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Abstract
In this paper, we study the task of selecting the optimal re-
sponse given a user and system utterance history in retrieval-
based multi-turn dialog systems. Recently, pre-trained lan-
guage models (e.g., BERT, RoBERTa, and ELECTRA)
showed significant improvements in various natural language
processing tasks. This and similar response selection tasks can
also be solved using such language models by formulating the
tasks as dialog–response binary classification tasks. Although
existing works using this approach successfully obtained state-
of-the-art results, we observe that language models trained
in this manner tend to make predictions based on the related-
ness of history and candidates, ignoring the sequential nature
of multi-turn dialog systems. This suggests that the response
selection task alone is insufficient for learning temporal de-
pendencies between utterances. To this end, we propose utter-
ance manipulation strategies (UMS) to address this problem.
Specifically, UMS consist of several strategies (i.e., insertion,
deletion, and search), which aid the response selection model
towards maintaining dialog coherence. Further, UMS are self-
supervised methods that do not require additional annotation
and thus can be easily incorporated into existing approaches.
Extensive evaluation across multiple languages and models
shows that UMS are highly effective in teaching dialog consis-
tency, which leads to models pushing the state-of-the-art with
significant margins on multiple public benchmark datasets.

Introduction
In recent years, building intelligent conversational agents
has gained considerable attention in the field of natural lan-
guage processing (NLP). Among widely used dialog systems,
retrieval-based dialog systems (Lowe et al. 2015; Wu et al.
2017; Zhang et al. 2018) are implemented in a variety of
industries because they provide accurate, informative, and
promising responses. In this study, we focus on multi-turn
response selection in retrieval-based dialog systems. This is
a task of predicting the most likely response under a given
dialog history from a set of candidates.

*These authors equally contributed to this work.
†Corresponding author.

Copyright © 2021, Association for the Advancement of Artificial
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[Response Candidates]

[Dialog Context]

Next term, I will learn Python, there are other topics that I like also.

Great, what is your major?

I'm interested in computer engineering.

What level of programming are you capable of?

I have some programming experience in C++ and Matlab after taking …

Nice try of it.

I'd recommend that your take EECS280 and EECS203 as soon 
as you can. They are important for your computer science major.

Hello, is there anything I can help you with?

Hi, I want to get some suggestions about next semester's course selections.

…

That works. Are there any suggestions of advanced classes using Python?

(a) Ground Truth (BERT score : 0.813)

(b) Adversarial Example (BERT score : 0.993)

Speaker 1
Speaker 2

That works. Are there any suggestions of advanced classes using Python?

Figure 1: Example of multi-turn response selection. BERT-
based model tends to calculate the matching score of a dialog–
response pair depending on the semantic relatedness of the
dialog and the response ((a) < (b)). More details are in Dis-
cussion section.

Existing works (Wu et al. 2017; Zhou et al. 2018; Tao et al.
2019a; Yuan et al. 2019) have studied utterance–response
matching based on attention mechanisms including self-
attention (Vaswani et al. 2017). Most recently, as pre-trained
language models (e.g., BERT (Devlin et al. 2019), RoBERTa
(Liu et al. 2019), and ELECTRA (Clark et al. 2020)) have
achieved substantial performance improvements in diverse
NLP tasks, multi-turn response selection also has been re-
solved using such language models (Whang et al. 2020; Lu
et al. 2020; Gu et al. 2020; Humeau et al. 2020).

However, we tackle three crucial problems in applying
language models to response selection. 1) Domain adaptation
based on an additional training on a target corpus is extremely
time-consuming and computationally costly. 2) Formulating
response selection as a dialog–response binary classification
task is insufficient to represent intra- and inter-utterance inter-
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actions as the dialog context is formed by concatenating all
utterances. 3) The models tend to select the optimal response
depending on how semantically similar it is to a given dialog.
As shown in Figure 1, we experiment to verify whether the
BERT-based response selection model is trained properly to
select the next utterance rather than dialog-related response.
The results show that the model tends to give a higher proba-
bility score to a response that is more semantically related to
the dialog context rather than consistent response. Although
it is obvious that the ground truth is suitable for being the
next utterance, the model highly depends on its semantic
meaning.

To address these issues, this paper proposes Utterance Ma-
nipulation Strategies (UMS) for multi-turn response selection.
Specifically, UMS consist of three powerful strategies (i.e.,
insertion, deletion, and search), which effectively help the
response selection model to learn temporal dependencies be-
tween utterances as well as semantic matching and maintain
dialog coherence. In addition, these strategies are fully self-
supervised methods that do not require additional annotation
and can be easily adapted to existing studies. We briefly sum-
marize the main contributions of this paper as follows: 1) We
show that existing response selection models are more likely
to predict a semantically relevant response with its dialog
rather than the next utterance. 2) We propose simple but novel
utterance manipulation strategies, which are highly effective
in predicting the next utterance. Our model has strengths in
effectively performing in-domain classification. 3) Experi-
mental results on three benchmarks (i.e., Ubuntu, Douban,
and E-commerce) show that our proposed model outperforms
state-of-the-art methods. We also obtain significant improve-
ments in performance compared to the baselines on a new
Korean open-domain corpus.

Proposed Method
Language Models for Response Selection
Pre-trained Language Models Recently, pre-trained lan-
guage models, such as BERT (Devlin et al. 2019) and ELEC-
TRA (Clark et al. 2020), were successfully adapted to a wide
range of NLP tasks, including multi-turn response selection,
achieving state-of-the-art results. In this work, we build upon
this success and evaluate our method by incorporating it into
BERT and ELECTRA.
Domain-specific Post-training As contextual language
models are pre-trained on general corpora, such as the
Toronto Books Corpus and Wikipedia, it is less effective
to directly fine-tune these models on downstream tasks if
there is a domain shift. Hence, it is a common practice to
further train such models with the language modeling objec-
tive using texts from the target domain to reduce the negative
impact. This has shown to be effective in various tasks in-
cluding review reading comprehension (Xu et al. 2019) and
SuperGLUE (Wang et al. 2019a). Existing works on multi-
turn response selection (Whang et al. 2020; Gu et al. 2020;
Humeau et al. 2020) also adapted this post-training approach
and obtained state-of-the-art results. We also employ this
post-training method in this work and show its effectiveness
in improving performance.

Training Response Selection Models Following several re-
searches based on contextual language models for multi-turn
response selection (Whang et al. 2020; Lu et al. 2020; Gu et al.
2020), a pointwise approach is used to learn a cross-encoder
that receives both dialog context and response simultane-
ously. Suppose that a dialog agent is given a dialog dataset
D = {(Ui, ri, yi)}Ni=1. Each triplet consists of 1) a sequence
of utterances Ui = [ui1, u

i
2, · · · , ui|U |] representing the histor-

ical context, where uit is a single utterance, 2) a response ri,
and 3) a label yi ∈ {0, 1}. Each utterance uit and response ri
are composed of multiple tokens including a special [EOT]
token at the end of each utterance, following the work of
Whang et al. (2020). In general, the input sequence,

X = [[CLS]u1 u2 ... unu
[SEP] r [SEP]],

is fed into pre-trained language models (i.e., BERT, ELEC-
TRA), then output representation of [CLS] token, x[CLS] ∈
Rd×1, is used to classify whether the dialog–response pair is
consistent. The relevance score of the dialog utterances and
response is formulated as,

g(U, r) = σ(w>x[CLS] + b), (1)

where w ∈ Rd×1 and b are the trainable parameters. We use
binary cross-entropy loss to optimize the models.

Utterance Manipulation Strategies
Figure 2 describes the overview of our proposed method,
utterance manipulation strategies. We propose a multi-task
learning framework, which consists of three highly effective
auxiliary tasks for multi-turn response selection, utterance 1)
insertion, 2) deletion, and 3) search. These tasks are jointly
trained with the response selection model during the fine-
tuning period. To train the auxiliary tasks, we add new special
tokens, [INS], [DEL], and [SRCH] for the utterance insertion,
deletion, and search tasks, respectively. We cover how we
train the model with these special tokens in the following
sections.
Utterance Insertion Despite the huge success of BERT, it
has limitations in understanding discourse-level semantic
structure since NSP, one of BERT’s objectives, mainly learns
semantic topic shift rather than sentence order (Lan et al.
2020). In multi-turn response selection, the model needs the
ability not only to distinguish the utterances with different
semantic meanings but also to discriminate whether the utter-
ances are consecutive even if they are semantically related.
We propose utterance insertion to resolve the aforementioned
issues.

We first extract k consecutive utterances from the original
dialog context, then randomly select one of the utterances
to be inserted. To train the model to find where the selected
utterance should be inserted, [INS] tokens are positioned be-
fore each utterance and after the last utterance. [INS] tokens
are represented as possible position of the target utterance.
Input sequence for utterance insertion is denoted as

XINS = [[CLS] [INS]1 u1[INS]2 u2 ... ut−1
[INS]t ut+1 ... uk [INS]k [SEP]ut [SEP]],
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Good morning! What can I do for you?

How much does a seven-day tour by bus cost?

Two thousand dollars. 

Does that include hotels and meals?

Oh, yes, and admission tickets 
for places of interest as well.

That sounds reasonable. 

With pleasure. We arrange two kinds of tourist programs for 
California, a seven-day tour by bus and a five-day flying journey.

(a)

(b)

(d)

(e)

(c)

(a)

(b)

(c)

(d)

I'd like to taste some local dishes. What would you recommend?

(a)

(b)

(c)

(d)

I'm thinking of traveling to California in May. 
Could you recommend some tourist programs for that?

(e)

(f)

[Utterance Insertion]

[Utterance Deletion] [Utterance Search]

(a) Response Selection

(b) Utterance Manipulation Strategies

[Dialog Context]

[Response]

I'm thinking of traveling to California in May. 
Could you recommend some tourist programs for that?

I'm thinking of traveling to California in May. 
Could you recommend some tourist programs for that?

With pleasure. We arrange two kinds of tourist programs for 
California, a seven-day tour by bus and a five-day flying journey.

With pleasure. We arrange two kinds of tourist programs for 
California, a seven-day tour by bus and a five-day flying journey.

How much does a seven-day tour by bus cost?

Two thousand dollars. 

Does that include hotels and meals?

Two thousand dollars. 

With pleasure. We arrange two kinds of tourist programs for 
California, a seven-day tour by bus and a five-day flying journey.

I'm thinking of traveling to California in May. 
Could you recommend some tourist programs for that?

How much does a seven-day tour by bus cost?

Does that include hotels and meals?

Two thousand dollars. 

Speaker 1

Speaker 2

Target Utterance

Previous
Utterance

Random
Dialog Oh, yes, and admission tickets 

for places of interest as well.

How much does a seven-day tour by bus cost?

Figure 2: An overview of Utterance Manipulation Strategies. Input sequence for each manipulation strategy is dynamically
constructed by extracting k consecutive utterances from the original dialog context during the training period. Also, target
utterance is randomly chosen from either the dialog context (Insertion, Search) or the random dialog (Deletion).

where ut is the target utterance and [INS]t is the target inser-
tion token.
Utterance Deletion Recent BERT-based models for multi-
turn response selection regard the task as a dialog–response
binary classification. Even though they are extended in
a multi-turn manner using separating tokens (e.g., [SEP],
[EOT] ), these models lack utterance-level interaction between
dialog context and response. To alleviate this, we propose a
highly effective auxiliary task, utterance deletion, to enrich
utterance-level interaction in multi-turn conversation.

As with utterance insertion, k consecutive utterances are
extracted from the original dialog context, and then an utter-
ance from a random dialog is inserted among the k extracted
utterances. In other words, k + 1 utterances are composed
of k utterances from the original conversation and one from
different dialogs. To train the model to find an unrelated utter-
ance, [DEL] tokens are positioned before each utterance. The
objective of the utterance deletion task is to predict which
utterance causes inconsistency. We denote the input sequence
for utterance deletion as

XDEL = [[CLS] [DEL]1 u1 [DEL]2 u2 ...[DEL]t

urand [DEL]t+1 ut ... [DEL]k+1 uk [SEP]],

where urand is the utterance from the random dialog and
[DEL]t is the target deletion token.
Utterance Search Whereas two previous auxiliary tasks are
performed in a properly ordered dialog, we design a novel
task, utterance search, which aims to find an appropriate
utterance from randomly shuffled utterances. The objective
of this task is to learn temporal dependencies between seman-
tically similar utterances.

Given k consecutive utterances same as the previous tasks,

we shuffle utterances except for the last utterance and insert
[SRCH] tokens before each shuffled utterance. The utterance
search aims to find the previous utterance of the last utterance
from the jumbled utterances. Input sequence for utterance
search is denoted as

XSRCH = [[CLS] [SRCH]1 u
′
1[SRCH]2 u

′
2 ...

[SRCH]t u
′
t ... u

′
k−1[SEP]uk [SEP]],

where {u′t}k−1t=1 is a set of utterances which are randomly
shuffled except for the last utterance uk. The previous utter-
ance of uk is denoted as u′t (i.e., uk−1) and [SRCH]t is the
target search token.

Multi-Task Learning Setup
The input sequence of each task is fed into the language
models. The output representations of special tokens (i.e.,
[INS], [DEL], and [SRCH] ) are used to classify whether each
token is in a correct position to be inserted, deleted, and
searched. Target tokens for each task (i.e., [INS]t, [DEL]t,
and [SRCH]t) are labeled as 1, otherwise 0. We calculate the
probability of the token being a target as follows:

p(yTASK = 1|XTASK) = σ(w>xTASK + b), (2)
where TASK∈{INS, DEL, SRCH} and xTASK is the output repre-
sentations of each special token. We use binary cross-entropy
loss for all auxiliary tasks to optimize each model. The final
loss is determined by summing the response selection loss
and UMS losses with the same ratio.

Experimental Setup
Datasets
We evaluate our model on three widely used response se-
lection benchmarks: Ubuntu Corpus V1 (Lowe et al. 2015),
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Dataset Ubuntu Douban E-Commerce Kakao
Train Val Test Train Val Test Train Val Test Train Val Test (Web) Test (Clean)

# pairs 1M 500K 500K 1M 50K 6670 1M 10K 10K 1M 50K 5139 7164
pos:neg 1:1 1:9 1:9 1:1 1:1 1.2:8.8 1:1 1:1 1:9 1:1 1:1 1.6:7.4 2:7
# avg turns 10.13 10.11 10.11 6.69 6.75 6.45 5.51 5.48 5.64 3.00 3.00 3.49 3.25

Table 1: Corpus statistics of multi-turn response selection datasets.

Douban Corpus (Wu et al. 2017), and E-Commerce Corpus
(Zhang et al. 2018). In addition, a new open-domain dialog
corpus, Kakao Corpus, is utilized to evaluate our model. All
datasets consist of dyadic multi-turn conversations, and their
statistics are summarized in Table 1.
Ubuntu Corpus V1 Ubuntu dataset is a large multi-turn con-
versation corpus that is constructed from Ubuntu internet
relay chats. It mainly consists of conversations between two
participants who discuss how to troubleshoot the Ubuntu
operating system. We utilize the data released by Xu et al.
(2017), where numbers, URLs, paths are replaced with spe-
cial placeholders following previous works (Wu et al. 2017;
Zhou et al. 2018).
Douban Corpus Douban dataset is a Chinese open-domain
dialog corpus, whereas the Ubuntu Corpus is a domain-
specific dataset. It is constructed by web-crawling from the
Douban group1, which is a popular social networking service
(SNS) in China.
E-commerce Corpus E-Commerce dataset is another Chi-
nese multi-turn conversation corpus. It is collected from real-
world customer consultation dialogs from Taobao2, which
is the largest Chinese e-commerce platform. It consists of
several types of conversations (e.g., commodity consultation,
recommendation, and negotiation) based on various com-
modities.
Kakao Corpus Kakao dataset is a large Korean open-domain
dialog corpus that is constructed by Kakao Corporation3. It
is mainly web-crawled from Korean SNSs such as Korean
Twitter and Reddit. In a similar manner to the Ubuntu dataset,
we take the last utterance of the dialog as a positive response
and the rest as a dialog context. Negative responses are ran-
domly sampled from the other conversations. We split the
test set into two sets: 1) web is the same as the training set,
and 2) clean consists of grammatically correct conversations
that are constructed by human annotators and inspected by
NLP experts.

Evaluation Metrics
We evaluated our model using several retrieval metrics, fol-
lowing previous research (Lowe et al. 2015; Wu et al. 2017;
Zhou et al. 2018; Yuan et al. 2019). First, we employ 1 in n
recall at k, denoted as Rn@k (k = {1, 2, 5}), which gets 1
when a ground truth is positioned in the k selected list and
0 otherwise. In addition, three other metrics [mean average
precision (MAP), mean reciprocal rank (MRR), and precision
at one (P@1)] are used especially for Douban and Kakao,
as these two datasets may contain more than one positive

1https://www.douban.com
2https://www.taobao.com
3https://www.kakaocorp.com

response among candidates.

Training Details
We implemented our model4 by using the PyTorch deep
learning framework (Paszke et al. 2019) based on the open-
source code5 (Wolf et al. 2019). As we experimented on
three different languages (i.e., English, Chinese, and Korean),
initial checkpoints for BERT and ELECTRA are adapted
from several works (Devlin et al. 2019; Clark et al. 2020; Cui
et al. 2020; Lee et al. 2020). Specifically, we employ base
pre-trained models for all languages except for Chinese (the
whole-word masking (WWM) strategy is used for Chinese
BERT6). As ELECTRA for Korean is not available, we do
not conduct ELECTRA-based experiments on the Kakao
Corpus. All experiments, both post-training and fine-tuning,
are run on 4 Tesla V100 GPUs. For fine-tuning, we trained
the models with a batch size of 32 using the Adam optimizer
with an initial learning rate of 3e-5. The maximum sequence
length is set to 512 and k for UMS is set to 5.

Baselines
Single-turn Matching Models These baselines, including
CNN, LSTM, BiLSTM (Kadlec, Schmid, and Kleindienst
2015), MV-LSTM (Wan et al. 2016), and Match-LSTM
(Wang and Jiang 2016), are based on matching between a dia-
log context and a response. They construct the dialog context
by concatenating utterances and regard it as a long document.
Multi-turn Matching Models Multi-View (Zhou et al.
2016) utilize both word- and utterance-level representations.
DL2R (Yan, Song, and Wu 2016) reformulates the last ut-
terance with previous utterances in the dialog context. SMN
(Wu et al. 2017) first constructs attention matrices based
on word and sequential representations of each utterance
and response, and then obtains matching vectors by using
CNN. DUA (Zhang et al. 2018) utilizes deep utterance aggre-
gation to form a fine-grained context representation. DAM
(Zhou et al. 2018) obtains matching representations of the
utterances and response using self- and cross-attention based
on Transformer architecture (Vaswani et al. 2017). IoI (Tao
et al. 2019b) lets utterance–response interaction go deep in a
matching model. MSN (Yuan et al. 2019) filters only relevant
utterances using a multi-hop selector network.
BERT-based Models Recently, BERT (Devlin et al. 2019) is
also applied to response selection, such as vanilla BERT(Gu
et al. 2020), BERT-SS-DA (Lu et al. 2020), and SA-BERT
(Gu et al. 2020). In these models, the dialog context is repre-
sented as a long document, as in single-turn matching models.

4https://github.com/taesunwhang/UMS-ResSel
5https://github.com/huggingface/transformers
6https://github.com/ymcui/Chinese-BERT-wwm
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Models Ubuntu Douban E-commerce
R10@1 R10@2 R10@5 MAP MRR P@1 R10@1 R10@2 R10@5 R10@1 R10@2 R10@5

CNN (Kadlec, Schmid, and Kleindienst 2015) 0.549 0.684 0.896 0.417 0.440 0.226 0.121 0.252 0.647 0.328 0.515 0.792
LSTM (Kadlec, Schmid, and Kleindienst 2015) 0.638 0.784 0.949 0.485 0.537 0.320 0.187 0.343 0.720 0.365 0.536 0.828
BiLSTM (Kadlec, Schmid, and Kleindienst 2015) 0.630 0.780 0.944 0.479 0.514 0.313 0.184 0.330 0.716 0.365 0.536 0.825
MV-LSTM (Wan et al. 2016) 0.653 0.804 0.946 0.498 0.538 0.348 0.202 0.351 0.710 0.412 0.591 0.857
Match-LSTM(Wang and Jiang 2016) 0.653 0.799 0.944 0.500 0.537 0.345 0.202 0.348 0.720 0.410 0.590 0.858
Multi-View (Zhou et al. 2016) 0.662 0.801 0.951 0.505 0.543 0.342 0.202 0.350 0.729 0.421 0.601 0.861
DL2R (Yan, Song, and Wu 2016) 0.626 0.783 0.944 0.488 0.527 0.330 0.193 0.342 0.705 0.399 0.571 0.842
SMN (Wu et al. 2017) 0.726 0.847 0.961 0.529 0.569 0.397 0.233 0.396 0.724 0.453 0.654 0.886
DUA (Zhang et al. 2018) 0.752 0.868 0.962 0.551 0.599 0.421 0.243 0.421 0.780 0.501 0.700 0.921
DAM (Zhou et al. 2018) 0.767 0.874 0.969 0.550 0.601 0.427 0.254 0.410 0.757 0.526 0.727 0.933
IoI (Tao et al. 2019b) 0.796 0.894 0.974 0.573 0.621 0.444 0.269 0.451 0.786 0.563 0.768 0.950
MSN (Yuan et al. 2019) 0.800 0.899 0.978 0.587 0.632 0.470 0.295 0.452 0.788 0.606 0.770 0.937
BERT (Gu et al. 2020) 0.808 0.897 0.975 0.591 0.633 0.454 0.280 0.470 0.828 0.610 0.814 0.973
BERT-SS-DA (Lu et al. 2020) 0.813 0.901 0.977 0.602 0.643 0.458 0.280 0.491 0.843 0.648 0.843 0.980
SA-BERT (Gu et al. 2020) 0.855 0.928 0.983 0.619 0.659 0.496 0.313 0.481 0.847 0.704 0.879 0.985
BERT (ours) 0.820 0.906 0.978 0.597 0.634 0.448 0.279 0.489 0.823 0.641 0.824 0.973
ELECTRA 0.826 0.908 0.978 0.602 0.642 0.465 0.287 0.483 0.839 0.609 0.804 0.965
UMSBERT 0.843 0.920 0.982 0.597 0.639 0.466 0.285 0.471 0.829 0.674 0.861 0.980
UMSELECTRA 0.854 0.929 0.984 0.608 0.650 0.472 0.291 0.488 0.845 0.648 0.831 0.974
BERT+ 0.862 0.935 0.987 0.609 0.645 0.463 0.290 0.505 0.838 0.725 0.890 0.984
ELECTRA+ 0.861 0.932 0.985 0.612 0.655 0.480 0.301 0.499 0.836 0.673 0.835 0.974
UMSBERT+ 0.875† 0.942† 0.988† 0.625 0.664 0.499 0.318 0.482 0.858 0.762 0.905 0.986
UMSELECTRA+ 0.875 0.941 0.988 0.623 0.663 0.492 0.307 0.501 0.851 0.707 0.853 0.974

Table 2: Results on Ubuntu, Douban, and E-Commerce datasets. All the evaluation results except ours are cited from published
literature (Tao et al. 2019b; Yuan et al. 2019; Gu et al. 2020). The underlined numbers mean the best performance for each block
and the bold numbers mean state-of-the-art performance for each metric. † denotes statistical significance (p-value < 0.05).

They mainly utilize speaker information of each utterance in
the dialog context to extend BERT into a multi-turn fashion.

Results and Discussion
Quantitative Results
Table 2 lists the quantitative results on Ubuntu, Douban, and
E-Commerce datasets. In our experiments, we set two con-
ditions for pre-trained language models. 1) Two different
pre-trained language models (i.e., BERT and ELECTRA) are
utilized for fine-tuning. 2) We adapt domain-specific post-
training approach (each post-trained model is denoted as
BERT+ and ELECTRA+). Based on these initial settings,
we explore how effective UMS are for multi-turn response
selection.

For all datasets, models with UMS significantly out-
perform the previous state-of-the-art methods. Specifically,
UMSBERT+ achieves absolute improvements of 2.0% and
5.8% in R10@1 on Ubuntu and E-Commerce datasets, re-
spectively. For Douban datset, MAP and MRR are consid-
ered to be main metrics rather than R10@1 because the test
set contains more than one ground truth in the candidates.
UMSBERT+ achieves absolute improvements of 0.5% in these
metrics.

To evaluate the effectiveness of UMS, we compare the
models with UMS and those without them. Since existing
BERT-based approaches (Lu et al. 2020; Gu et al. 2020) re-
ported different performances of BERT, we reimplemented it
for a fair comparison with our proposed UMSBERT. The mod-
els with UMS consistently show performance improvement
regardless of whether language models are post-trained on
each corpus or not. For the models without post-training,
different results are obtained depending on the dataset.
ELECTRA mainly shows better results for the Ubuntu and

Test Split Approach MAP MRR P@1 R10@1 R10@2 R10@5

Web BERT 0.671 0.720 0.555 0.391 0.599 0.890
UMSBERT 0.699 0.751 0.606 0.428 0.623 0.911

Clean BERT 0.726 0.792 0.648 0.395 0.612 0.888
UMSBERT 0.761 0.834 0.716 0.431 0.663 0.903

Table 3: Evaluation Results on Kakao Corpus.

Douban datasets, while BERT shows better results for the
E-Commerce dataset. By contrast, BERT+ achieves the best
performance for all corpora in comparison among the models
with post-training. We believe that post-training on domain-
specific corpus provides the model with more opportunities
to learn whether given two dialogs are relevant through NSP;
this has the effect of data augmentation.
Results on Kakao Corpus We report the evaluation results
on the Kakao Corpus in Table 3. As ELECTRA for Korean is
unavailable, we only compare BERT and UMSBERT for two
test splits. Clean shows better results than Web with respect
to all metrics regardless of using UMS. This might be be-
cause Clean contains fewer grammatical errors and typos that
interfere with an accurate understanding of the context. Also,
UMSBERT significantly improves performance compared to
the baseline for both split; specifically, it achieves absolute
improvements of 5.1% and 6.8% in P@1 on Web and Clean,
respectively.

Adversarial Experiment
Even though BERT-based models have shown state-of-the-art
performance for response selection task, we experiment to
know if these models are trained to predict the next utterance
properly. Inspired by Jia and Liang (2017) and Yuan et al.
(2019), we design an adversarial experiment to investigate
whether language models for response selection are trained
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Approach Model Original Adversarial
R10@1 MRR R10@1 MRR

Baselines

BERT 0.820 0.887 0.199 0.561
BERT+ 0.862 0.915 0.203 0.573
ELECTRA 0.826 0.890 0.304 0.614
ELECTRA+ 0.861 0.914 0.329 0.636

Avg 0.842 0.902 0.259 0.596

UMS

BERT 0.843 0.902 0.310 0.622
BERT+ 0.875 0.923 0.363 0.656
ELECTRA 0.854 0.910 0.397 0.668
ELECTRA+ 0.875 0.922 0.437 0.692

Avg 0.862 0.914 0.377 0.660

Table 4: Adversarial experimental results on Ubuntu Corpus.
All models are evaluated using R10@1 and MRR metrics.
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Figure 3: R10@1 comparison of adversarial example for each
model. Lower R10@1 means that it is good at predicting the
next utterance (ground truth).

properly. First, we train the models using the original training
set, then evaluate them on either original or adversarial test
set. To construct the adversarial test set, we randomly extract
an utterance from the dialog context and replace it with one
of negative responses among candidates (See Figure 1). In
adversarial test set, assuming there are n candidates per con-
versation, a set of candidates consists of a ground truth, an
extracted utterance from the dialog context, and n−2 nega-
tive responses. The extracted utterance is not deleted from
the original dialog because it can be crucial for selecting the
optimal response.

Table 4 lists the experimental results of BERT(+) and
ELECTRA(+) models. We compare the models without UMS
and those with, denoted as baselines and UMS, respectively.
Even though the performances drop significantly in the ad-
versarial set regardless of whether UMS are used or not, we
observe that the UMS decline less than baselines. Specifi-
cally, R10@1 score decreases by 58% and 48% on average
for baselines and UMS, respectively. It is also encouraging
that UMS show an absolute improvement of 12% with re-
spect to R10@1 on the adversarial set compared to the 2%
improvement on the original set (See Table 4). In addition,
while baselines tend to drop in performance on the adversar-
ial set as training progresses, the performance of UMS shows
a tendency to increase significantly. Hence, it is reasonable
to assume that our UMS are robust to adversarial examples
and are good at in-domain classification.

Auxiliary Tasks R10@1 R10@2 R10@5 MRR

1 None 0.826 0.908 0.978 0.890

2 INS 0.836 0.917 0.980 0.897
3 DEL 0.848 0.924 0.983 0.905
4 SRCH 0.834 0.915 0.981 0.896

5 INS + DEL 0.853 0.927 0.984 0.909
6 INS + SRCH 0.841 0.920 0.982 0.901
7 DEL + SRCH 0.852 0.927 0.983 0.908

8 INS + DEL + SRCH 0.854 0.929 0.984 0.910

Table 5: Ablation Study on Ubuntu Corpus. We choose ELEC-
TRA as the baseline in this analysis. INS, DEL, and SRCH
denote that the model trained with utterance insertion, dele-
tion, and search, respectively.

Figure 3 describes the performance of each model, ranking
adversarial example (i.e., randomly sampled utterance from
the conversation) as the most likely response. While BERT-
and ELECTRA-based models show similar performance on
the original set, ELECTRA-based models outperform BERT-
based models with significant margins (a gap of 10%) on the
adversarial set regardless of whether they are trained from
post-trained checkpoints. For example, different patterns of
the evaluation results between BERT+ and ELECTRA are
observed according to the test sets (original : BERT+ >
ELECTRA, adversarial : BERT+ < ELECTRA). We have
two perspectives on these results: 1) Next sentence prediction
in BERT overfits the model to predict semantically relevant
sentence rather than the next sentence. 2) As ELECTRA is
trained through replaced token detection in which the model
learns to discriminate between real input tokens and replace-
ments generated from small masked language model, it is
more effective in representing contextual information from
the sequence.

Ablation Study
We performed ablation studies on the Ubuntu Corpus to in-
vestigate which auxiliary tasks are more crucial for response
selection. As shown in Table 5, we explored the impact of
each auxiliary task by constructing all combinations of pos-
sible subsets. Based on the observations of using only one
auxiliary task (i.e., 3 > 2≈ 4) and two tasks (i.e., 5≈ 7 > 6),
we obtained the results, DEL > INS ≈ SRCH, with respect
to the importance of manipulation strategy. As DEL consists
of an input sequence that contains an irrelevant utterance
to the original dialog context, it may be more advantageous
for learning to distinguish dialog consistency and coherence
than INS and SRCH. We obtain the best results when all the
auxiliary tasks are trained simultaneously with the response
selection criterion.

Visualization
As shown in Figure 4, we visualize the output representa-
tions of special tokens learned by our proposed UMS through
t-SNE embeddings. Scatter plots colored in orange repre-
sent target tokens (i.e.,[INS]t, [DEL]t, and [SRCH]t) and those
in blue represent the rest of tokens. All representations are
extracted from test sets of three datasets (Ubuntu, Douban,
and E-Commerce) in this analysis. Overall, the results show
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Figure 4: t-SNE embeddings of UMSBERT+ output representa-
tions for each special token in UMS (i.e., [INS] , [DEL] , and
[SRCH] ). All embeddings are sampled from test sets of each
dataset.

that UMSBERT+ effectively learns dialog coherence for all
datasets. In the case of Ubuntu dataset, insertion and search
tasks tend to be less clustered than that of the other two dat-
sets. As many utterances in the Ubuntu dataset mainly consist
of many technical terminologies that may cause structural
ambiguity, tasks constructed within the same dialog are diffi-
cult to be performed. By contrast, the model can easily learn
discourse structures on open-domain datasets such as Douban
and E-Commerce.

Related Work
Multi-turn Response Selection Early approaches to re-
sponse selection focused on single-turn response selec-
tion (Wang et al. 2013; Hu et al. 2014; Wang et al. 2015).
Recently, multi-turn response selection has received more
attention by researchers. Lowe et al. (2015) proposed dual
encoder architecture which uses an RNN-based models to
match the dialog and response. Zhou et al. (2016) proposed
the multi-view model that encodes dialog context and re-
sponse both on the word-level and utterance-level. However,
these models have limitations in fully reflecting the relation-
ship between dialog and response. To alleviate this, Wu et al.
(2017) proposed the sequential matching network that utilizes
matching matrices to match each utterance with a response.
As self-attention (Vaswani et al. 2017) mechanism has been
proved its effectiveness, it is applied in subsequent works
(Zhou et al. 2018; Tao et al. 2019a,b). Yuan et al. (2019) re-
cently pointed out that previous approaches construct dialog
representation with abundant information but noisy, which
deteriorates the performance. They proposed an effective
history filtering technique to avoid using excessive history

information.
Most recently, many researches based on pre-trained lan-

guage models including BERT (Devlin et al. 2019) and
RoBERTa (Liu et al. 2019) are proposed. Generally, most
models formulate the response selection task as a dialog-
response binary classification task. Whang et al. (2020) first
applied BERT for multi-turn response selection and obtained
state-of-the-art results through further training BERT on
domain-specific corpus. Subsequent researches (Lu et al.
2020; Gu et al. 2020) focused on modeling speaker infor-
mation and showed its effectiveness in response retrieval.
Humeau et al. (2020) investigated the trade-off relationship
between model complexity and computation efficiency in the
language models. They proposed poly-encoders that ensure
fast inference speed, even though the performance is slightly
lower than that of the cross-encoder.
Self-supervised Learning Self-supervised learning has been
explored in various pre-trained language models (Devlin et al.
2019; Clark et al. 2020; Lewis et al. 2020; Joshi et al. 2020)
and is also applied in several NLP downstream tasks, such
as summarization (Wang et al. 2019b), disfluency detection
(Wang et al. 2020), and response generation (Zhao, Xu, and
Wu 2020). Existing works in dialog modeling (Wu, Wang,
and Wang 2019; Mehri et al. 2019; Liang, Zou, and Yu 2020)
mainly focused on building enhanced dialog representations
through self-supervised learning. Although the methods pro-
posed in Wu, Wang, and Wang (2019) and Liang, Zou, and Yu
(2020) effectively learn to rank coherent dialog higher than
corrupted ones, but they have limitations in identifying the
utterance that actually caused the inconsistency. Our strategy
is different in that it learns to find which utterance is replaced
from the full dialog. By doing so, our model can learn which
utterance does not suit the conversation, which makes the
model learn not only to discriminate semantic differences
but also to build coherent dialog. The method proposed in
Mehri et al. (2019) is somewhat similar to our deletion task,
but they directly use the utterance representation to build the
loss. We hypothesize that this is the reason behind the incon-
sistent improvements in Mehri et al. (2019), where in some
downstream tasks the auxiliary task was actually harmful.
On the other hand, our approach introduces special tokens
that is different from the [CLS] token used in downstream
tasks. Our results show that this approach consistently leads
to improvements.

Conclusion
In this paper, we pointed out the limitations of existing works
based on pre-trained language models such as BERT in
retrieval-based multi-turn dialog systems. To address these,
we proposed highly effective utterance manipulation strate-
gies (UMS) for multi-turn response selection. The UMS are
fully applied in self-supervised manner and can be easily
incorporated into existing models. We obtained new state-
of-the-art results on multiple public benchmark datasets (i.e.,
Ubuntu, Douban, and E-Commerce) and significantly im-
proved results on Korean open-domain dialog corpus. For the
future work, we plan to develop a response selection model
which is more robust to adversarial examples by designing
various adversarial objectives.
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