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Abstract
In recent years, researchers have shown an increased inter-
est in recognizing the overlapping entities that have nested
structures. However, most existing models ignore the seman-
tic correlation between words under different entity types.
Considering words in sentence play different roles under dif-
ferent entity types, we argue that the correlation intensities
of pairwise words in sentence for each entity type should be
considered. In this paper, we treat named entity recognition
as a multi-class classification of word pairs and design a sim-
ple neural model to handle this issue. Our model applies a
supervised multi-head self-attention mechanism, where each
head corresponds to one entity type, to construct the word-
level correlations for each type. Our model can flexibly pre-
dict the span type by the correlation intensities of its head
and tail under the corresponding type. In addition, we fuse
entity boundary detection and entity classification by a multi-
task learning framework, which can capture the dependencies
between these two tasks. To verify the performance of our
model, we conduct extensive experiments on both nested and
flat datasets. The experimental results show that our model
can outperform the previous state-of-the-art methods on mul-
tiple tasks without any extra NLP tools or human annotations.

Introduction
Named Entity Recognition (NER) is an important task in
Natural Language Processing (NLP), which aims to iden-
tify text spans to specific entity types such as Person, Loca-
tion, Organization, etc. Although various NER methods have
been proposed, the widely-used models usually regard NER
as a sequence labeling task, which implicitly assumes each
token only has one tag. For example, (Lample et al. 2016;
Huang, Xu, and Yu 2015) exploit a LSTM-CRF neural net-
work which encodes tokens by a Long Short-Term Memory
(LSTM) layer and predicts labels by a Conditional Random
Fields (CRF) layer. However, entities with nested structures
are common in various domains (Alex, Haddow, and Grover
2007; Byrne 2007; Villodre et al. 2007; Wang 2009). As
shown in Figure 1, the entity [mouse IL-2R alpha] is nested
in the entity [mouse IL-2R alpha gene]. Taking nested enti-
ties into consideration can facilitate many downstream NLP
tasks, including relation extraction (Miwa and Bansal 2016;
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Here we map the [cis-acting elements]DNA that mediate interleukin 
responsiveness of  the [[mouse IL-2R alpha]Protein gene]DNA using a [thymic 
lymphoma-derived hybridoma]Cell_line.

DNA :       (cis-acting,  elements), (mouse, gene)
Cell_line : (thymic, hybridoma)

Protein:   (mouse,alpha)

Figure 1: An example in the GENIA dataset. For different
given entity types, we will generate the head-tail pair of en-
tities with corresponding types.

Liu et al. 2017), question answering (Wang et al. 2017), en-
tity linking (Gupta, Singh, and Roth 2017; Martins, Mar-
inho, and Martins 2019) and coreference resolution (Chang,
Samdani, and Roth 2013; Fragkou 2017).

Numerous approaches for nested NER have been pro-
posed in recent years. One representative category is based
on the sequence labeling (Liu et al. 2019; Xin et al. 2018)
that convert the nested structures into flat structures by var-
ious transform operations, such as (Finkel and Manning
2009) construct a syntactic constituency tree, (Lu and Roth
2015; Muis and Lu 2017; Wang and Lu 2018; Clark et al.
2018) build hyper-graphs. However, they need a lot of hu-
man efforts to annotate the corpus for complex transforma-
tions, suffering from error propagation and recognition inac-
curacy. Another appealing category is based on span classifi-
cation that classify candidate spans based on span represen-
tations. (Xia et al. 2019) recently propose a Multi-Grained
Named Entity Recognition (MGNER) model contains a De-
tector for detecting all possible word segments and a Classi-
fier for classifying these segments into the pre-defined types.

Although the span-based model overcomes the drawbacks
of the sequence labeling based models, it still has some ob-
vious issues. First, learning the span representation for all
possible spans in the sentence is computationally expensive.
Second, they ignore the explicit boundary information when
classify spans, leading to detecting boundaries of entities in-
accurate. Observing the problems of span-based models, two
recent works (Zheng et al. 2019; Tan et al. 2020) introduce
boundary-aware neural models to solve these problems by
classifying entity types following entity boundary identifi-
cation.

Despite the significant progress that has been made by
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the boundary-aware models, they independently predict the
boundary of the entities ignoring the relevance between the
head and tail of entities. In addition, for span classification,
they still rely on span representation ignoring the correlation
between entity spans and entity types. We suppose that if we
consider a head-tail pair of an entity span as a point in a type
space, there is no overlap between points, as shown in Fig-
ure 1. Further more, considering words in the sentence play
different roles under different types, we argue that the cor-
relation intensities of the head-tail pair of candidate spans
in the sentence are different under different entity types. For
example, the head-tail pair (mouse, alpha) of span mouse
IL-2R alpha has higher correlation intensities in the space of
type “Protein” than the type “DNA”, while the head-tail pair
(mouse, gene) of span mouse IL-2R alpha gene has higher
correlation intensities in the space of type “DNA” than the
type “Protein”.

To alleviate the aforementioned problems, we propose a
simple but effective multi-task learning model which mainly
contains an entity boundary detection module and an en-
tity classification module. For entity boundary detection, we
treat it as a word-level multi-class classification task, and for
entity classification, we treat it as a word-pair-level multi-
class classification task. The key of our model is present-
ing a Supervised Multi-Head Self-Attention neural method
(SMHSA) for entity classification. Concretely, we apply two
single-layer linear fully connection layer to map each word
in sentence into head and tail representation space which
can learn to identify the head/tail token of spans. To learn
the correlation between words in sentence, we exploit self-
attention mechanism. With the consideration that the corre-
lation intensities of a word pair are usually different under
different entity types, we map each type into a subspace of
the multiple heads and apply self-attention operation over
the sentence in each type space. Besides, we introduce a
multi-task learning framework for capturing the dependen-
cies between entity boundary detection and entity classifica-
tion, further improving the performance of our model. The
whole architecture of our model is illustrated in Figure 2.

To evaluate the effectiveness of our model, we con-
duct comprehensive experiment on five benchmark datasets,
among which three are nested datasets and other two are
flat datasets. For nested datasets, our model achieves 86.3%,
85.4% and 79.6% F1 scores on the ACE2004, ACE2005
and GENIA datasets, respectively. For flat datasets, our
model obtains 79.7% and 93.6% F1 scores on the JNLPBA
and CoNLL03-English datasets, respectively. Besides, our
model dose not depend on any external knowledge resource
or complex human annotation, thus it can be easily adapted
to domain-specific data. The code of our model will be re-
leased for future research1.

Related Work
Research into named entity recognition has a long history
and majority of models regard the NER as a sequence la-
beling task. Traditional sequence labeling models are based
on Hidden Markov Models (HMM) (Zhou and Su 2002) or

1https://github.com/xyxAda/Attention NER

probabilistic graph models such as CRF (Ratinov and Roth
2009). With the success of deep learning, neural-based mod-
els have attracted lots of attention of researchers. (Collobert
et al. 2011) exploits Convolutional Neural Network (CNN)
to encode tokens paired with a CRF layer for predicting to-
ken labels. Later, (Huang, Xu, and Yu 2015) replaces the
CNN with a bidirectional LSTM network. Beside word-level
word representation, several methods incorporate character-
level word embeddings with word-level embeddings, such
as, (Lample et al. 2016) utilizes a character LSTM to rep-
resent character-level features, (Chiu and Nichols 2016; Ma
and Hovy 2016) employs a character CNN instead. How-
ever, the aforementioned methods implicitly assumes each
token only has one tag, which incapable to extract the over-
lapping entities with nested structures.

Various approaches for nested NER have been proposed
in recent years, which mainly can be divided into two cat-
egories: sequence labeling-based models and span-based
models. For sequence labeling-based models, the motiva-
tion is trying to transform the nested NER problem into a
standard sequence labeling task inspired by the great suc-
cess of sequence labeling in flat NER. (Finkel and Manning
2009) proposes a parsing-based method which transform
each entity as a constituent in the parsing tree, and predict
the entity types using a CRF-based method. (Lu and Roth
2015; Muis and Lu 2017) employ hypergraph transforma-
tion for recognizing the nested entities. However, they need
a lot human efforts for designing unambiguous hypergraph.
(Katiyar and Cardie 2018) also utilizes a hypergraph trans-
formation but the structures of hypergraph are learned by
an LSTM network. One issue of the hypergraph-based mod-
els is that they design the hypergraph specially for nested
NER and are usually not suitable for flat NER. (Ju, Miwa,
and Ananiadou 2018) presents a stacked LSTM-CRF NER
recognizer which predicts entities from inner to outer itera-
tively. (Wang et al. 2018) proposes a transition-based model
to transform the nested NER into an action sequence la-
beling task. (Straková, Straka, and Hajic 2019) proposes
a sequence-to-sequence labeling model for nested NER. Al-
though the sequence labeling-based models have achieved
good performance on nested NER, most of them need extra
annotation and complex feature engineering.

Instead of tagging each token by sequence labeling, span-
based models classify spans based on span representation.
This model can effectively avoid the disadvantages of the se-
quence labeling-based models and achieve decent results on
both flat and nested NER tasks. Recently, (Xia et al. 2019)
proposes a novel neural framework which consists of a de-
tection component for recognizing all possible entity spans
and a classification component for predicting the types of
spans extracted. (Sohrab and Miwa 2018; Luan et al. 2019)
are other works based on span classification. Although span-
based models are simple and effective, its drawbacks are also
obvious. For example, they ignore the boundary information
and suffer from expensive computation, leading to detecting
the entity spans inaccurate and long training. To alleviate
these problems, (Tan et al. 2020; Zheng et al. 2019) pro-
pose a boundary-ware model to split NER task into two sub-
tasks: boundary detection and span classification. Although
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Figure 2: The whole framework mainly consists of two task modules: entity Boundary Recognition module to recognize the
boundary of entities by word-level multi-class classification method and Entity Classification module to classify the entity spans
into predefined types by word-pair-level multi-class classification method.

they joint two subtasks by sharing parameters in multi-task
framework, they essentially extract boundaries and types
separately and independently, generating error propagation
and redundant information.

Different from the aforementioned works, we consider the
correlations between words based on a supervised multi-
head self-attention mechanism to learn the correlation inten-
sities of the head-tail pair of candidate spans for each entity
type. Simultaneously, we also employ a multi-task learning
framework to joint entity boundary detection and entity clas-
sification, which can further improve the performance. In
addition, with the successful application of pre-trained lan-
guage models to various tasks, many researchers incorpo-
rate pre-trained contextual embeddings into their NER mod-
els. Such as (Wadden et al. 2019) exploits BERT (Devlin
et al. 2019), (Luan et al. 2019) uses ELMo (Peters et al.
2018) and (Fisher and Vlachos 2019; Straková, Straka, and
Hajic 2019) utilize both. In our model, we also apply the
pre-trained language model BERT to learn more expressive
word embeddings.

Model
We suppose the input is a sequence S = (w1, w2, ..., wN )
with N words. The entity boundary detection module aims
to classify each word into four classes belong to a set Lb =
{B, I,E,O}, where B, I, E and O represent Beginning, In-
side, Ending and Outside, respectively. We use a notation
s = (wi, wj) i, j ∈ [1, N ] to represent the head-tail pair of
a candidate span indicates its region from i-th word to j-th
word in a sentence. The entity classification module aims to
classify all possible head-tail pairs into multiple classes in
a predefined set R = {r1, r2, ..., rM} with M entity types.
Next, we will detail each component of our model.

Word Embedding Module
In this module, each word is represented by concatenating
two type embeddings: a pre-trained word embedding e

(w)
wi ,

and a character-based word embedding e
(c)
wi . We use xi to

represent the i-th word wi, as follows.

xi = [e(w)
wi

; e(c)wi
], i ∈ [1, N ] (1)

Here, we use the pre-trained language model BERT and
a convolutional neural network to obtain e

(w)
wi ∈ Rdw and

e
(c)
wi ∈ Rdc , respectively. Note that, we replace the BERT

pre-trained embeddings with Glove word embeddimgs (Pen-
nington, Socher, and Manning 2014) in our model without
pre-trained language models.

Boundary Detection (BD) Module
This module mainly contains two layers: a BiLSTM encoder
layer and a Feed Forward Neural Network (FFNN) classifi-
cation layer. First, BiLSTM encoder takes the sequence of
embeddings x = (x1,x2, ...,xN ) as input to capture the
dependencies of words. And the contextualized word repre-
sentation sequence he = (he1,he2, ...,heN ) is obtained
by concatenating the forward and backward LSTM hidden
state, as follows:

hei = [
−−−−→
LSTM(xi,

−→
hei−1);

←−−−−
LSTM(xi,

←−
hei+1)] (2)

where hei ∈ R2dhe and dhe denotes the dimension of the
LSTM hidden state.

Then, He is fed into FFNN layer for modeling word clas-
sification. For detecting the boundaries of entities, we use
the BIEO (Beginning, Inside, Ending, Outside) as tagging
scheme. We suppose φ(l, wi) measures how likely the i-th

14187



word wi has a boundary label l ∈ Lb, P (wi = l|S) indi-
cates the probability of a wi with boundary l over all possi-
ble boundary labels for the input sequence S. Let hei be the
contextual word embedding for word wi, the φ(l, wi) and
P (wi = l|S) are computed as follows:

φ(l, wi) = Wx · FFNN(hei)

p(wi = l|S) = exp(φ(l, wi))∑
l′∈Lb

exp(φ(l′, wi))

(3)

where Wx ∈ Rdf×4 is a neural network parameters to be
learned and df is the width of FFNN layer. During train-
ing, we maximize the likelihood probability and choose the
negative log-likelihood loss function as the loss Lbd:

Lbd = −
∑
wi∈S

∑
l∈Lb

p̂(wi = l|S)logp(wi = l|S) (4)

where p̂(wi = l|S) represents the gold distribution of word
wi with label l.

Note, while CRF is considered good at modeling se-
quence labeling, choosing CRF as the output layer of BD
module doesn’t work very well because our sequence labels
are different from flat NER models (e.g. the label sequence
BIIBIE is also valid). And, the CRF-based model is time-
consuming, about 2-4 times slower than the softmax-based
model in inference speed.

Entity Classification (EC) Module
We assume the input of this module as e = (e1, e2, ..., eN ).
For each ei, it concatenates two component: the contextual
representation hei generated by the BiLSTM encoder in BD
Module and the word embeddings xi from the Embedding
Module:

ei = [xi;hei], i ∈ [1, N ] (5)

where ei ∈ Rdw+dc+2dhe .
By sharing the input word embeddings and the contex-

tual representations, the interaction and hierarchical seman-
tic structure between two tasks can be captured. Then we
run another BiLSTM encoder which takes e as input to
learn another the contextual word representation sequence
hr = (hr1,hr2, ...,hrN ) for entity type classification:

hri = [
−−−−→
LSTM(ei,

−→
hri−1);

←−−−−
LSTM(ei,

←−
hri+1)] (6)

where hri ∈ R2dhr , and dhr is the hidden size of the LSTM
in EC Module.

To represent the head and tail of entity spans, we first
apply two single-layer linear fully connection layer to map
each hri into head and tail vector representation space which
correspond to whether the i-th word serves as the head or tail
of entities, as follows.

h(i) = Whhri + bh
t(i) = Wthri + bt
i ∈ [1, N ]

(7)

where Wh ∈ Rl×2dhr , Wt ∈ Rl×2dhr , bh ∈ Rl, bt ∈ Rl and
l is the width of the linear full connection layer.

To learn the correlation intensities of pairwise words for
each entity type. We employ a multi-head self-attention
mechanism which applies self-attention multiple times over
the same inputs using separate attention heads, which can
focus on different relevant words for each entity type. Here,
we set the number of heads as the size of the entity types
and utilize additive attention operation. We denote sk(i, j)
as the correlation intensities of the head-tail pair (wi, wj)
under the k-th entity type:

sk(i, j) = wk(tanh(h(i) + t(j)))

i, j ∈ [1, N ]; k ∈ [1,M ]
(8)

where wk is a vector of parameters with size l. For simplic-
ity of computation, we extend the wk into a matrix with size
M × l, note it as Wr , the sequence (h(1),h(2), ...,h(N))
as h, and the sequence (t(1), t(2), ..., t(N)) as t. The cor-
relation score tensor is computed as follows:

S = Wr(tanh(h+ t)) (9)

where S is a M ×N ×N tensor.
We guide this attention module to predict entity types by

introducing a supervise information r(i,j)k . Given the word
pair (wi, wj), we compute the probability of r(i,j)k = 1 and
r
(i,j)
k = 0, as follows:

p(rk|wi, wj) =
exp(sk(i, j))∑k′=M

k′=1 exp(s′k(i, j))
(10)

p(r
(i,j)
k |wi, wj) =

{
p(rk|wi, wj),r

(i,j)
k = 1

1− p(rk|wi, wj),r
(i,j)
k = 0

(11)

where p(rk|wi, wj) indicates the probability of type rk to
be predicted as the entity type for word pair (wi, wj) over
all possible entity types, r(i,j)k = 1 denotes the fact that the
word pair (wi, wj) have entity type rk, and vice versa. Dur-
ing training, we convert the gold annotation to a one-hot ma-
trix and select the binary cross-entropy loss as the loss Lec:

Lec =−
M∑
k=1

N∑
i=1

N∑
j=1

[p̂(r
(i,j)
k |wi, wj)logp(r

(i,j)
k |wi, wj)+

(1− p̂(r(i,j)k |wi, wj))log(1− p(r(i,j)k |wi, wj))]
(12)

where p̂(r
(i,j)
k |wi, wj) represents the gold distribution of

word pair (wi, wj) with relation rk.

Joint Learning
To train entity boundary detection and entity classification
simultaneously, we employ a multitask loss which a sum of
loss of two tasks, as follows:

Lloss = Lbd + Lec (13)

During the inference, given the head-tail pair (wi, wj) of
a candidate span, the rk is predicted as the entity type for it
if p(rk|wi, wj) exceeds a given threshold δ.
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Experiments
In this section, we conducted comprehensive experiments on
five datasets among which three are nested and two are flat.
And the results demonstrate that our proposed method out-
performs all baselines on both nested NER and flat NER.

Datasets and Metrics
We performed nested NER task on the widely-used
ACE2004, ACE2005 and GENIA datasets and performed
flat NER task on JNLPBA and CoNLL03-English datasets.
The details of data statistics are summarized in Table 1.

ACE20042 and ACE20053 (Doddington et al. 2004)
are two English corpus and each contains 7 entity types
as “PER”, “ORG”, “LOC”, “GEP”, “VEH”, “WEA” and
“FAC”. We reuse the same train/dev/test splits following the
previous works (Lu and Roth 2015; Wang and Lu 2018).

GENIA4 is a nested dataset in biomedicine domain and is
constructed based on GENIA v3.0.2 corpus. We processed
the dataset following (Finkel and Manning 2009; Lu and
Roth 2015) by keeping only 5 entity categories as “DNA”,
“RNA”, “Protein”, “Cell-type”, and “Cell-line”. We split
dataset into training, development and testing with the ratio
8.1:0.9:1.

JNLPBA5 is a corpus for flat NER and contains training
and testing set. This corpus is originally from GENIA but
only flat and topmost entities are kept. Like GENIA corpus,
we only kept the 5 entity types. Following (Ju, Miwa, and
Ananiadou 2018), we randomly select 10% sentences from
training set as our development set.

CoNLL03-English (Sang and Meulder 2003) is a flat
NER dataset in the domain of news and contains 4 entity
categories: “PER”, “LOC”, “ORG” and “MISC”. We split
dataset into training, development and testing with the ratio
8:1:1.

Metrics In all cases, we use the training set to train our
model and use the development set to tune the hyperparam-
eters of our model. We exploit the same evaluation metrics
used by previous works: a predicted entity is considered cor-
rect only when its span and type match with the gold entity.
For comparison, we reported precision (P), recall (R) and
micro F1 (F1) scores of our best performing models.

Implementation Details
We use AllenNLP which is a friendly NLP framework to
implement our model. For word-level word embeddings,
while exploiting pre-trianed language model, we apply
SciBERTbase on GENIA and JNLPBA datasets and apply
BERTbase on other datasets and their detailed model size
are referred to (Beltagy, Lo, and Cohan 2019) and (De-
vlin et al. 2019), respectively; while without pre-trained lan-
guage models, we use the pretrained embeddings trained
on MEDLINE abstract (Chiu et al. 2016) for GENIA and

2https://catalog.ldc.upenn.edu/ LDC2005T09
33https://catalog.ldc.upenn.edu/ LDC2006T06
4http://www.geniaproject.org/genia-corpus/term-corpus
5http://www.nactem.ac.uk/tsujii/GENIA/ ERtask/report.html

JNLPBA datasets and use Glove embeddings with 300 di-
mensions for other datasets. For character-level word em-
beddings, we apply 32 filters with window [3,4,5] on a CNN
layer. For BiLSTM encoder in both BD and EC module, the
dimension of the hidden state is 200. Each linear full con-
nection layer has one layer with 150-dimensions. To avoid
over fitting, we apply 0.5 dropout for the input embeddings
and 0.4 dropout for BiLSTM encoder. During training, we
use Adam optimizer with the learning rates of 5.0 × 10−5

and perform linear decay of the learning rate. For hyper-
parameters, we select δ as 0.5 with the best developing re-
sults.

Baselines
We compare our model with several state-of-the-art models
on both nested NER and flat NER tasks, including sequence
labeling based and span-based models .

For sequence labeling-based models, (Lample et al.
2016) is a classical neural model for flat NER, which utilize
a LSTM-CRF neural network. (Ju, Miwa, and Ananiadou
2018) is a CRF-based model which dynamically stack flat
NER layers for nested NER based on a deep neural network.
(Lu and Roth 2015; Katiyar and Cardie 2018; Wang and
Lu 2018; Wang et al. 2018) are transformation-based nested
NER models, where (Lu and Roth 2015; Katiyar and Cardie
2018; Wang and Lu 2018) use hyper-graph transformation
while (Wang et al. 2018) use shift-reduce transformation.
(Straková, Straka, and Hajic 2019) propose two models for
nested NER task, where one is a multi-label classification
model based on LSTM-CRF, another is a seq2seq model,
meanwhile, they exploit pre-trained language models to en-
hance the performance. (Fisher and Vlachos 2019) present
a merge and label approach for nested NER and apply both
BERT and EMLo contextual embeddings respectively.

For span-based models, (Xia et al. 2019) and (Sohrab
and Miwa 2018) utilize spans enumeration and span classi-
fication for both nested and flat NER. But (Xia et al. 2019)
employ a pre-trained language model ELMo to improve the
performance. (Luan et al. 2019) is also based on span clas-
sification and they apply a multi-task method to joint en-
tities, relations and coreference links extraction for further
improvement. Recently, (Tan et al. 2020) also introduce
a muti-task framework for extract nested entities, but they
joint two subtasks (span boundaries detection and span type
classification) of NER instead of different application tasks.

Nested NER Task
We evaluate our model on three nested datasets and the re-
sults are presented in Tabel 2. The results demonstrate our
model can effectively improve the performance in nested
NER task. Compared with the state-of-the-art baselines
without pre-trained language models, our model achieves
best results in two out of three corpora. We can see that
our model is slightly worse than (Straková, Straka, and Ha-
jic 2019)(seq2seq), but the main reason is that (Straková,
Straka, and Hajic 2019)(seq2seq) needs more complex net-
work structure and dependents on extra features such as
word lemmas and POS tags, while our model is simpler and
without any extra features and annotations.
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Statistics ACE2004 ACE2005 GENIA JNLPBA CoNLL03-English
#Sentences 8488 9311 18546 22402 22131
Split ratio 8:1:1 8:1:1 81:9:10 81:9:10 8:1:1
#Entities 27747 30944 56870 60158 34920
Nested entities 45.7% 39.8% 21.6% 0% 0%
Ave. entity length 2.64 2.21 2.9 2.14 1.45
#Ave. entity per sentence 3.27 3.32 3.07 2.69 1.58

Table 1: The statistical comparison between the datasets.

Model ACE2004 ACE2005 GENIA
P R F1 P R F1 P R F1

(Lu and Roth 2015) 70.0 56.9 62.8 66.3 59.2 62.5 72.5 65.2 68.7
(Ju, Miwa, and Ananiadou 2018) - - - 74.2 70.3 72.2 78.5 71.3 74.7
(Katiyar and Cardie 2018) 73.6 71.8 72.7 70.6 70.4 70.5 79.8 68.2 73.6
(Wang and Lu 2018) 78.0 72.4 75.1 76.8 72.3 74.5 77.0 73.3 75.1
(Sohrab and Miwa 2018) 77.8∗ 70.8∗ 74.1∗ 77.2∗ 70.0∗ 73.4∗ 93.2 64.0 77.1
(Straková, Straka, and Hajic 2019)(LSTM-CRF) - - 72.3 - - 71.6 - - 76.2
(Straková, Straka, and Hajic 2019)(Seq2seq) - - 77.8 - - 75.4 - - 76.4
(Tan et al. 2020) 78.1 72.8 75.3 77.1 74.2 75.6 78.9 72.7 75.7

MHSA(ours) 79.5 74.8 77.1 80.1 73.3 76.5 77.9 76.7 77.3
with Pre-trained Language Model
(Xia et al. 2019)(ELMo) 81.7 77.4 79.5 79.0 77.3 78.2 - - -
(Luan et al. 2019)(ELMo) - - 84.7 - - 82.9 - - 76.2
(Straková, Straka, and Hajic 2019)(seq2seq-BERT) - - 84.3 - - 83.4 - - 78.2
(Tan et al. 2020)(BERT) 85.8 84.8 85.3 83.8 83.9 83.9 79.2 77.4 78.3

MHSA-BERT (ours) 86.9 85.8 86.3 85.7 85.2 85.4 80.3 78.9 79.6

Table 2: Nested NER results for ACE2004, ACE2005 and GENIA datasets, and the scores marked with ∗ are reported using
our self-implemented results.

Compared with state-of-art the models using contextual
embeddings, we can see that our model outperforms the best
baseline (Tan et al. 2020) by 1.0%, 1.5% and 1.3% absolute
F1 scores on ACE2004, ACE2005 and GENIA datasets, re-
spectively. We think that although (Tan et al. 2020) utilize
multi-task model for joint learning, they still suffer from er-
ror cascading between tasks because of working in pipeline
manner. Another, we can observe that there are substantial
increases in all performance when applying pre-trained lan-
guage models, which indicates that learning the expressive
word representations is important for named entity recogni-
tion.

In addition, we can also see that the span-based base-
line (Sohrab and Miwa 2018) perform on GENIA dataset
with worst recall. We attribute the reason into two folds.
First, the length of spans would limit to generate all possible
entity spans. Second, lacking of explicit boundary informa-
tion leading to poor performance on span detection. Another,
we can observe that (Lu and Roth 2015) has the worst per-
formance on three nested datasets, caused by the spurious
structure of hyper-graphs designed for their model.

Flat NER Task
We also compare our model with state-of-the-art models on
flat NER task to verify our model also preform well in iden-
tifying flat entities. Table 3 shows the performance of our
model on two flat datasets JNLPBA and CoNLL03-English.
We can see that our MHSA-BERT model outperforms the
best baseline model (Tan et al. 2020)(BERT) by 1.1% and

1.7% on JNLPBA and CoNLL03-English, respectively. Fur-
ther more, by comparing with the baselines without pre-
trained language models, our MHSA model also obtains
comparable results on both datasets. We think the main rea-
son is that our model is a united type-aware model which
maps each pairwise words as points in multiple entity type
spaces, without external dependencies and error cascading.

Impact of Model Components
Tabel 4 presents the results of an ablation experiment on
GENIA testing set showing each component of our model
have various degrees of contributes to the effectiveness of
our model. We can see that ablation on pre-trained language
model BERT significantly decrease the F1 scores by 2.3 per-
centage points. Moreover, the performance is also impaired
large when replace the SciBERTbase with BERTbase, which
indicates that pre-training the model on the corpus in simi-
lar domains with training data can significantly improve the
performance. In addition, adding entity boundaries detection
module and character-level embeddings can also improve
the performance of our model. Because the character-level
embeedings has been contained in BERT, so ablation on it
has small decrease on F1 scores.

Entity Boundary Detection
We also conduct experiments on boundary detection task to
illustrate that our model can extract decent entity boundaries
by multi-task framework, as shown in Table 5. (Sohrab and
Miwa 2018) and Only BD Module do not make full use
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Model JNLPBA CoNLL03-English
F1 F1

(Lample et al. 2016) - 90.9
(Straková, Straka, and Hajic 2019)(LSTM-CRF) - 90.7
(Straková, Straka, and Hajic 2019)(Seq2seq) - 90.8
(Straková, Straka, and Hajic 2019)(seq2seq-BERT) - 93.0
(Xia et al. 2019)(ELMo) - 92.3
(Ju, Miwa, and Ananiadou 2018) 75.6 -
(Sohrab and Miwa 2018) 78.4 -
(Tan et al. 2020) 73.2∗ 90.7∗

(Tan et al. 2020)(BERT) 78.6∗ 91.9∗

MHSA(ours) 78.3 91.0
MHSA-BERT (ours) 79.7 93.6

Table 3: flat NER results on JNLPBA and CoNLL03 datasets, and the scores marked with ∗ are reported using our self-
implemented results.

Model GENIA
P R F1

HMTIE-BERT(sciber base) 80.3 78.9 79.6
HMTIE-BERT(base) 78.1 77.6 77.8(↓1.8)
-BD 79.4 77.8 78.6(↓1.0)
-BERT 77.9 76.7 77.3(↓2.3)
-character-level embeddings 79.8 78.5 79.1 (↓0.5)

Table 4: Ablation test on GENIA testing set.

Model ACE2004 ACE2005 GENIA
(Sohrab and Miwa 2018) 81.5 80.3 72.7
(Tan et al. 2020)(BERT) 83.9 83.0 78.3
Only BD Module 83.2 82.6 77.8
MHSA-BERT (ours) 84.7 84.1 79.1

Table 5: Performance of entity boundary detection on
ACE2004, ACE2005 and GENIA testing set.

of the dependencies between boundary detection and type
classification, so they have worse performance than other
two models. Compared with (Tan et al. 2020)(BERT), our
model obtains 0.8%, 1.1% and 0.8% absolute F1 gains on
ACE2004, ACE2005 and GENIA, respectively. We think it
is because that our model not only consider the dependen-
cies between entity boundary detection and entity type clas-
sification, but also consider the correlation between words
when classifying entity types. In addition, because the enti-
ties contained in GENIA are longer and more complex than
those contained in ACE2004 and ACE2005, the models per-
form worse on GENIA.

Visualization
Each slice of tensor S is a correlation score matrix Si, i ∈
[1,M ] which indicates the correlation intensities of each
pairwise words in sentence under i-th entity type. For each
correlation score matrix Si, we sum up over all the column
vectors to get a weight vector and then normalizing. So we
can get M normalized weight vectors that yields a general
view of what words the M entity types mostly focus on re-
spectively. For interpreting the correlation between words in
sentence under different entity types, we draw a heap map of

Figure 3: Attention of entity types on words in an example
sentence randomly selected from ACE2005. The darker the
color, the greater the attention weight.

M normalized weight vectors for an example sentence ran-
domly selected from ACE2005 corpus, as shown in Figure
3. From the figure, we can see that “GEP” and “PER” entity
types can focus on relevant words properly and other entity
types have no words to focus on due to no entities with these
types. We can conclude that the correlations between words
for each entity type leaned by our model are meaningful and
in accord with common sense.

Conclusion and Future Work

In this paper, we address a task of recognizing entities with
nested structures. We consider words in the sentence play
different roles under different entity types and treat overlap-
ping entities extraction as a multi-class classification of pair-
wise words. For this end, we design a simple but effective
model based on supervised multi-head self-attention mecha-
nism. Simultaneously, we introduce a multi-task framework
to capture the dependencies between entity boundary detec-
tion and type classification, generating further improvement.

For future work, we want to introduce a type embedding
to explicitly model the semantic relevance between words
and types.
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