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Abstract

Adversarial training is the most empirically successful ap-
proach in improving the robustness of deep neural networks
for image classification. For text classification, however, ex-
isting synonym substitution based adversarial attacks are ef-
fective but not very efficient to be incorporated into practi-
cal text adversarial training. Gradient-based attacks, which
are very efficient for images, are hard to be implemented for
synonym substitution based text attacks due to the lexical,
grammatical and semantic constraints and the discrete text
input space. Thereby, we propose a fast text adversarial at-
tack method called Fast Gradient Projection Method (FGPM)
based on synonym substitution, which is about 20 times faster
than existing text attack methods and could achieve simi-
lar attack performance. We then incorporate FGPM with ad-
versarial training and propose a text defense method called
Adbversarial Training with FGPM enhanced by Logit pairing
(ATFL). Experiments show that ATFL could significantly im-
prove the model robustness and block the transferability of
adversarial examples.

Introduction

Deep Neural Networks (DNNs) have garnered tremendous
success over recent years (Krizhevsky, Sutskever, and Hin-
ton 2012; Kim 2014; Devlin et al. 2019). However, re-
searchers also find that DNNs are often vulnerable to adver-
sarial examples for image data (Szegedy et al. 2014) as well
as text data (Papernot et al. 2016). For image classification,
numerous methods have been proposed with regard to adver-
sarial attack (Goodfellow, Shlens, and Szegedy 2015; Wang
et al. 2019) and defense (Goodfellow, Shlens, and Szegedy
2015; Guo et al. 2018). Among which, adversarial training
that adopts perturbed examples in the training stage so as to
promote the model robustness has become very popular and
effective (Athalye, Carlini, and Wagner 2018).

For natural language processing tasks, however, the lex-
ical, grammatical and semantic constraints and the discrete
input space make it much harder to craft text adversarial ex-
amples. Current attack methods include character-level at-
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tack (Liang et al. 2018; Li et al. 2019; Ebrahimi et al. 2018),
word-level attack (Papernot et al. 2016; Samanta and Mehta
2017; Gong et al. 2018; Cheng et al. 2018; Kuleshov et al.
2018; Neekhara et al. 2019; Ren et al. 2019; Wang, Jin,
and He 2019), and sentence-level attack (Iyyer et al. 2018;
Ribeiro, Singh, and Guestrin 2018). For character-level at-
tack, recent works (Pruthi, Dhingra, and Lipton 2019) have
shown that a spell checker can easily fix the perturbations.
Sentence-level attacks, usually based on paraphrasing, de-
mand longer time in adversary generation. For word-level
attack, replacing word based on embedding perturbation or
adding/removing word is often vulnerable to the problem of
hurting semantic consistency and grammatical correctness.
Synonym substitution based attacks could better cope with
the above issues and produce adversarial examples that are
harder to be detected by humans. Unfortunately, synonym
substitution based attacks exhibit lower efficiency compared
with existing image attack methods.

As text adversarial attack has attracted increasing inter-
ests very recently since 2018, its counterpart, text adversar-
ial defense, is much less studied in the literature. Some re-
search (Jia et al. 2019; Huang et al. 2019) is based on in-
terval bound propagation (IBP), originally proposed for im-
ages (Gowal et al. 2019), to ensure certified text defense.
Zhou et al. (2019) learn to discriminate perturbations (DISP)
and restore the embedding of the original word for defense
without altering the training process or the model structure.
Wang, Jin, and He (2019) propose a Synonym Encoding
Method (SEM), which inserts an encoder before the input
layer to defend synonym substitution based attacks.

To our knowledge, adversarial training, one of the most
efficacious defense methods for image data (Athalye, Car-
lini, and Wagner 2018), has not been implemented as an ef-
fective defense method against synonym substitution based
attacks due to the inefficiency of current adversary genera-
tion methods. On one hand, existing synonym substitution
based attack methods are usually much less efficient to be
incorporated into adversarial training. On the other hand, al-
though gradient-based image attacks often have much higher
efficiency, it is challenging to adapt such methods directly in
the text embedding space to generate meaningful adversar-
ial examples without changing the original semantics, due to



the discreteness of the text input space.

To this end, we propose a gradient-based adversarial at-
tack, called Fast Gradient Projection Method (FGPM), for
efficient synonym substitution based text adversary gener-
ation. Specifically, we approximate the classification confi-
dence change caused by synonym substitution by the prod-
uct of gradient magnitude and projected distance between
the original word and the candidate word in the gradient di-
rection. At each iteration, we substitute a word with its syn-
onym that leads to the highest product value. Compared with
existing query-based attack methods, FGPM only needs to
calculate the back-propagation once to obtain the gradient so
as to find the best synonym for each word. Extensive experi-
ments show that FGPM is about 20 times faster than the cur-
rent fastest text adversarial attack, and it can achieve similar
attack performance and transferability compared with state-
of-the-art synonym substitution based adversarial attacks.

With such high efficiency of FGPM, we propose Ad-
versarial Training with FGPM enhanced by Logit pairing
(ATFL) as an efficient and effective text defense method.
Experiments show that ATFL promotes the model robust-
ness against white-box as well as black-box attacks, effec-
tively blocks the transferability of adversarial examples and
achieves better generalization on benign data than other de-
fense methods. Besides, we also find some recent proposed
variants of adversarial training for images, such as TRADES
(Zhang et al. 2019), MMA (Ding et al. 2020) that exhibit
great effectiveness for image data, cannot improve the per-
formance of adversarial training for text data, indicating the
intrinsic difference between text defense and image defense.

Related Work

This section provides a brief overview on word-level text
adversarial attacks and defenses.

Adversarial Attack

Adversarial attacks fall in two settings: (a) white-box at-
tack allows full access to the target model, including model
outputs, (hyper-)parameters, gradients and architectures, etc.
(b) black-box attack only allows access to the model outputs.
Methods based on word embedding usually fall in the
white-box setting. Papernot et al. (2016) find a word in dic-
tionary such that the sign of the difference between the found
word and the original word is closest to the sign of the gra-
dient. However, such word does not necessarily preserve the
semantic as well as syntactic correctness and consistency.
Gong et al. (2018) further employ the Word Mover’s Dis-
tance (WMD) in an attempt to preserve semantics. Cheng
et al. (2018) also propose an attack based on the embedding
space with additional constraints targeting seq2seq models.
In black-box setting, Kuleshov et al. (2018) propose a
Greedy Search Attack (GSA) that perturbs the input by syn-
onym substitution. Specifically, GSA greedily finds a syn-
onym for replacement that minimizes the classification con-
fidence. Ren et al. (2019) propose a Probability Weighted
Word Saliency (PWWS) that greedily substitutes each tar-
get word with a synonym determined by the combination of
classification confidence change and word saliency. Alzan-
tot et al. (2018) also use synonym substitution and propose a
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population-based algorithm called Genetic Algorithm (GA).
Wang, Jin, and He (2019) further propose an Improved Ge-
netic Algorithm (IGA) that allows to substitute words in the
same position more than once and outperforms GA.

Our work produces efficient gradient based white-box at-
tacks, while guaranteeing the quality of adversarial exam-
ples by restricting the perturbation to synonym substitution,
which only appears in black-box attacks.

Adversarial Defense

There are a series of works (Miyato, Dai, and Goodfellow
2016; Sato et al. 2018; Barham and Feizi 2019) that perturb
the word embeddings and utilize the perturbations for adver-
sarial training as a regularization strategy. These works aim
to improve the model performance on the original dataset,
but do not intend to defend adversarial attacks. Thus, we do
not take such works into consideration.

A stream of recent popular defense methods (Jia et al.
2019; Huang et al. 2019) focuses on verifiable robustness.
They use IBP to train models that are provably robust to all
possible perturbations within the constraints. Such endeavor,
however, is currently time-consuming in the training stage as
the authors have noted (Jia et al. 2019) and hard to be scaled
to relatively complex models or large datasets. Zhou et al.
(2019) train a perturbation discriminator that validates how
likely a token in the text is perturbed and an embedding es-
timator that restores the embedding of the original word to
block adversarial attacks.

Alzantot et al. (2018) and Ren et al. (2019) adopt the
adversarial examples generated by their attack methods for
adversarial training and achieve some robustness improve-
ment. Unfortunately, due to the relatively low efficiency of
adversary generation, they are unable to craft plenty of per-
turbations during the training to ensure significant robust-
ness improvement. To our knowledge, word-level adversar-
ial training has not been practically applied for text classifi-
cation as an efficient and effective defense method.

Besides, Wang, Jin, and He (2019) propose Synonym En-
coding Method (SEM) that uses a synonym encoder to map
all the synonyms to the same code in the embedding space
and force the classification to be smoother. Trained with the
encoder, their models obtain significant improvement on the
robustness with a little decay on the model generalization.

Different from current defenses, our work focuses on fast
adversary generation and easy-to-apply defense method for
complex neural networks and large datasets.

Fast Gradient Projection Method

In this section, we formalize the definition of adversarial ex-
amples for text classification and describe in detail the pro-
posed adversarial attack method, Fast Gradient Projection
Method (FGPM).

Text Adversarial Examples

Let X denote the input space containing all the possible in-
put texts, Y = {y1,- - -, Ym } the output space and D the dic-
tionary containing all the possible words in the input texts.
Let x = (wy, -, w;, -+, w,) € X where w; € D denote



Figure 1: Strategies to pick optimal synonym to substitute
word w;. (a) Pick synonym ;] that minimizes the classifica-
tion confidence among all the synonyms w] € S(w;, d). (b)
Pick synonym ] that maximizes the product of the magni-
tude of gradient and the projected distance between w; and
w; in the gradient direction.

an input sample consisting of n words. A classifier ¢ is ex-
pected to learn a mapping X — ) so that for any sample
x, the predicted label ¢(z) equals its true label y with high
probability. Let F'(z,y) denote the logit output of classifier
¢ on category y. The adversary adds an imperceptible per-
turbation Ax on z to craft an adversarial example x4, that
misleads classifier ¢:

O(Tadv) # G(T) = Y, Tadgo =+ Az st |[|[Az, <e,

where € is a hyper-parameter for the perturbation upper
bound, and [|-||,, is the L,,-norm distance metric, which often
denotes the word substitution ratio R(x,Za4,) as the mea-
sure for the perturbation caused by synonym substitution:

1
R($,$adv) = ﬁ Z 1w1;£w: (wsz;)
=1

Here 1., is indicator function, w; € x and W € Tady-

Generating Adversarial Examples

Mrksic et al. (2016) have shown that counter-fitting can help
remove antonyms which are needlessly considered as “simi-
lar words” in the original GloVe vector space to improve the
capability of indicating semantic similarity. Thus, we post-
process the GloVe vectors by counter-fitting and define a
synonym set for each word w; € x in the embedding space
as follows:

S(wwé) = {UA)Z €D | ||’UAJ2 — wz||2§ (5}7 (1)

where ¢ is a hyper-parameter that constrains the maximum
Euclidean distance for synonyms in the embedding space
and we set § = 0.5 as in Wang, Jin, and He (2019).

Once we have the synonym set S(w;,d) for each word
w;, the next steps are for the optimal synonym selection and
substitution order determination.

Word Substitution. As shown in Figure 1 (a), for each
word w;, we expect to pick a word W} € S(wj,d) that earns
the most benefit to the overall substitution process of ad-
versary generation, which we call optimal synonym. Due
to the high complexity of finding optimal synonym, previ-
ous works (Kuleshov et al. 2018; Wang, Jin, and He 2019)

Algorithm 1 The FGPM Algorithm

Input: Benign sample x = (wy, -, wy, « -+, Wy,)
Input: True label y for x
Input: Target classifier ¢
Input: Upper bound distance for synonyms §
Input: Maximum number of iterations [NV
Input: Upper bound for word substitution ratio e
Output: Adversarial example x4,
1: Initialize 20, =z
2: Calculate S(w;, §) by Eq. (1) for w; € 22,
3:fork=1— Ndo
4 * L.

: Construct candidate set Cs = {wy, -, wF, -, W)}
by Eq. (2)

5: Calculate optimal word w, by Eq. (3)
6: Substitute w, € ngvl with 0, to obtain x’; do
7 if (2%, ) # y and R(2%,,,2) < € then
8: return 2%, > Succeed
9: end if
10: end for
11: return None > Failed

greedily pick a synonym @} € S(w;,d) that minimizes the
classification confidence:

*

W] = argmax (F(z,y) — F@Zvy))’
UD{ES(wm(s)

where & = (wy, -+, wi—1, W], wit1,- -, w,). However,

the selection process is time consuming as picking such a w;
needs |S(w;, §)| queries on the model. To reduce the calcu-
lation complexity, based on the local linearity of deep mod-
els, we use the product of gradient magnitude and projected
distance between the original word and its synonym candi-
date in the gradient direction in the word embedding space
to estimate the amount of change for the classification con-
fidence. Specifically, as illustrated in Figure 1 (b), we first
calculate the gradient V., J (¢, x, y) for each word w; where
J(0, z,y) is the loss function used for training. Then, we es-
timate the change by calculating (W] — w;) - Vi, J(6, 2, y).
To determine the optimal synonym w;, we choose a syn-
onym with the maximum product value:

W = argmax (0] —w;) -V, J(0,2,y). ()
@7 €S (w;,6)

Substitution Order. For each word w; in text x =
(Wi, w4,y -+, wy), we use the above word substitution
strategy to choose its optimal substitution synonym and ob-
tain a candidate set C; = {w7, -+, w], -+, w}}. Then, we
need to determine which word in = should be substituted.
Similar to the word substitution strategy, we pick a word
w} € Cs, that has the biggest product of the gradient mag-
nitude and the perturbation value projected in the gradient
direction, to substitute w; € x:

W, = argmax(W; — w;) - Vo, J(0, 2, y). 3)
WFECs

In summary, to generate an adversarial example, we adopt

the above word replacement and substitution order strategies



for synonym substitution iteratively till the classifier makes
a wrong prediction. The overall FGPM algorithm is shown
in Algorithm 1.

To avoid the semantic drift caused by multiple substitu-
tions at the same position of the text, we construct a candi-
date synonym set for the original sentence ahead of synonym
substitution process and constrain all the substitutions with
word w; € x to the set, as shown at line 2 of Algorithm
1. We also set the upper bound for word substitution ratio
e = 0.25 in our experiments. Note that at each iteration, pre-
vious query-based adversarial attacks need > [S(w;,d)|
times of model queries (Kuleshov et al. 2018; Ren et al.
2019), while FGPM just calculates the gradient by back-
propagation once, leading to much higher efficiency.

Adversarial Training with FGPM

For image classification, Goodfellow, Shlens, and Szegedy
(2015) first propose adversarial training using the following
objective function:
J(9> z, y) = aJ(G, €T, y) + (1 - a)J(07 Tadv, y)

In recent years, numerous variants of adversarial train-
ing (Kannan, Kurakin, and Goodfellow 2018; Zhang et al.
2019; Song et al. 2019; Ding et al. 2020) have been pro-
posed to further enhance the robustness of models.

For text classification, previous works (Alzantot et al.
2018; Ren et al. 2019) have shown that incorporating their
attack methods into standard adversarial training can im-
prove the model robustness. Nevertheless, the improvement
is limited. We argue that adversarial training requires plenty
of adversarial examples generated based on instant model
parameters in the training stage for better robustness en-
hancement. Due to the inefficiency of text adversary genera-
tion, existing text attack methods based on synonym substi-
tution could not provide sufficient adversaries for adversar-
ial training. With the high efficiency of FGPM, we propose
a new text defense method called Adversarial Training with
FGPM enhanced by Logit pairing (ATFL) to effectively im-
prove the model robustness for text classification.

Specifically, we modify the objective function as follows:

J(0,2,y) = aJ(b,z,y) + (1 — a)J (0, Tagv, y)
J'_/\”F(xa ) - F(xadvv )H
where x,4, is the adversarial example of each = generated
by FGPM based on the instant model parameters € during
training. In all our experiments, we set « = 0.5 and A = 0.5,
and provide ablation study for o and A in Appendix. As
in Kannan, Kurakin, and Goodfellow (2018), we train the
model on adversarial examples and treat the logit similar-
ity of benign examples and their adversarial counterparts as
an regularizer to improve the model robustness rather than
just adding a portion of adversarial examples of the already
trained model into the training set and retrain the model.

Experimental Results
We evaluate FGPM with four attack baselines, and ATFL
with two defense baselines, IBP and SEM, on three popular
benchmark datasets involving CNN and RNN models. Code
is available at https://github.com/JHL-HUST/FGPM.
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Experimental Setup

We first introduce the experimental setup, including base-
lines, datasets and models used in experiments.

Baselines. For fair comparison, we restrict the perturba-
tions of Papernot et al. (2016) within synonyms and denote
this baseline as Papernot’. To evaluate the attack effective-
ness of FGPM, we compare it with four adversarial attacks,
Papernot’, GSA (Kuleshov et al. 2018), PWWS (Ren et al.
2019), and IGA (Wang, Jin, and He 2019). Furthermore, to
validate the defense performance of our ATFL, we take two
competitive text defense methods, SEM (Wang, Jin, and He
2019) and IBP (Jia et al. 2019), against the above word-level
attacks. Due to the low efficiency of attack baselines, we ran-
domly sample 200 examples on each dataset, and generate
adversarial examples on various models.

Datasets. We compare the proposed methods with base-
lines on three widely used benchmark datasets including
AG’s News, DBPedia ontology and Yahoo! Answers (Zhang,
Zhao, and LeCun 2015). AG’s News consists of news ar-
ticles pertaining four classes: World, Sports, Business and
Sci/Tech. Each class includes 30,000 training examples and
1,900 testing examples. DBPedia ontology is constructed
by picking 14 non-overlapping classes from DBPedia 2014,
which is a crowd-sourced community effort to extract struc-
tured information from Wikipedia. For each of the 14 on-
tology classes, there are 40,000 training samples and 5,000
testing samples. Yahoo! Answers is a topic classification
dataset with 10 classes, and each class contains 140,000
training samples and 5,000 testing samples.

Models. We adopt several deep learning models that can
achieve state-of-the-art performance on text classification
tasks, including Convolution Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs). The embedding dimen-
sion of all models is 300 (Mikolov et al. 2013). Specifically,
we replicate a CNN model from Kim (2014), which consists
of three convolutional layers with filter size of 5, 4, and 3 re-
spectively, a dropout layer and a final fully connected layer.
We also use a Long Short-Term Memory (LSTM) model
which replaces the three convolutional layers of the CNN
with three LSTM layers, each with 128 cells (Liu, Qiu, and
Huang 2016). Lastly, we implement a Bi-directional Long
Short-Term Memory (Bi-LSTM) model that replaces the
three LSTM layers of the LSTM with a bi-directional LSTM
layer having 128 forward direction cells and 128 backward
direction cells.

Evaluation on Attack Effectiveness

To evaluate the attack effectiveness, we compare FGPM
with the baseline attacks in two aspects, namely model clas-
sification accuracy under attacks and transferability.
Classification Accuracy under Attacks. In Table 1, we
provide the classification accuracy under FGPM and the
competitive baseline attacks on three standard datasets. The
more effective the attack method is, the more the classifi-
cation accuracy of the target model drops. We observe that
IGA, adopting the genetic algorithm, can always achieve the
best attack performance among all attacks. Compared with
other attacks, FGPM could either achieve the best attack per-
formance or on par with the best one. Especially, Papernot’,



| AG’s News | DBPedia | Yahoo! Answers

‘ CNN LSTM Bi-LSTM ‘ CNN LSTM Bi-LSTM ‘ CNN LSTM Bi-LSTM
No Attack’ 92.3 92.6 92.5 98.7 98.8 99.0 72.3 75.1 74.9
No Attack 87.5 90.5 88.5 99.5 99.0 99.0 71.5 72.5 73.5
Papernot’ 72.0 61.5 65.0 80.5 77.0 83.5 38.0 43.0 36.5
GSA 45.5 35.0 40.0 52.0 49.0 53.5 21.5 19.5 19.0
PWWS 37.5 30.0 29.0 55.5 52.5 50.0 55 12.5 11.0
IGA 30.0 26.5 25.5 36.5 38.5 37.0 35 5.5 7.0
FGPM 37.5 31.0 32.0 40.0 45.5 47.5 6.0 17.0 10.5

Table 1: The classification accuracy (%) of different models under various competitive adversarial attacks. The first two rows
of No Attack’ and No Attack show the model accuracy on the entire original test set and the sampled examples respectively.
The lowest classification accuracy among the attacks is highlighted in bold to indicate the best attack effectiveness. The second

lowest classification accuracy is highlighted in underline.

| CNN LSTM Bi-LSTM | CNN LSTM Bi-LSTM | CNN LSTM  Bi-LSTM
Papernot’ | 72.0% 80.5 82.5 83.5 61.5% 78.5 79.5 74.5 65.0%
GSA 45.5% 80.0 80.0 84.5 35.0% 73.0 81.5 72.5 40.0*
PWWS 37.5% 70.5 70.0 83.0 30.0%* 67.5 80.0 67.5 29.0%
IGA 30.0% 74.5 74.5 84.0 26.5% 71.5 79.0 71.0 25.5%
FGPM 37.5% 72.5 74.5 81.0 31.0% 73.5 77.5 67.5 32.0%

Table 2: The classification accuracy (%) of different models for adversarial examples generated on other models on AG’s News
for the transferability evaluation. * indicates that the adversarial examples are generated based on this model.

the only gradient-based attack among the baselines, is in-
ferior to FGPM, indicating that the proposed gradient pro-
jection technique significantly improves the effectiveness of
white-box word-level attacks. Besides, we also display some
adversarial examples generated by FGPM in Appendix.
Transferability. The transferability of adversarial attack
refers to the ability to reduce the classification accuracy of
different models with adversarial examples generated on a
specific model (Goodfellow, Shlens, and Szegedy 2015),
which is another serious threat in real-world applications. To
illustrate the transferability of FGPM, we generate adversar-
ial examples on each model by different attack methods and
evaluate the classification accuracy of other models on these
adversarial examples. Here, we evaluate the transferability
of different attacks on AG’s News. As depicted in Table 2,
the adversarial examples crafted by FGPM is on par with
the best transferability performance among the baselines.

Evaluation on Attack Efficiency

The attack efficiency is important for evaluating attack meth-
ods, especially if we would like to incorporate the attacks
into adversarial training as a defense method. Adversarial
training needs highly efficient adversary generation so as to
effectively promote the model robustness. Thus, we evalu-
ate the total time (in seconds) of generating 200 adversarial
examples on the three datasets by various attacks. As shown
in Table 3, the average time of generating 200 adversarial
examples by FGPM is nearly 20 times faster than GSA, the
second fastest synonym substitution based attack but with
weaker attack performance and lower transferability than
FGPM. Moreover, FGPM is on average 970 times faster than
IGA, which produces the maximum degradation of the clas-
sification accuracy among the baselines. Though Papernot’

crafts adversarial examples based on gradient, which makes
each iteration faster, it needs much more iterations to obtain
adversarial examples due to low attack effectiveness. On av-
erage, FGPM is about 78 times faster than Papernot’.

Evaluation on Adversarial Training

From the above analysis, we see that compared with the
competitive attack baselines, FGPM can achieve much
higher efficiency with good attack performance and transfer-
ability. Such performance enables us to implement effective
adversarial training and scale to large neural networks and
datasets. In this subsection, we evaluate the defence perfor-
mance of ATFL and conduct comparison with SEM and IBP
against adversarial examples generated by the above attacks.
Here we focus on two factors, defense against adversarial at-
tacks and defense against transferability.

Defense against Adversarial Attacks. We use the above
attacks on models trained by various defense methods to
evaluate the defense performance. The results are shown in
Table 4. For normal training (NT), the classification accu-
racy on all datasets drops dramatically under different adver-
sarial attacks. In contrast, both SEM and ATFL can promote
the model robustness stably and effectively among all mod-
els and datasets. IBP, originally proposed for CNN to defend
the adversarial attacks in image domain, can improve the
robustness of CNN on three datasets but with much higher
computation cost. More importantly, with many restrictions
added on the architectures, the model hardly converges when
trained on LSTM and Bi-LSTM, resulting in both weakened
generalization and adversarial robustness instead. Compared
with SEM, moreover, ATFL can obtain higher classification
accuracy on benign data, and is very competitive under al-
most all adversarial attacks.
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| AG’s News | DBPedia | Yahoo! Answers

‘ CNN LSTM Bi-LSTM ‘ CNN LSTM Bi-LSTM ‘ CNN LSTM Bi-LSTM
Papernot’ 74 1,676 4,401 145 2,119 6,011 120 9,719 19,211
GSA 276 643 713 616 1,006 1,173 | 1,257 2,234 2,440
PWWS 122 28,203 28,298 204 34,753 35,388 643 98,141 100,314
IGA 965 47,142 91,331 | 1,369 69,770 74,376 893 132,044 123,976
FGPM 8 29 29 8 34 33 26 193 199

Table 3: Comparison on the total running time (in seconds) for generating 200 adversarial instances.

D \ \ CNN \ LSTM \ Bi-LSTM
ataset Attack
\ \ NT SEM IBP ATFL \ NT SEM 1IBP ATFL \ NT SEM IBP ATFL
No Attack™ | 92.3 89.7 894 91.8 |92.6 909 863 920 | 925 914 89.1 92.1
No Attack 875 875 875 89.0 | 905 905 845 915 | 885 91.0 870 895
AG’s Papernot’ 720 845 875 88.0 |61.5 895 815 900 | 650 90.0 86.0 89.0
News GSA 455 800 860 880 | 350 855 795 88.0 |400 875 790 875
PWWS 375 805 86.0 88.0 | 300 865 795 88.0 [290 875 755 875
IGA 300 80.0 8.0 88.0 | 265 855 795 88.0 [255 875 790 87.5
FGPM 375 785 865 88.0 | 31.0 855 80.0 88.0 |32.0 845 800 875
No Attack’ | 98.7 98.1 974 984 | 988 985 93.1 987 |99.0 987 947 98.6
No Attack | 99.5 975 970 98.0 [ 99.0 995 950 995 |99.0 98.0 945 99.0
Papernot’ 805 970 970 98.0 | 77.0 995 910 995 | 835 980 925 99.0
DBPedia | GSA 520 96.0 970 98.0 | 490 99.0 845 985 | 535 98.0 89.5 99.0
PWWS 555 955 970 98.0 | 525 995 840 98.5 | 50.0 950 89.5 99.0
IGA 365 955 97.0 98.0 | 385 990 845 98.0 |[37.0 970 90.0 99.0
FGPM 40.0 940 97.0 98.0 | 455 99.0 850 985 | 475 980 895 99.0
No Attack? | 723  70.0 642 710 | 751 728 512 742 |749 729 590 743
No Attack | 71.5 67.0 645 720 | 725 695 505 740 |735 695 560 72.0
Yahoo! Papernot’ 380 64.0 635 69.0 | 430 670 410 71.0 |365 665 530 705
Answe;s GSA 21.5 595 610 63.0 | 195 630 300 69.5 190 625 395 645
PWWS 55 590 610 625 125 63.0 300 68.5 11.0 625 400 65.5
IGA 3.5 590 610 625 55 625 315 675 7.0 620 405 64.0
FGPM 6.0 610 630 640 | 170 63.0 350 685 10.5 64.5 415 635

Table 4: The classification accuracy (%) of three competitive defense methods under various adversarial attacks on the same set
of 200 randomly selected samples for the three standard datasets.

Defense against Transferability. As transferability poses
a serious concern in real-world applications, a good defense
method should not only defend the adversarial attack but
also resist the transferability of adversarial examples. To
evaluate the ability of blocking transferability, we evalu-
ate each model’s classification accuracy on adversarial ex-
amples generated by different attack methods under normal
training on AG’s News. As shown in Table 5, ATFL is much
more successful in blocking the transferability of adversar-
ial examples than the defense baselines on CNN and LSTM
and achieve similar accuracy to SEM on Bi-LSTM.

In summary, ATFL can significantly promote the model
robustness, block the transferability of adversarial exam-
ples successfully and achieve better generalization on be-
nign data compared with other defenses. Moreover, when
applied to complex models and large datasets, ATFL main-
tains stable and effective performance.

Evaluation on Adversarial Training Variants

Many variants of adversarial training, such as CLP and ALP
(Kannan, Kurakin, and Goodfellow 2018), TRADES (Zhang
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et al. 2019), MMA (Ding et al. 2020), MART (Wang et al.
2020), have tried to adopt different regularizations to im-
prove the effectiveness of adversarial training for image
data. The loss functions for these variants are depicted in
Appendix. Here we try to answer the following question:
can these variants also bring improvement for texts?

To validate the effectiveness of these variants, we run the
above methods on AG’s News with three models. As shown
in Table 6, standard adversarial training can improve both
generalization and robustness of the models. Among the
variants, however, only ALP can further improve the per-
formance of adversarial training. Some recent variants (e.g.
TRADES, CLP) that work very well for images significantly
degrade the performance of standard adversarial training for
texts, indicating that we need more specialized adversarial
training methods for texts.

Conclusion
In this work, we propose an efficient gradient based syn-
onym substitution adversarial attack method, called Fast
Gradient Projection Method (FGPM). Empirical evaluations



Attack | CNN | LSTM | Bi-LSTM

| NT SEM IBP ATFL| NT SEM IBP ATFL | NT SEM IBP ATFL
Papernot’ | 72.0% 870 870 885 | 805 910 820 920 | 825 910 860 90.0
GSA 45.5% 870 870 885 | 80.0 905 830 910 | 800 910 875 90.0
PWWS | 37.5¢ 870 870 885 | 705 905 830 905 | 700 905 865 90.0
IGA 30.0% 870 870 885 | 745 905 835 910 | 745 905 865 89.5
FGPM 37.5¢ 870 875 885 | 725 905 830 915 | 745 910 865 90.0
Papernot’ | 83.5 875 875 880 | 615 91.0 820 910 | 785 910 865 89.5
GSA 845 870 87.5 885 | 350% 905 835 910 | 730 910 865 895
PWWS 830 870 87.5 89.0 | 30.0% 905 850 905 | 67.5 905 865 90.0
IGA 840 870 87.5 885 | 265¢ 905 835 915 | 715 910 870 900
FGPM 810 875 87.5 89.0 | 31.0% 905 835 915 | 73.5 910 870 895
Papernot’ | 79.5 880 870 885 | 745 910 825 910 | 650% 910 865 89.0
GSA 815 870 87.5 885 | 725 905 840 910 | 40.0* 910 875 90.0
PWWS 80.0 865 87.0 89.0 | 67.5 905 83.5 915 | 29.0% 905 87.0 90.0
IGA 790 870 870 885 | 710 90.5 835 910 | 255% 910 865 895
FGPM 775 875 875 89.0 | 675 905 835 910 | 320¢ 910 87.0 89.5

Table 5: The classification accuracy (%) of various models under competitive defenses for adversarial examples generated
on other models on AG’s News for evaluating the defense performance against transferability. * indicates that the adversarial

examples are generated based on this model.

Model | Attack NT Standard TRADES MMA MART CLP ALP
No Attack' 92.3 92.3 92.1 91.1 91.2 91.7 91.8
No Attack 87.5 89.5 89.5 87.5 87.0 90.5 89.0
Papernot’ 72.0 85.5 67.0 83.5 83.5 73.0 88.0
CNN GSA 455 71.5 36.5 69.0 73.0 42.5 88.0
PWWS 375 77.0 335 70.5 73.0 385 88.0
IGA 30.0 75.0 29.0 67.5 72.0 30.0 88.0
FGPM 375 78.0 40.0 73.5 74.5 38.5 88.0
No Attack’ 92.6 92.6 91.9 91.3 90.8 92.1 92.0
No Attack 90.5 92.0 90.5 89.0 90.0 91.0 91.5
Papernot’ 61.5 88.0 66.0 86.0 86.0 69.0 90.0
LSTM GSA 35.0 83.0 375 78.0 79.0 40.5 88.0
PWWS 30.0 84.0 32.0 78.0 79.5 46.5 88.0
IGA 26.5 83.0 24.0 77.5 79.5 34.0 88.0
FGPM 31.0 83.0 3255 81.5 80.5 41.0 88.0
No Attack' 92.5 92.8 92.4 91.4 923 92.4 92.1
No Attack 88.5 89.5 90.5 88.5 90.0 90.5 89.5
Papernot’ 65.0 89.5 65.5 85.5 86.0 66.0 89.0
Bi-LSTM | GSA 40.0 86.0 355 81.0 80.5 38.5 87.5
PWWS 29.0 86.5 30.0 80.0 80.5 52.0 875
IGA 255 86.0 29.0 78.5 80.0 345 87.5
FGPM 32.0 86.5 32.0 82.0 80.5 46.0 87.5

Table 6: The classification

accuracy (%) of different classification models adversarially trained with different regularization

under various adversarial attacks on the same set of 200 randomly selected samples for the AG’s News dataset.

on three widely used benchmark datasets demonstrate that
FGPM is about 20 times faster than the current fastest
synonym substitution based adversarial attack method, and
FGPM can achieve similar attack performance and transfer-
ability. With such high efficiency, we introduce an effective
defense method called Adversarial Training with FGPM en-
hanced by Logit pairing (ATFL) for text classification. Ex-
tensive experiments demonstrate that ATFL can significantly
promote the model robustness, block the transferability of
adversarial examples effectively, and achieve better general-
ization on benign data than text defense baselines. Besides,
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we find that recent successful regularizations of adversarial
training for image data actually degrade the performance of
adversarial training in text domain, suggesting the need for
more specialized adversarial training methods for text data.

Our work offers a way to adopt gradient for adversarial at-
tack in discrete space, making it possible to adapt successful
gradient based image attacks for text adversarial attacks. Be-
sides, considering the prosperity of adversarial training for
image data and high efficiency of gradient based methods,
we hope our work could inspire more research of adversar-
ial training in text domain.
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