datasets
of rewrites and various randomized datasets. GYAFC Formal and Informal correspond to the content preservation scores for
GYAFC data treated as paraphrases in a formal or informal mode respectively. GYAFC and Yelp! rewrite correspond to the
score between an input and a human-written reformulation in a different style. GYAFC and Yelp! random stand for the scores
calculated on samples of random pairs from the respective dataset.

Dataset ELMo L2 ROUGE-1 ROUGE-2 ROUGE-L BLEU Meteor BERT score
Bibles 3.71 +£1.18 0.61 £0.17 0.38 :0.22 0.58 +0.19 0.28 +0.24 0.6 0.2 0.93 £0.03
Paralex 5.74 + 1.41 0.58 £0.17 0.24 +£0.2 0.52+0.18 0.07£0.17 0.494+0.22 0.91+0.03
Paraphrase 6.79 &+ 1.87 0.43+0.24 0.134+0.22 0.41+£0.24 0.01 +0.09 0.4 +0.27 0.91 £0.05
GYAFC informal 5.56 + 1.31 0.45+0.2 0.22 +£0.19 0.39+£0.19 0.14+0.17 0.4+0.21 0.89 +£0.04
GYAFC formal 4.17+1.49 0.61£+0.21 0.4+0.26 0.574+0.22 0.27 +0.28 0.6 +0.23 0.93 +0.04
Yelp! rewrite 4.89 £ 1.8 0.57£0.24 0.37£0.27 0.54£0.26 0.22+£0.28 0.54£0.28 0.92+0.04
GYAFC rewrite 4.57 £ 1.54 0.61 £0.21 0.394+0.25 0.56 £0.22  0.25 +0.27 0.574+£0.23  0.924+0.04
Bibles random 6.89 £+ 0.95 0.15£+0.07 0.02 & 0.02 0.124+0.06 0.0£0.0 0.11 £0.06  0.82 +0.02
Paralex random 8.19 £ 1.06 0.23+0.11 0.02+0.01 0.21£0.11 0.0£0.0 0.13+£0.1 0.85 +0.02
Paraphrase random 10.524+1.39 0.03+0.01 0.0+0.0 0.024+0.01 0.0£0.0 0.02+0.01 0.83+0.03
GYAFC random 7.67 +1.02 0.08 £0.08 0.01 £0.03 0.06 £0.07 0.01 +£0.01 0.06 £0.07 0.824+0.02
informal

GYAFC random 7.55 +0.92 0.08 £0.08 0.01 +0.03 0.07 £0.07  0.000 £ 0.01 0.08+£0.06 0.84 £0.02
formal

GYAFC random 7.68 +1.03 0.07£0.07 0.01 +0.02 0.06 £0.06 0.000 +0.000 0.06 £0.05 0.83£0.02
rewrite

Yelp! random 8.19+0.9 0.08 £0.09 0.002+0.02 0.074+0.08 0.00040.000 0.06+0.06 0.85+0.02
rewrite

Table 2: Various metrics of content preservation with standard deviations calculated across three paraphrase datasets, datasets
of rewrites and various randomized datasets. GYAFC Formal and Informal correspond to the content preservation scores for
GYAFC data treated as paraphrases in a formal or informal mode respectively. GYAFC and Yelp! rewrite correspond to the
score between an input and a human-written reformulation in a different style. GYAFC and Yelp! random stand for the scores
calculated on samples of random pairs from the respective dataset.

Word2Vec or on FastText do not seem to be useful as met-
rics of semantic preservation since they do not satisfy In-
equality 1 and also have the lowest correlation with human
assesment, shown in Table 4. All the other metrics induce
relatively similar orders on the set of the datasets. Figure 1
illustrates that.

Table 4 shows correlation of the metric values with human
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assessments as well as correlations between human-induced
order and the orders that other semantic similarity metrics
induce. Table 4 also demonstrates variability of the semantic
similarity metrics.

The intuition behind variability is to show how prone is
the metric to fluctuations across different texts. Since on the
datasets of random pairs the metric ideally should show very



Metric Bibles Paralex Paraphrase Yelp!

GYAFC GYAFC GYAFC Yelp!

GYAFC GYAFC GYAFC Bibles Para- Para-

random random random random random random random rewrite rewrite informal formal lex  phrase
rewrite rewrite informal formal

POS 14 10 8 9 11 12 13 1 4 7 2 5 6 3
W. Overlap 10 9 14 11 12 13 8 4 3 6 1 2 5 7
chrF 9 10 14 11 12 13 8 4 2 7 3 1 5 6
Word2Vec 8 12 14 11 7 10 9 4 2 5 3 1 6 13
FastText 7 12 14 11 9 10 8 4 3 6 2 1 5 13
WMD 8 13 14 11 10 9 12 4 1 6 3 2 5 7
ELMoL2 8 13 14 12 11 10 9 4 3 5 2 1 6 7
ROUGE-1 10 9 14 11 13 12 8 5 3 6 1 2 4 7
ROUGE-2 10 9 14 13 12 8 11 4 2 6 1 3 5 7
ROUGE-L 9 10 14 11 13 12 8 4 3 7 2 1 5 6
BLEU 10 11 14 12 13 8 9 4 3 5 2 1 6 7
Meteor 10 9 14 11 12 13 8 4 3 7 2 1 5 6
BERT 10 9 14 8 12 13 11 3 4 7 1 2 5 6
score
Human 9 14 13 8 12 10 11 7 1 5 2 4 6 3
Labeling

Table 3: Different semantic similarity metrics sort the paraphrase datasets differently. Cosine similarity calculated with
Word2Vec or FastText embeddings do not comply with Inequality M (D,.) < M(D,). All other metrics clearly distinguish
randomized texts from style transfers and paraphrases and are in line with Inequalities 1. However, none of the metrics is

completely in line with human evaluation.

low semantic similarity, it is suboptimal if it assumes a large
range of values on this datasets. The ratio between the range
of values on random datasets and the range of values on
all datasets is always between O and 1 plus and could in-
tuitively characterize how noisy the metric is. If R is a set
of all datasets of random pairs and A is set of all datasets in
question, one can introduce a measure of metrics variability
V as

max,er M (D,) — min.egr M (D,)
maxgeq M(D;) — minge 4 M(D;)

For human labelling variability is relatively high V' =
19.7% which means that humans often vary in their assess-
ment of sentences that have no common semantic compo-
nent. Lower variability on random pairs could be beneficial
if one is interested in some form of binary classification that
would distinguish pairs of sentences that have some infor-
mation in common and the ones that do not. In this context
BLEU seems to be superior to all other metrics of the survey.
However, if we want to have some quantitative estimation of
semantic similarity that resembles human judgement, than
Meteor, chrF, and WMD seem to be more preferable.

One can also introduce several scoring systems to esti-
mate how well every metric performs in terms of Inequali-
ties 1. For example, we can calculate, how many datasets get
the same rank in the metric-induced order as in the human-
induced one. Another possible score could be a number of
swaps needed to produce the human-induced order out of
the metric-induced one. Table 5 shows these scores for the
the semantic similarity metrics in question.

Looking at the results listed above we can recommend
the following. First of all, one has to conclude that there is
no silver bullet” for semantic similarity yet. Every metric
that is used for semantic similarity assessment at the mo-
ment fails to be in line with human understanding of se-

V:

Metric Correlation Correlation Variability
of the metric ~ of the induced  of the metric
with human  orders with on random
evaluation human ranking  sentences

POS 0.87 0.72 37.0%

Word overlap  0.89 0.80 23.8%

chrF 0.9 0.83 17.2%

Word2Vec 0.46 0.64 88.6%

FastText 0.52 0.65 86.3%

WMD 0.92 0.89 12.3%

ELMo L2 0.82 0.86 53.3%

ROUGE-1 0.9 0.82 33.5%

ROUGE-2 0.84 0.81 4.5%

ROUGE-L 0.89 0.83 33.4%

BLEU 0.72 0.84 0.2%

Meteor 0.91 0.80 19.5%

BERT score 0.89 0.82 23.1%

Table 4: WMD shows the highest pairwise correlation with
human assessment similarity scores. The order on fourteen
datasets, induced by WMD also has the highest correlation
with human-induced semantic similarity order. Variability
on random sentences is a ratio of the difference between the
maximal and minimal value of a given metric on the datasets
of random pairs and difference of the maximal and minimal
value of the same metric on all available datasets.

mantic similarity. It is important to add here that in terms
of standard deviation human assessment is far more con-
cise than some of the metrics under study. Though human
scores vary from dataset to dataset the variance of them is
relatively small when compared to the mean on any given
dataset. Second, judging by Table 4 and Table 5 there are
two metrics that seem to be the most promising instruments
for the task. These are: WMD that induces the order with
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POS-distance Word overlap chrF  Word2Vec FastText WMD ELMO L2 ROUGE-1 ROUGE-2 ROUGE-L BLEU Meteor BERT score Human score

POS-distance 1,00 0,73 0,71 0,45 0,44 0,69
‘Word overlap 0,73 1,00 0,98 0,80 0,84 0,86
chrF 0,71 0,98 1,00 0,79 0,83 0,89
Word2Vec 0,45 0,80 0,79 1,00 098 087
FastText 0,44 0,84 083 0,98 1,00 0,86
WMD 0,69 0,86 0,89 0,87 0,86, 1,00
ELMO L2 0,66 092 093 0,88 0,90 0,96
ROUGE-1 0,71 099 097 0,78 0,83 0,86
ROUGE-2 0,72 0,91 0,89 0,79 0,81 0,92
ROUGE-L 0,71 0,98 099 0,78 0,83 0,89
BLEU 0,68 092 092 0,82 0,85 0,92
Meteor 0,74 099 099 0,77 0,81 0,86
BERT score 0,82 0,95 093 0,73 0,76 0,85
Human score 0,72 0,80 0,83 0,64 0,65 0,89

0,66 0,71 0,72 0,71 0,68 0,74 0,82 0,72
0,92 0,99 0,91 0,98 0,92 0,99 0,95 0,80
0,93 0,97 0,89 0,99 0,92 0,99 0,93 0,83
0,88 0,78 0,79 0,78 0,82 0,77 0,73 0,64
0,90 0,83 0,81 0,83 0,85 0,81 0,76 0,65
0,96 0,86 0,92 0,89 0,92 0,86 0,85 0,89
1,00 0,92 0,92 0,94 0,96 0,92 0,87 0,86
0,92 1,00 0,93 0,98 0,93 0,98 0,94 0,82
0,92 0,93 1,00 0,91 0,96 0,90 0,87 0,81
0,94 0,98 0,91 100 094 0,99 0,94 0,83
0,96 0,93 0,96 0,94/ 1,00 0,92 0,87 0,84
0,92 0,98 0,90 0,99 0,92 1,00 0,95 0,80
0,87 0,94 0,87 094 087 0,95 1,00 0,82
0,86 0,82 0,81 0,83 084 0,80 0,82 1,00

Figure 1: Pairwise correlations of the orders induced by the metrics of semantic similarity.

Metric Number of ranks ~ Number of swaps
coinciding with needed to reconstruct
human ranking human ranking

POS 3 16

Word overlap 1 15

chrF 2 14

Word2Vec 3 16

FastText 2 17

WMD 1 11

ELMo L2 4 11

ROUGE-1 0 15

ROUGE-2 2 13

ROUGE-L 2 14

BLEU 3 13

Meteor 2 15

BERT score 3 13

Table 5: Scores for the orders induced by different semantic
similarity metrics.

minimal amount of swaps needed to achieve human-induced
order, shows the highest correlation with human assessment
values, and the highest correlation with human-induced or-
der; and ELMO L2 distance that has the highest number of
coinciding ranks and is as well only eleven swaps away from
a human-induced order, it also has the second highest in cor-
relation for the induced order with the human-induced one,
yet is relatively inferior in terms of pairwise correlation with
human assessment.

Finally, let us look at Figure 1. There is a clear correlation
between all orders induced by the metrics listed in Table 4.
This correlation of induced orders is not only a consistent
result that shows that the majority of semantic preservation
metrics are aligned to a certain extent. This correlation could
also be regarded as a justification of an order theory inspired
methodology that we propose here for comparative analysis
of metrics.

Looking at Figure 1 one should also mention that POS-
distance, as well as Word2Vec and FastText cosine similari-
ties seem to be less aligned with every other metric that was
tested. One could also see that WMD and ELMO L2 induce
very similar orders. Taking this into consideration and re-
visiting results in Table 4 and Table 5 we can conclude that

if one has to choose one metric of semantic similarity for a
task of paraphrase or style transfer, WMD is the preferable
metric at the moment.

The observed correlation of the induced orders gives hope
that there is a universal measure of semantic similarity for
texts and that all these metrics proxy this potential metric to
certain extent. However, it is clear that none of them could
model human judgement. There are several reasons that ac-
count for that. One is the phenomenal recent success of the
semantic extraction methods that are based on local rather
than global context that made local information-based met-
rics dominate NLP in recent years. Humans clearly operate
in a non-local semantic context yet even state of art models
in NLP can not account for this. The fact that BERT score
that theoretically could model inner non-local semantics still
does not reproduce human semantic similarity estimations
is a proof for that. Second reason is the absence of rigor-
ous, universally accepted definition for the problem of style
transfer. We hope further research of disentangled seman-
tic representations would allow to define semantic informa-
tion in NLP in a more rigorous way, especially in context
of several recent attempts to come up with unified notion
of semantic information, see for example (Kolchinsky and
Wolpert 2018).

Conclusion

In this paper, we examine more than a dozen metrics for se-
mantic similarity in the context of NLP tasks of style transfer
and paraphrase. We publish human assessment for semantic
similarity of fourteen thousand short text pairs and hope that
this dataset could facilitate further research of semantic sim-
ilarity metrics. Using very general order theory reasoning
and human assessment data, we demonstrate that Word2Vec
and FastText cosine similarity based metrics should not be
used in context of paraphrase and style transfer. We also
show that the majority of the metrics that occur in style
transfer literature induce similar order on the sets of data.
This is not only to be expected but also justifies the pro-
posed order-theory methodology. POS-distance, Word2Vec
and FastText cosine similarities are somehow less aligned
with this general semantic similarity order. WMD seems to
be the best semantic similarity solution that could be used
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for style transfer problems as well as problems of paraphrase
at the moment. There is still no metric that could distinguish
paraphrases form style transfers definitively. This fact is es-
sential in the context of future style transfer research. To
put that problem in the context of paraphrase, such semantic
similarity metric is direly needed.
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