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Abstract

Generative Adversarial Networks (GANs) for text generation
have recently received many criticisms, as they perform worse
than their MLE counterparts (Caccia et al. 2020; Tevet et al.
2019; Semeniuta, Severyn, and Gelly 2018). We suspect pre-
vious text GANs’ inferior performance is due to the lack of a
reliable guiding signal in their discriminators. To address this
problem, we propose a generative adversarial imitation learn-
ing framework for text generation that uses large pre-trained
language models to provide more reliable reward guidance.
As previous text GANs suffer from high variance of gradi-
ents, we apply contrastive discriminator, and proximal policy
optimization (PPO) to stabilize and improve text generation
performance. For evaluation, we conduct experiments on a
diverse set of unconditional and conditional text generation
tasks. Experimental results show that TextGAIL achieves bet-
ter performance in terms of both quality and diversity than the
MLE baseline. We also validate our intuition that TextGAIL’s
discriminator demonstrates the capability of providing reason-
able rewards with an additional task.

Introduction
Automatic text generation has been used in tremendous appli-
cations such as machine translation, question answering, and
dialog system. The most widely used approach for neural text
generation is to maximize the probability of the target text se-
quence (Bengio, Ducharme, and Vincent 2000), which is also
referred to as maximum likelihood estimation (MLE). How-
ever, MLE suffers from the exposure bias problem which
is due to the discrepancy between training and inference.
During training, the model is trained on the ground truth,
but during inference, the model needs to autoregressively
predict the next word conditioned on its own previously gen-
erated words. This discrepancy hurts generalization of unseen
data and leads to lower quality of generated text (Welleck
et al. 2019; Wiseman and Rush 2016). Therefore, solving the
exposure bias problem becomes an promising approach to
improve text generation quality.

Generative Adversarial Networks (GAN) are one of the
directions to solve the exposure bias problem. The main idea
is to alternately train between a discriminator to distinguish

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

real samples from generated samples and the generator to im-
prove its generated samples against the discriminator. Along
this direction, there have been many studies. Nevertheless,
there are increasing criticisms (Caccia et al. 2020; Tevet et al.
2019; Semeniuta, Severyn, and Gelly 2018) of text GANs
showing that GAN generated text is substantially worse than
the text generated by MLE. Especially, Caccia et al. (2020)
find that MLE has a better quality-diversity trade-off when
using the temperature sweep method for evaluation. More
recently, large generative pre-trained language models have
greatly improved the quality of MLE generations (Radford
and Sutskever 2018; Radford et al. 2019), which further in-
creases the gap of performance between MLE and text GANs.

In this work, we investigate whether large pre-trained lan-
guage models can improve GANs in text generation. We
propose TextGAIL, a generative adversarial training frame-
work that leverages guidance from the large-scale pre-trained
language models RoBERTa (Liu et al. 2019) and GPT-2 (Rad-
ford et al. 2019). We find that it does not work by simply
combining the previous adversarial approaches with large pre-
trained language models due to the high variance in gradients
and the architecture limitations.

To reduce variance and improve performance, we apply
generative imitation learning (GAIL) (Ho and Ermon 2016)
and proximal policy optimization (PPO) (Schulman et al.
2017) for the optimization. We also introduce contrastive
discriminator to better serve the conditional generation tasks.

For a fair comparison, we adopt temperature sweep ap-
proach (Caccia et al. 2020) to evaluate the quality-diversity
trade-off. Previous text GANs often only perform experiment
on unconditional generation tasks: COCO and EMNLP2017
News. We extend the experiments to conditional generation
tasks, as more practical applications. Specifically, we experi-
ment our model on CommonGEN and ROCStories.

We make several contributions: (1) We propose a gener-
ative adversarial imitation learning framework TextGAIL,
which leverages large pre-trained language models. (2) We
conduct extensive evaluations to show TextGAIL achieves
better quality and diversity compared to an MLE fine-tuned
baseline. (3) We show that large pre-trained language models
can help the discriminator to provide useful rewards during
the adversarial training process.
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Related Work
Exposure bias is often considered to attribute to low-quality
text generations by having generic and repetitive sentences
(Welleck et al. 2019; Holtzman et al. 2019). Even after the
emergence of large-scale pretrained language model GPT-2,
this problem is still prevalent (Welleck et al. 2019). Many
works tried to use Generative Adversarial Networks (GAN)
(Goodfellow et al. 2014) to eliminate the exposure bias prob-
lem caused by MLE (Ranzato et al. 2016; Welleck et al.
2019).

SeqGAN (Yu et al. 2017) is the very first paper that adopts
the adversarial training idea in text generation. As text se-
quence is discrete, SeqGAN applies REINFORCE (Williams
1992), which is a policy gradient algorithm, to train the gen-
erator with a reward defined by the discriminator’s prediction
on the generated sample. However, it suffers from a high
variance of gradients. There are many other text GANs (Ke
et al. 2019; Che et al. 2017; Guo et al. 2018; Lin et al. 2017;
Nie, Narodytska, and Patel 2019; Zhou et al. 2020). However,
as Caccia et al. (2020) has shown, many of them are worse
than their MLE counterparts when evaluated in the quality-
diversity trade-off setting. This is because many text GANs
assume MLE-based models keep the softmax temperature
to be 1.0 when sampling, but MLE-based models actually
perform better with a lower temperature. Consequently, after
using temperature sweep, MLE-based method has a better
quality-diversity trade-off curve than many text GANs.

In another line of works, large scale pre-training (Rad-
ford et al. 2019) has shown significant improvement in text
generation. Large pre-trained models such as GPT-2 can be
fine-tuned with MLE on a specific task to achieve much bet-
ter performance than the models without pre-training. Some
papers even claim human-level text generation quality (Adi-
wardana et al. 2020). It is interesting to explore whether text
GANs can be combined with large pre-trained language mod-
els to improve performance further. In this work, we propose
an new imitation learning framework to combine pre-training
models with GANs.

TextGAIL
In this section, we first give an overview of the generative
adversarial imitation learning framework. Then we explain
the discriminator and the generator in details. In the end, we
summarize the entire training process. We show the overall
architecture in Figure 1.

Generative Adversarial Imitation Learning
We extend the generative adversarial imitation learning
(GAIL) (Ho and Ermon 2016) to text generation. The frame-
work consists of a generator Gθ and a discriminator Dφ,
which are parameterized with θ and φ, respectively. The goal
of the generator is to output sequences similar to human
written sequences. Meanwhile, the discriminator needs to dis-
tinguish the real sequences from the generated sequences, and
provide a single sparse reward for each generated sequence.

Here, we replace the state s in GAIL with the text gen-
eration prompt x, and the corresponding action a with the
target sequence y. Note that in the unconditional generation

setting, x can be the start token. y can either be given from
ground truth in the dataset as real data or sampled from the
generator Gθ as fake data. GAIL finds a saddle point where
together the generator and discriminator satisfy the following
objective function:

min
Gθ

max
Dφ

Epreal [Dφ(x, y)] + EGθ [1−Dφ(x,Gθ(x))] (1)

However, in text generation, the action space, which is
the vocabulary size, is often vary large. The original GAIL
has difficulty to remain stable with such a large action space
(Paine et al. 2019). We introduce an imitation replay method
inspired by the recent imitation learning algorithms (Paine
et al. 2019; Reddy, Dragan, and Levine 2020) to stabilize the
training.

We fill the experience replay buffer with a ratio λ of ground
truth sequences when training the generator. Those ground
truth sequences are treated the same as the generated se-
quences in the replay buffer. We set the reward (without nor-
malization) to be a constant for the ground truth sequences.
This approach is theoretically similar to mixing supervised
MLE loss during the training, but in practice, it is much more
efficient and easier to implement.

Contrastive Discriminator

The discriminator aims to distinguish between the real and
generated samples. Standard discriminator utilizes logistic
loss (sigmoid), but this loss saturates quickly after the model
learns the difference between the real and the generated sam-
ples. We modify the discriminator to be a contrastive dis-
criminator, which estimates the relative realness between
generated sequences and real sequences. In other words, we
let the discriminator estimate how much a real sequence is
more realistic than a generated sequence. This can especially
help conditional generation tasks. Here, we perform the pre-
diction by utilizing softmax cross-entropy instead of logistic
loss.

Instead of Dφ(x, y), the discriminator now takes a real
sequence and its paired generated sequence as inputs, de-
noted as Dφ(〈x, yr〉, 〈x, yg〉). The discriminator outputs a
score to represent how good is the generated sequence yg
compared with the real sequence. Then we optimize it with
the following objective function.

hr = Discriminator(〈x, yr〉) (2)
hg = Discriminator(〈x, yg〉) (3)

pr, pg = softmax(Wt[hr;hg]) (4)

where Wt is the trainable weight to project the output em-
bedding to a scalar logit. yr is the real sequence, and yg is
the generated sequence. We can optimize the discriminator
with cross-entropy loss to maximize the probability pr for
the real sequence. The probability prediction pg for the gen-
erated sequence will be used as the reward signal to train the
generator.
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Figure 1: Left: Overall architecture of TextGAIL. Right: The contrastive discriminator..

Proximally Optimized Generator
For the generator, we begin by defining the probability of a
text sequence as the joint probability of all the tokens:

Gθ(y1:T |x) =
T∏
t=0

Gθ(yt|y<t, x) (5)

where y1:T is a text sequence. T is the sequence length, and yt
is the word at the time step t. We sample from this distribution
to acquire the generated sequences. Then we maximize the
expected reward with policy gradient:

Ey∼Gθ [∇θ logGθ(x)R̂y] (6)

where R̂y is the advantage term that controls the update
(which is the normalized reward here). Directly optimizing
this objective suffers from high variance of gradients, because
the Dφ is not stationary during adversarial training.

As a solution to reduce high variance, the original GAIL
employs trust region policy optimization (TRPO) (Schulman
et al. 2015), as it is crucial to ensure thatGθi+1

does not move
too far away from Gθi . However, TRPO needs to compute
natural gradient which is computationally expensive. We
replace it with a more recent and stable method, proximal
policy optimization (PPO) (Schulman et al. 2017). Compared
to TRPO, PPO is easier to implement and generalize. PPO
has better sample complexity in practice as well.

PPO applies importance sampling by the likelihood ratio
between the current and old policy for y ∼ Gθold(·|x):

r(θ) =
Gθ(y1:T |x)
Gθold(y1:T |x)

(7)

Then it maximizes the expected reward by optimizing the
following surrogate:

LG(θ) = −min

{
r(θ) R̂y
clip (r(θ), 1− ε, 1 + ε) R̂y

(8)

This surrogate serves the same purpose as TRPO to have a
trust region constraint on the gradient update. It will prevent
the generator from moving too far away from the pre-trained
language model.

TextGAIL Training Process
We warm-up the generator by training with a part of the train-
ing set using MLE as its loss function. We alternately train
the discriminator and the generator to optimize Equation 1.
A replay buffer stores temporarily generated outputs and
human-written sequences. Next, we normalize the rewards
in the buffer with running statistics to reduce variance. We
update the generator Gθ with PPO using the replay buffer. In
the meantime, we update the discriminator Dφ with the real
and generated pairs. We repeat until the training stops. The
summary of the algorithm is illustrated below.

Algorithm 1 TextGAIL

1: Initialize: Collect human-written sequences
Warm-up the generator Gθ
Replay Buffer B

2: for i = 1, 2, 3, . . . do
3: Sample p proportion of human-written sequences y
4: Sample 1 − p proportion of generator outputs y ∼

G(·|x)
5: Put all sampled (x, y) pairs into B
6: Collect rewards using discriminator Dφ for all

(x, y) ∈ B
7: Normalize all the rewards to get R̂
8: Replace rewards for human-written sequences with a

constant
9: Update the discriminator φ with Eq. 4

10: Update the generator θ using the PPO with Eq. 8
11: Clear Buffer B
12: end for

Experimental Settings
We will describe implementation details and automatic evalu-
ation metrics in this section.

Implementation Details
TextGAIL takes advantage of large pre-trained language mod-
els. In particular, the generator uses the GPT-2 base (117M pa-
rameters) model, while the discriminator uses the RoBERTa-
base (125M parameters) model. The human demonstrations
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mix ratio p is set to 0.3 at the start of the training and linearly
decay afterward. The constant reward for human demonstra-
tions is set to 2.0. When generating outputs, we apply the
recent nucleus sampling method (Holtzman et al. 2019) for
decoding to avoid low probability words being sampled. We
stop the training when the perplexity stops decreasing for
both MLE and TextGAIL. The details of hyper-parameters
are in the Appendix.

Baselines
Since previous text GANs are mainly for unconditional tasks,
we only show their performance on unconditional tasks. For
conditional generation tasks, we compare TextGAIL with
GPT-2 fine-tuned on training dataset with a MLE loss. For a
fair comparison between MLE models and TextGAIL models,
we stop the training when TextGAIL reaches the perplexity
of MLE baselines.

Evaluation Metrics
We measure model’s quality and diversity from a range of
temperatures between 0.1 to 1.0. This temperature sweep
method ensures fair comparisons as described by Caccia et al.
(2020)

For the quality metric, we use the n-gram matching met-
ric BLEU. When using BLEU for unconditional generation
tasks, the entire training corpus is used as references for
BLEU (Yu et al. 2017). Since BLEU has its limitations, we
further conduct human evaluations to measure models’ gen-
eration quality. We also compare perplexity under different
temperatures for more comprehensive comparisons.

For the diversity metric, we use Self-BLEU (Yu et al. 2017)
on unconditional generation tasks, and Distinct-n (Li et al.
2016) on conditional generation tasks. Self-BLEU evaluates
how one generated sentence resembles the rest in a set of
generated samples. Distinct-n is the number of distinct n-
grams divided by the total number of n-grams in the test
set. When decoding with beam search, we use Seq-Rep-n
(Welleck et al. 2019) to measure sequence-level repetition
inside a sentence. Seq-Rep-n is the portion of duplicate n-
grams in a sequence.

Results and Analysis
Automatic Evaluation Results
We first test if TextGAIL performs better than a model that
fine-tunes GPT-2 on the training dataset with an MLE loss.
As suggested by Caccia et al. (2020), temperature sweep
can reflect the quality-diversity trade-off, which enables fair
comparisons between two models. We sweep the softmax
temperature from 0.1 to 1.0 to observe how the models be-
have accordingly. For unconditional generation tasks, we
report BLEU vs. Self-BLEU as the quality-diversity metric
(we use negative Self-BLEU for better visualization). For
conditional generation tasks, we report BLEU vs. Distinct
as the quality-diversity metric. The blue lines are TextGAIL,
and the red lines are GPT-2 fine-tuned with MLE.

For the unconditional tasks, the results are shown in Fig-
ure 2. TextGAIL and GPT-2+MLE is much better than the
previous text GANs. For COCO Captions, we can observe

(a) COCO Captions

(b) EMNLP2017 News

Figure 2: Quality-diversity trade-off on unconditional tasks.
The curve closer to the top right corner has better perfor-
mance. Error bars are from three random seed runs.

that TextGAIL achieves great improvement over MLE. How-
ever, for EMNLP2017 News, the difference is not significant.
We suspect that the reason is because of the text length in
the dataset. EMNLP2017 News has much longer text length
than COCO Captions. This may lead to worse reward signals
from the discriminator when training the generator.

In Figure 3, we show the results of conditional tasks. Since
previous text GANs are not designed for conditional genera-
tion tasks, we are unable to report them here. From the figure,
we can observe more consistent improvement of TextGAIL
compared to the improvement in unconditional tasks. While
in unconditional generation tasks, without the context given,
it is even hard for humans to classify if the text is real or
generated.

One advantage of testing with conditional tasks is that
we can apply deterministic decoding methods such as beam
search rather than stochastic decoding used in unconditional
generation tasks. This can provide more reliable interpreta-
tion of our model.

We perform beam search with a beam size of four on
the two conditional generation tasks. We run the experiments
with three different random seeds. The results on beam search
generations are shown in Table 1. We observe that TextGAIL
performs better than MLE-based method in both quality and
diversity metrics. When we examine the generated text, we
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(a) CommonGEN

(b) ROCStories

Figure 3: Quality-diversity trade-off on conditional tasks. The
curve closer to the top right corner has better performance.
Note that there are no results from the most previous GANs,
as they are not designed for conditional tasks. Error bars are
from three random seed runs.

find that MLE produces many repetitions, which is possibly
caused by text degeneration with exposure bias (Welleck et al.
2019). As TextGAIL mitigates exposure bias, both the quality
metric BLEU-2 and the diversity metric Distinct-2 improves
over the baseline MLE method.

We suspect the main contribution of improvement is due
to the discriminator being more effective in providing useful
reward signals in conditional generation tasks. As in Com-
menGEN and ROCStories, the contrastive discriminator can
better classify the realness of the generations conditioned to
the context by comparing the real and generated sentences. In
Section 6, we will conduct additional experiments to interpret
what the discriminator has learned.

Human Evaluation Results
Automatic evaluation metrics have their limitations in measur-
ing overall performance. Therefore, we also conduct human
evaluations to measure the quality of TextGAIL compared to
GPT-2 fine-tuned with MLE. The MLE model with a low tem-
perature generates large amount of repetitions. We observe
the model has less repetition and better quality with nucleus
sampling with hyper-parameters top-p 0.9 and temperature
0.8. So we use this setting for human evaluation. For each
task, we randomly select 100 samples in test sets, and for

CommonGEN
MLE TextGAIL

BLEU-2 ↑ 15.74 ± 0.04 16.21 ± 0.17
Distinct-2 ↑ 8.66 ± 0.05 10.00 ± 0.08
Seq-Rep-2 ↓ 65.85± 2.30 60.78 ± 2.41

ROCStories
MLE TextGAIL

BLEU-2 ↑ 7.44 ± 0.13 7.77 ± 0.27
Distinct-2 ↑ 41.05 ± 2.39 46.83 ± 3.83
Seq-Rep-2 ↓ 76.92 ± 2.18 74.71 ± 2.07

Table 1: Beam search results on the conditional tasks. Since
beam search results are deterministic, it is not applicable to
the unconditional tasks.

TextGAIL vs MLE

Win Lose Tie

COCO 31.2% 27.6% 41.2%

EMNLP2017 44.2 % 44.2% 11.6%

CommonGEN 59.6%* 34.6%* 5.8%

ROCStories 60.5%* 23.4%* 16.1%

Table 2: Human evaluation results. *denotes statistical signif-
icance (binomial test, p < 0.05)

each sample, we ask five Amazon Mechanical Turk workers
to select which model’s result is better to reduce the variance.
In total, we have 500 data points for each task. For condi-
tional generation tasks, the context is shown to all workers.
The workers are instructed to select the model with better
logic and commonsense. The evaluators can select ”Cannot
determine” when the two models are similar in quality.

The human evaluation results are shown in Table 2. There
is no statistical difference between TextGAIL and MLE on
unconditional generation tasks in this pairwise comparison
evaluation. One possible reason is that when comparing two
completely different sentences in this unconditional gener-
ation setting, it is difficult for human evaluators to make
consistent decisions. In contrast, TextGAIL significantly out-
performs MLE in human evaluation on two conditional gen-
eration tasks. Since these tasks expect models to produce
similar content with respect to the ground truth. It is easier
for human to select the output with better quality. The results
are in agreement with automatic evaluation results. In the
Case Study, we will further analyze the examples .

Case Study
We further analyze the generated outputs from the two condi-
tional generation tasks. We show some examples in Table 3
and Table 4.

CommonGEN In the CommonGEN examples, the good
target sentences should use the given three words as much as
possible. We can observe that MLE’s outputs do not seem to
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CommonGEN Example 1 Example 2

Context: field look stand ocean surf surfer

Ground Truth: I stood and looked across the field, peacefully. A surfer surfing in the ocean.

MLE: (1) looks at the ground at the end of the driveway
(2) looks at the wall and the wall stands
(3) i stand on a bench in front of the field with a smile on
my lips

(1) surfer and surfers walk the beach at the coast
(2) surfer in the surf on the coast
(3) surfer in the ocean.

TextGAIL: (1) field looks like a soccer field with a few soccer players
standing
(2) a man stands in the middle of the field looking at the
scoreboard
(3) a small group of people stand in the field looking at a
city

(1) the surfers wave their surfboards on the beach
(2) Two surfers are surfing in the ocean and one is
looking to the horizon.
(3) a surf diver watches as a group of dolphins
swim in the ocean

Table 3: Examples of MLE and TextGAIL on CommonGEN. TextGAIL follow the instruction by using the three given three
words in the generations. The results are longer and more diverse than MLE.

ROCStories Example 1 Example 2

Context: I wanted to buy a video game console. I asked my parents,
and they came up with an idea. They said if I did my
chores, I would be given money to save. I did my chores
without being asked every week for a whole summer.

Ben went to the DMV to get his License. The
instructor gave Ben a passing grade at the end.
Excited, Ben calls up his father to tell him the
good news. Ben father never picked up, he died in
a car accident that day.

Ground Truth: My parents gave me enough money to buy the console. Ben was devastated.

MLE: (1) Now I have the video game console I asked for.
(2) It was an awesome idea.
(3) The next week, I had to buy a new gaming console!

(1) Ben was happy to learn his lessons about being
smart.
(2) Ben’s father is now very sad, and he has a job
to do.
(3) Ben was happy that his dad was alive.

TextGAIL: (1) I bought a PlayStation 4 to play with my parents.
(2) I was so happy when my parents gave me a Wii U.
(3) When I got my console, I played my favorite video
games.

(1) Ben regrets going to the DMV.
(2) Ben mourns the loss of his father but also the
passing of a great man.
(3) It seems like too much to bear.

Table 4: Examples of MLE and TextGAIL on ROCStories. TextGAIL generates better and more reasonable story endings. Also,
note that named entities such as ”PlayStation 4” and ”Wii U” have never appeared in the training set.

follow that instruction, while TextGAIL is behaving better.
This difference suggests that TextGAIL’s discriminator might
have learned to guide the generator to follow the implied
instruction. Also, we can observe that the MLE’s outputs have
more repetitions and are less diverse than MLE’s outputs.
This is also partially reflected in the automatic evaluation
metrics. These examples also correlates with our intuition
that eliminating exposure bias alleviates dull and repetitive
outputs (Welleck et al. 2019).

ROCStories For ROCStories, the good story endings
should be as reasonable and interesting as possible. We can
observe similar patterns in this task. MLE’s generations lack
of details and are universal, as the Example 1 MLE (2) ap-
pears more than once in other story contexts. We further
find that TextGAIL can generate new named entities such as
”PlayStation 4” and ”Wii U”, which never appeared in the
training set. We speculate it might have appeared in GPT-2’s

pre-trained corpus. This task also provides the evidence that
eliminating exposure bias improves generalization of unseen
data. Moreover, from Example 2, we observe that TextGAIL
seems to generate more reasonable and logical endings than
MLE. We suspect that TextGAIL’s discriminator has used
some latent information to distinguish between the real and
generated samples. In Section 6, we specifically analyze what
the discriminator has learned to provide useful rewards to the
generator.

Ablation Studies
Each component’s contribution in TextGAIL’s performance
is shown on the CommonGEN task with an ablation study
in Table 5. We use beam search with beam size four as the
inference method.

Some previous text GANs involve architecture changes
such as LeakGAN (Guo et al. 2018) and RelGAN (Nie, Nar-
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PPL ↓ BLEU-2 ↑ Distinct-2 ↑
SeqGAN+Pre-train 140.42 n/a n/a

TextGAIL 14.85 16.23 9.50
w/o PPO* 111.08 n/a n/a
w/o human demo 132.63 n/a n/a
w/o Contrastive 17.26 13.72 8.40
w/o D pre-train 16.94 15.14 9.14

Table 5: Ablation studies results on CommenGEN. “w/o D
pre-train” means randomly initialized discriminator. “n/a”
indicates that the model diverges during the training. “PPL”
stands for perplexity.

odytska, and Patel 2019), it is hard to directly apply them on
the Transformer-based (Vaswani et al. 2017) models. Also,
most of them are not designed for conditional generation
tasks. Therefore, we only test incorporating pre-trained lan-
guage models for SeqGAN. The model fails to converge.
It is probably due to the large number of parameters that
needs update and the high variance in gradients. This sug-
gests that the optimization techniques of PPO and mixed
human demonstrations are crucial for stably training the text
GANs.

We test replacing the contrastive discriminator with a nor-
mal discriminator that classifies a singe input with sigmoid.
The BLEU-2 and Distinct-2 scores decreases significantly.
We suspect that when the discriminator can only see one
single input without comparing against the real example, it
would be harmful for conditional generation tasks, as even if
the generator outputs a sentence better than the ground truth,
the generator cannot receive the accurate reward signal.

Moreover, we experiment the discriminator without any
pre-training. The performance drops as expected. This sug-
gests the importance of pre-training for TextGAIL to improve
over the MLE method. In Section 6, we further explore what
the discriminator has learned during adversarial learning.

What Has the Discriminator Learned

Models Supervised? Accuracy(%)

RoBERTa w/ extra data X 92.8± 0.28

GPT-2 + MLE × 69.6 ± 0.35

TextGAIL D × 79.1 ± 0.76
TextGAIL D w/o pre-train × 51.2 ± 0.85

Table 6: Story Cloze Test results. ”D” means the discrimina-
tor. TextGAIL’s learned discriminator can classify the story
ending with the correct commonsense.

We analyze the reward signal of the learned discrimina-
tor in TextGAIL, which is supposed to distinguish the real
samples from the generated samples. We apply the learned
discriminator in TextGAIL on a story ending classification
task, Story Cloze Test, to identify story endings with the
correct commonsense given the story prompt (Mostafazadeh

et al. 2016). This task uses a different dataset from ROCSto-
ries but is in the similar domain. We report the Story Cloze
Test results in Table 6.

TextGAIL’s discriminator achieves 79.1% accuracy. This
suggests the learned discriminator provides meaningful re-
wards to the generator in the training process. We compare
our learned discriminator against a RoBERTa classifier fine-
tuned on the Story Cloze Test’s training data to explore if
adding more supervision affects the performance. We find
that the fine-tuned RoBERTa classifier achieves the best ac-
curacy (92.8%). Clearly, direct supervision improves the per-
formance, but our zero-shot TextGAIL discriminator is not
too far from the supervised model’s performance.

Inspired by Trinh and Le (2018), we also construct another
baseline, the GPT-2 fine-tuned on ROCStories data with MLE
(not Story Cloze Test), which also does not require extra
supervision. The model selects the ending with a higher joint
language model probability. It reaches 69.6% accuracy, which
is significantly worse than TextGAIL discriminator (79.1%).
This result, in another way, suggests TextGAIL has better
reward guidance than the MLE language model.

We also compare TextGAIL’s Discriminator against the
model without pre-training (from ablation study) to see how
much pre-training contributes to the performance. The ac-
curacy drops from 79.1% to 51.2 % . This finding suggests
that TextGAIL’s discriminator is relying on the information
obtained from pre-training to select the correct story ending.

Conclusion
We propose a generative adversarial imitation learning frame-
work for text generation - TextGAIL, which leverages the
large pre-trained language models. We extend the exploration
of adversarial training on text generation by incorporating
large scale pre-trained models. We use a contrastive discrimi-
nator and proximal policy optimization to improve the stabil-
ity of the generator’s training. We incorporate a large-scale
pre-trained language model, GPT2 in our framework as the
generator. We also use a pre-trained RoBERTa model to ini-
tialize the discriminator to provide reliable rewards to the imi-
tation learning framework. Experiment shows that TextGAIL
can generate not only more diverse but more accurate and
reasonable outputs, and the discriminator can provide mean-
ingful reward signals in various unconditional and conditional
text generation tasks.
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Paine, T. L.; Gülçehre, Ç.; Shahriari, B.; Denil, M.; Hoff-
man, M. D.; Soyer, H.; Tanburn, R.; Kapturowski, S.; Ra-
binowitz, N. C.; Williams, D.; Barth-Maron, G.; Wang, Z.;
de Freitas, N.; and Team, W. 2019. Making Efficient Use of
Demonstrations to Solve Hard Exploration Problems. CoRR
abs/1909.01387. URL http://arxiv.org/abs/1909.01387.

Radford, A.; and Sutskever, I. 2018. Improving Language
Understanding by Generative Pre-Training. OpenAI Blog
URL https://openai.com/blog/language-unsupervised.

Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; and
Sutskever, I. 2019. Language Models are Unsupervised Mul-
titask Learners. OpenAI Blog URL https://openai.com/blog/
better-language-models/.

Ranzato, M.; Chopra, S.; Auli, M.; and Zaremba, W. 2016.
Sequence Level Training with Recurrent Neural Networks. In
Bengio, Y.; and LeCun, Y., eds., 4th International Conference
on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings. URL
http://arxiv.org/abs/1511.06732.

Reddy, S.; Dragan, A. D.; and Levine, S. 2020. SQIL: Im-
itation Learning via Reinforcement Learning with Sparse
Rewards. In 8th International Conference on Learning Rep-
resentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net. URL https://openreview.net/forum?
id=S1xKd24twB.

Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M. I.; and
Moritz, P. 2015. Trust Region Policy Optimization. In Bach,
F. R.; and Blei, D. M., eds., Proceedings of the 32nd In-
ternational Conference on Machine Learning, ICML 2015,
Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop
and Conference Proceedings, 1889–1897. JMLR.org. URL
http://proceedings.mlr.press/v37/schulman15.html.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
CoRR abs/1707.06347. URL http://arxiv.org/abs/1707.06347.

Semeniuta, S.; Severyn, A.; and Gelly, S. 2018. On Accu-
rate Evaluation of GANs for Language Generation. CoRR
abs/1806.04936. URL http://arxiv.org/abs/1806.04936.

Tevet, G.; Habib, G.; Shwartz, V.; and Berant, J. 2019. Evalu-
ating Text GANs as Language Models. In Proceedings of the
2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language

14074



Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers), 2241–
2247. URL https://www.aclweb.org/anthology/N19-1233/.
Trinh, T. H.; and Le, Q. V. 2018. A Simple Method for
Commonsense Reasoning. CoRR abs/1806.02847. URL
http://arxiv.org/abs/1806.02847.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. Attention
is All you Need. In Guyon, I.; von Luxburg, U.; Bengio,
S.; Wallach, H. M.; Fergus, R.; Vishwanathan, S. V. N.; and
Garnett, R., eds., Advances in Neural Information Process-
ing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, 4-9 December 2017, Long Beach,
CA, USA, 5998–6008. URL http://papers.nips.cc/paper/7181-
attention-is-all-you-need.
Welleck, S.; Kulikov, I.; Roller, S.; Dinan, E.; Cho, K.; and
Weston, J. 2019. Neural Text Generation with Unlikelihood
Training. CoRR abs/1908.04319. URL http://arxiv.org/abs/
1908.04319.
Williams, R. J. 1992. Simple Statistical Gradient-Following
Algorithms for Connectionist Reinforcement Learning. Ma-
chine Learning 8: 229–256. doi:10.1007/BF00992696. URL
https://doi.org/10.1007/BF00992696.
Wiseman, S.; and Rush, A. M. 2016. Sequence-to-Sequence
Learning as Beam-Search Optimization. In Proceedings
of the 2016 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2016, Austin, Texas, USA,
November 1-4, 2016, 1296–1306. URL https://www.aclweb.
org/anthology/D16-1137/.
Yu, L.; Zhang, W.; Wang, J.; and Yu, Y. 2017. SeqGAN: Se-
quence Generative Adversarial Nets with Policy Gradient. In
Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, February 4-9, 2017, San Francisco, California,
USA, 2852–2858. URL http://aaai.org/ocs/index.php/AAAI/
AAAI17/paper/view/14344.
Zhou, W.; Ge, T.; Xu, K.; Wei, F.; and Zhou, M. 2020. Self-
Adversarial Learning with Comparative Discrimination for
Text Generation. In International Conference on Learn-
ing Representations. URL https://openreview.net/forum?id=
B1l8L6EtDS.

14075


