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Abstract

Despite the near-human performances already achieved on
formal texts such as news articles, neural machine transla-
tion still has difficulty in dealing with “user-generated” texts
that have diverse linguistic phenomena but lack large-scale
high-quality parallel corpora. To address this problem, we
propose a counterfactual domain adaptation method to better
leverage both large-scale source-domain data (formal texts)
and small-scale target-domain data (informal texts). Specifi-
cally, by considering effective counterfactual conditions (the
concatenations of source-domain texts and the target-domain
tag), we construct the counterfactual representations to fill the
sparse latent space of the target domain caused by a small
amount of data, that is, bridging the gap between the source-
domain data and the target-domain data. Experiments on
English-to-Chinese and Chinese-to-English translation tasks
show that our method outperforms the base model that is
trained only on the informal corpus by a large margin, and
consistently surpasses different baseline methods by +1.12 ~
4.34 BLEU points on different datasets. Furthermore, we also
show that our method achieves competitive performances on
cross-domain language translation on four language pairs.

Introduction

With the rapid development of economic globalization and
the Internet, machine translation of informal texts can facil-
itate the communication between people who speak differ-
ent languages in the world, especially in messaging applica-
tions (Messenger, Whatsapp, iMessage, Wechat, DingTalk),
content sharing on social media (Facebook, Instagram, Twit-
ter), and discussion forums (Reddit) (Pennell and Liu 2014).
However, the lack of large-scale high-quality parallel cor-
pora of informal texts brings challenges to neural machine
translation (NMT) (Koehn and Knowles 2017; Chu and
Wang 2018; Hu et al. 2019). The existing small-scale par-
allel corpora of informal texts make NMT models easy to
overfit on the small training set and cannot generalize well
on the test set. Although NMT has achieved near-human
performances on formal texts such as news articles, some
researches (Hu et al. 2019) reveal that NMT is sensitive to
domain shift and the performance is bounded by the simi-
larity between training data (e.g., formal texts) and test data
(e.g., informal texts).
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A natural solution to this problem is domain adaptation,
which aims to adapt NMT models trained on one or more
source domains (formal texts in our case) to the target do-
main (informal texts in our case). Domain adaptation meth-
ods can be roughly categorized into model-based and data-
based ones (Chu and Wang 2018). The model-based meth-
ods make explicit changes to NMT model such as designing
new training objectives (Luong, Pham, and Manning 2015;
Chu, Dabre, and Kurohashi 2017), modifying the model ar-
chitecture (Kobus, Crego, and Senellart 2017; Johnson et al.
2017; Dou et al. 2019), and changing the decoding method
(Khayrallah et al. 2017). In contrast, the data-based meth-
ods focus on the data being used, such as using mono-
lingual corpus (Giilgehre et al. 2015), combining source-
domain and target-domain parallel corpora (Johnson et al.
2017; Caswell, Chelba, and Grangier 2019; Marie, Rubi-
no, and Fujita 2020), dynamic source-domain data selection
from easy to complex for target-domain translation (van der
Wees, Bisazza, and Monz 2017), etc. Nevertheless, most of
these methods train the model based on the observed data,
which depends on the quality of corpora used.

To improve target-domain translation (e.g, informal texts)
that lacks large-scale high-quality parallel corpora, we ex-
plore the use of counterfactual thinking (Swaminathan and
Joachims 2015; Pearl and Mackenzie 2018) to augment the
training set of models with counterfactual representation-
s that do not exist in the observed data but are useful for
improving the target-domain translation. Specifically, we
propose a model-agnostic counterfactual domain adaptation
(CDA) method, which first pre-trains the NMT model on
the large-scale source-domain parallel corpus (e.g., formal
texts) with artificial domain tags to indicate specific domain-
s, and then fine-tune on a mixture of the source-domain and
target-domain parallel corpora (i.e., informal texts) with a
counterfactual training strategy. In the counterfactual train-
ing strategy, we use the concatenations of source-domain
texts and the target-domain tag (i.e, counterfactual condi-
tions) to construct counterfactual representations, and pro-
pose three objectives to use both observed and counterfactu-
al data.

Our proposed method is motivated by the observation that
not every training sample in the source-domain parallel cor-
pus (e.g., formal texts) is equally useful for target-domain
translation (e.g., informal texts), due to the difference be-



tween the source domain and the target domain. Therefore,
in addition to reweighting the observed samples according to
their usefulness (i.e, the similarity with the target domain),
we construct counterfactual representations to fill the sparse
latent space of the target domain caused by the small amoun-
t of data, thereby improving target-domain translation by
bridging the domain gap between two data distributions.

We compare our method with several advanced baseline
methods, covering fine-tuning methods (Luong, Pham, and
Manning 2015; Chu, Dabre, and Kurohashi 2017), domain-
aware methods (Johnson et al. 2017; Caswell, Chelba, and
Grangier 2019; Dou et al. 2019; Marie, Rubino, and Fujita
2020), data augmentation methods (Miyato, Dai, and Good-
fellow 2017; Cheng et al. 2020) and domain-adaptation
methods (Bapna and Firat 2019; Chu, Dabre, and Kurohashi
2017). For informal language translation, we conduct ex-
periments on two language pairs: English-to-Chinese and
Chinese-to-English. We collect the source-domain corpus
from multiple sources of formal texts (e.g., news, internet,
movies, encyclopedias, government, news dialogue, novels,
technical documents and politics) and use the IWSLT-2017
dataset (Cettolo et al. 2017) as the target-domain corpus (i.e.,
informal texts). Experimental results show that our method
outperforms the base model that is trained only on the target-
domain corpus by up to +7.93 BLEU points, and consistent-
ly surpasses baseline methods by +1.12~4.34 BLEU points
on different test sets, demonstrating the effectiveness and
robustness of our proposed method. Encouragingly, we al-
so find that our method achieves competitive performances
on the other four cross-domain language translation tasks,
including English-to-Chinese, Chinese-to-English, German-
to-English and English-to-French.

In summary, our main contributions are:

Our study demonstrates the promising future of improv-
ing informal language translation by using counterfactual
samples beyond observable data.

We propose a counterfactual domain adaptation (CDA)
method to improve target-domain translation by filling the
sparse latent space of the target domain with constructed
counterfactual representations.

Experimental results show that our model consistently
outperforms several baseline methods on both informal
language translation and cross-domain language transla-
tion.

Method

In order to improve target-domain translation (e.g., informal
texts) that lacks large-scale high-quality parallel corpus, we
propose a counterfactual domain adaptation (CDA) method
for neural machine translation. The overall architecture of
our method is depicted in Figure 1.

Architecture

Formally, for the large-scale source-domain parallel corpus
D, and the small-scale target-domain parallel corpus D, the
empirical distributions are Ps and P; respectively. Each sam-
ple is a pair of sentences belonging to different languages
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Figure 1: (a) shows the architecture of counterfactual do-
main adaptation (CDA), which first pre-trains the NMT
model on a large external source-domain parallel corpus D
(e.g., formal texts), and then uses our counterfactual training
strategy to fine-tune on a mixture of the source-domain and
target-domain parallel corpora. (b) is the illustration of our
counterfactual training strategy, where P, and P, denote the
empirical distributions of D, and the small target-domain
corpus Dy, respectively. By constructing counterfactual rep-
resentations based on the concatenations (¢, ;) of source-
domain text and the target-domain tag (i.e., counterfactual
conditions), CDA aims to fill the sparse latent space of the
target-domain data, thereby improving target-domain trans-
lation.

(i.e., (xs,ys) or (x4, y;)). We augment all data with the ar-
tificial tag (i.e., ts and ;) to indicate its specific domain, that
is, the input sentence is a tag-text concatenation (¢, x). The
NMT task (Bahdanau, Cho, and Bengio 2015; Gehring et al.
2017; Vaswani et al. 2017) seeks to model the translation
probability P(y|t, ) based on the encoder-decoder (E and
D) paradigm, where the decoder D in the NMT model acts
as a conditional language model that operates on a shifted
copy of y. Here, the tag-text concatenation is the input se-
quence and y is the output sequence, denoted as,

l,x = (tax07"' 3y\y\71)' (D

In practice, we add start and end symbols at both ends of the
sequence. We apply a mixed fine-tuning architecture (Luong
and Manning 2015; Freitag and Al-Onaizan 2016; Johnson
et al. 2017; Chu, Dabre, and Kurohashi 2017; Dabre, Fuji-
ta, and Chu 2019) to prevent the model over-fitting on the
small-scale target-domain corpus, and it works in two steps
(shown in Figure 1 (a)):

1) Train an NMT model M on the large source-domain
data by minimizing the cross-entropy loss as follows:

‘Cpre—train(em) = IE(mS,yS)NPS [K(D(E(tsa "Es))a ys)]a (2)

where ¢ is the cross entropy loss (de Boer et al. 2005) and
0,y is the parameters of the NMT model M.

2) Fine-tune M on a mixture of the source-domain and
target-domain parallel corpora based on our counterfactual

s Tlel-1); Y= (Yo, -



training strategy (we will detail it in the next subsection).
Due to the imbalance between the source-domain corpus and
the target-domain corpus, we over-sample the target-domain
data for faster convergence.

Note that we do not need any modifications to the NMT
model, and here it is the transformer model (Vaswani et al.
2017) and can be easily extended to other models, such as
LSTM (Sutskever, Vinyals, and Le 2014), Fconv-seq2seq
(Gehring et al. 2017).

Training

Due to the difference between the source-domain data and
the target-domain data, not all instance is equally useful
for target-domain translation. Some previous studies have
demonstrated the importance of considering the usefulness
of training samples in domain adaptation, such as instance
weighting (Luong, Pham, and Manning 2015; Chu, Dabre,
and Kurohashi 2017), dynamic data selection and curricu-
lum learning (van der Wees, Bisazza, and Monz 2017; Zhang
et al. 2019; Caswell, Chelba, and Grangier 2019; Marie, Ru-
bino, and Fujita 2020). However, reweighting the observed
samples does not sufficiently take advantages of the use of
training data. The core idea behind our method is to con-
struct counterfactual representations that do not exist in the
observed data but are more useful for improving the target-
domain translation.

Counterfactual samples (Swaminathan and Joachims
2015; Pearl and Mackenzie 2018) allow us to imagine a hy-
pothetical reality that contradicts the observed facts (sam-
ples), and have been used to provide explanations for predic-
tions (Feder et al. 2020) and increase the robustness (Kus-
ner et al. 2017; Garg et al. 2019). In this paper, we use
the domain tag to explicitly add domain-aware features, and
construct counterfactual representations E(t;, ) based on
the concatenations of the target-domain tag ¢; and source-
domain texts x that do not exist in the training samples.

Note that we do not have the golden translation output
(denoted as y}) of (¢, xs), but it should be different from
Yy because it needs to conform to the characteristics of
the target domain. Specifically, our CDA method construct-
s counterfactual representation based on the sentence pair
tt, s — vyj, and consists of the following three objectives:

1) Domain-Aware Adversarial Loss: Due to the lack of
the golden translation output y; of ¢, s, we hope to use the
adversarial network (Goodfellow et al. 2014) to identify fea-
tures related to the target domain, and generate counterfac-
tual representations that conform to the target domain under
the given target-domain tag.

Specifically, we train a domain classifier with observed
samples, and use this classifier as the training objective that
the representation of the target-domain tag encoded by F
needs to conform to the target domain. Specifically, we use
an additional classifier C' to predict whether the domain tag
t matches the text  based on the mean value of the en-
coded representation of each word in the sentence. C' is a
simple multi-layer perceptron (MLP) network whose output
is a scalar probability between 0 and 1, and the goal is to
minimize the following:

£di5(06) = 3)
E(z, y)~p [C(E(t xs)) + (1 — C(E(ts, z5)))]
HE (@, y)~p, [C(E(ts, 1)) + (1 = C(E(t, x1)))],

where 0. is the parameters of C'. Note that our classifier is to
judge whether the tag and the text match instead of directly
predicting the domain, which is more suitable for the situa-
tion where the data sets are not balanced (the size of source-
domain data is much bigger than that of target-domain data).

On the contrary, our encoder I aims to generate target-
domain representations in the view of the classifier C, as
long as the given tag is the target-domain tag ¢;. Therefore,
the domain-aware adversarial loss L4, of the NMT model
M is:

Lado(Om) = E@, y)~p, [l = C(E(t, 25))] 4

Unlike the previous adversarial losses (Ganin et al. 2016;
Britz, Le, and Pryzant 2017; Zeng et al. 2018; Wang and
Wan 2018, 2019; Wang, Hua, and Wan 2019; Gu, Feng, and
Liu 2019; Wang and Wan 2020) that want to disentangle
domain-invariant and domain-specific information but may
risk losing content information, the use of our domain-aware
adversarial loss not only makes the encoder £ more sensi-
tive to the given domain tag, but also guides the model to
explore the latent space of the target-domain distribution,
so as to make up for the insufficient coverage (of diverse
linguistic phenomena of informal texts) on the small-scale
target-domain corpus.

2) Source-Side Mixup Loss: Compared with the domain-
aware adversarial loss that indirectly affects the encoder
through the adversarial process, the source-side mixup loss
directly constructs counterfactual interpolations (represen-
tations) between ts, s — ys and t;, xs; — yj to train the
model.

Mixup is a kind of data augmentation technique that has
been proven to improve generalization in the image clas-
sification task (Zhang et al. 2018). Given pairs of images
(z1,y1) and (z2,y2), where 1, zo denote the RGB pix-
els of the input images and y;, yo are their one-hot la-
bels respectively, Mixup chooses a random mixing propor-
tion A from a Beta distribution S(c, ) controlled by the
hyper-parameter «, and creates an artificial training exam-
ple (Az1 + (1 — N)za, Ay1 + (1 — N)ys) to train the network
by minimizing the loss on mixed-up data points:

L(0) = Ee i ~poBas yonppErcs(a,a) ®)
[((Az1 + (1 = N2, Ayr + (1 = A)yo)]
=Eq, 1 ~pp Bz yampp Eacs(a,o) EznBer () [20(A21
+ (1= N2, y1) + (1= 2)(Az1 + (1 = Az, y2)]
=Eo, yonpp Bosmpp Eansat1,0)l(AT1 + (1 = A)z2, 41).
Ber represents the Bernoulli distribution. We show the
detailed proof of Eq 5 in the Appendix. With the help of

Eq 5, we no longer need the blending (Ay; + (1 — A)yz) of
labels y; and yo under the condition that A is drawn from



B(a + 1, «), which is convenient for the situation where we
do not have y;. We mix the following two data points:

T = E(tsaws)§ Y1 = Ys; (6)

Ty = E(ty, xs); y2 =yl

Therefore, according to Eq 5 and Eq 6, our source-side mix-
up loss minimizes the constructed counterfactual interpola-
tions loss from a vicinity distribution (Chapelle et al. 2000)
P, defined in the representation space:

Lmiaz(em) :E(ms,ys)~PsE)\~ﬁ(a+l,o¢) @)
[((D(A\E(ts,xs) + (1 — N E(t, xs)), ys)]-

We believe that the advantages of such settings are: 1) We
construct a novel vicinal distribution P, to bridge the gen-
eralization gap between P, and P, by turning the source-
domain distribution into a distribution that is closer to the
target-domain distribution, and augment the training data
of the model with these constructed counterfactual repre-
sentations. 2) By linearly interpolating between the source-
domain and target-domain representations, we incentivize
the network to act smoothly and kind of interpolate nicely
between domains - without sharp transitions.

3) Sample-Wise Weighted Loss: Here we directly re-
weight observed source-domain samples based on the use-
fulness (i.e, probability of belonging to the target-domain
distribution P;) provided by the classifier C. We assign a
sample weight w,, = C'(E(t:, xs)) for each source-domain
sample:

‘C”mt (em) = E(m57ys)NPsE(mt7yt)NPt, (8)

(wy, x L(D(E(ts, xs)),ys) + L(D(E(ts, 2t)), ye))

Finally, the overall training objective in our counterfactual
training is a combination of the three losses:

0y, = argming {Lagy(0m) + Loniz(Om) + Lome(0m) }-
©)

To improve the translation for a data-scarce target domain
(informal), we proposed a domain adaptation method based
on building counterfactual examples. The application of ad-
versarial training and MIXUP is to indirectly and directly fill
the sparse latent space of the target domain, so as to bridge
the gap between source and target domains. Our adversarial
training is to indirectly guide the model to explore the la-
tent space of the target-domain distribution by making the
encoder E' more sensitive to the given domain tag, rather
than disentangling domain-invariant and domain-specific in-
formation like most previous adversarial methods. The use
of MIXUP is aiming to directly smooth the space between
source and target domains by constructing counterfactual in-
terpolations, which is different from the previous MIXUP
methods of interpolating between any two observable sam-
ples. Note that although the adversarial samples (Goodfel-
low, Shlens, and Szegedy 2015) are new samples that do not
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exist in the data set like ours, the difference is that our coun-
terfactual samples are designed to help the model use coun-
terfactual conditions instead of deceiving it (Wang, Hua, and
Wan 2019). We provide the algorithm of the entire training
process in the Appendix.

In summary, by constructing counterfactual representa-
tions based on the concatenations of source-domain texts
and the target-domain tag (i.e, counterfactual conditions), C-
DA aims to: 1) guide the model to explore the latent space
of the target-domain distribution, and 2) turn the source-
domain distribution into a one that is closer to the target-
domain distribution so as to bridge the gap between two do-
mains. Overall, CDA improves the target-domain translation
by fill the sparse latent space of the target domain caused by
a small amount of data.

Experiments
Setup

Without loss of generality, we evaluate our method on infor-
mal language translation tasks for English-to-Chinese (En
— Zh) and Chinese-to-English (Zh — En), and apply our
method on four cross-domain language translation tasks, in-
cluding English-to-Chinese (En — Zh), Chinese-to-English
(Zh — En), German-to-English (De—En) and English-to-
French (En—Fr).

Implementation details: We implement our method on
top of the Transformer-base (Vaswani et al. 2017) imple-
mented in Fairseq (Ott et al. 2019). The size of the hidden
unit is 512 and the number of the attention heads is 4. Both
the encoder and decoder have 6 layers. We apply byte-pair-
encoding (BPE) vocabulary (Sennrich, Haddow, and Birch
2016) with 40k merge operations to alleviate the out-of-
vocabulary problem. The beam size of the beam search is
setto 5. We set o in S(a + 1, &) to 0.1 and both d-steps and
g-steps in the algorithm are set to 1. We tokenize English,
German and French sentences using MOSES script (Koehn
et al. 2007), and perform word segmentation on Chinese sen-
tences using Jieba segmentation tool. The training takes 2
days on 8 Tesla P100 GPUs.

Datasets: For informal language translation, we collect
source-domain corpus containing 25,136,557 sentence pairs
from multiple sources that contain formal texts, including:

e New Commentary v12 (Bojar et al. 2016) contains

227,062 sentence pairs and its genre is news.

CWMT (Chen and Zhang 2019) contains 9,023,454 sen-
tence pairs and its genres are internet, movies, encyclo-
pedias, government, news dialogue, novels and technical
documents.

UN (Ziemski, Junczys-Dowmunt, and Pouliquen 2016)
contains 15,886,041 sentence pairs and its genre is pol-
itics.

We use the IWSLT2017 dataset (Cettolo et al. 2017) as
our informal text corpus (i.e., target-domain corpus), which
comes from the subtitles of TED talks and can be regarded
as a kind of informal spoken-style corpus. It contains a train-
ing set of size 231,266 sentence pairs, a validation set of size
879 sentence pairs, and 5 test sets of sizes 1,557 (Test2010),



Train@ Method Test2010  Test2011  Test2012  Test2013  Test2014  Test2015  Average A
Target-domain _ B2% 17.67 22.54 21.83 2141 20.10 24776 21.39 -
AdvEmb 17.89 22.98 22.01 22.05 20.41 24.99 2172 4033
corpus AdvAug 18.05 23.12 22.90 22.03 21.45 25.65 2220 +0.81
Source 21.63 27.63 25.62 27.08 2557 30.66 2638  +4.99
Joint 22.26 28.87 26.65 28.21 25.71 31.52 2720  +5.81
FT 2221 28.32 26.78 27.33 25.08 30.72 2674 +5.35
TAG 22.49 29.24 27.17 28.42 25.98 31.40 2745  +6.06
ADAP 22.23 28.04 27.10 27.51 25.12 30.58 2676 +5.37
Joint corpus  PAFE 2251 28.94 27.23 28.10 25.86 31.33 2733 +5.94
Mixed FT 2291 29.01 27.41 29.16 26.32 31.25 2767  +6.28
AdvAug 22.86 2891 26.81 27.19 25.16 31.43 2706  +5.67
CDA 24.26 30.15 29.03 30.87 28.15 3351 2932 +7.93
CDA W/0 Lniz  23.62 29.34 27.41 28.51 26.27 32.19 2789 +6.50
CDA W/0 Logy  23.97 29.97 28.19 29.15 27.56 32.72 28.59  +7.20
CDA W/0 Lyme 2416 30.05 28.41 30.16 27.64 33.16 2893  +7.54

Table 2: Results of informal English-to-Chinese translation. ”w/0” means “without”.

Task Domain #Train  #Valid #Test
Thesis 0.29M 1,000 625
En<Zh Education 0.21M 1,000 456
Spoken 0.22M 1,000 455
De—sEn Koran 0.54M 1,000 1,000
IT 0.35M 1,000 1,000
En—Fr Mgdical 0.89M 800 2000
Parliament 2.04M 800 2000

Table 1: Statistics of cross-domain training corpora.

1,426 (Test2011), 1,692 (Test2012), 1,372 (Test2013), 1,297
(Test2014), and 1,205 (Test2015). For cross-domain lan-
guage translation, we conduct experiments on three differ-
ent corpora, as listed in Table 1. For Zh—En and En—Zh
translation tasks, we use the previous formal text corpus
as the large source-domain data, and the three domains in
UM-Corpus (Tian et al. 2014) as the target-domain data, as
shown in Table 1. Note that the genres of three domains we
specifically selected are quite different from the ones of the
source-domain corpus. For De — En and En — Fr trans-
lation tasks, we use data extracted from OPUS (Tiedemann
2012). They respectively contain two domains, specifically,
Koran and information technology domains for De — En,
medical and parliament domains for En — Fr. Note that for
these two translation tasks, we use one domain as the target
domain and the other one as the source domain.

We select the best NMT model according to the validation
set of the target-domain corpus in the training process, and
report the BLEU (Papineni et al. 2002) scores with Sacre-
BLEU! (Post 2018) on test sets.

Baseline Comparisons: Our baselines include the fol-
lowing four categories: 1) fine-tuning methods (i.e, Fine-
tuning (Luong, Pham, and Manning 2015), Mixed fine-
tuning (Chu, Dabre, and Kurohashi 2017)), 2) domain-
aware methods (i.e, TAG (Johnson et al. 2017; Marie, Rubi-
no, and Fujita 2020; Caswell, Chelba, and Grangier 2019),

'4BLEU + case.mixed + lang. LANGUAGE PAIR + numrefs. 1
+ smooth.exp + test.SET + tok.intl + version.1.2.15
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DAFE (Dou et al. 2019)), 3) data augmentation method-
s (i.e, AdvEmb (Miyato, Dai, and Goodfellow 2017), Ad-
vAug (Cheng et al. 2020)), 4) domain-adaptation methods
(i.e, ADAP (Bapna and Firat 2019) (Chu, Dabre, and Kuro-
hashi 2017)). For a fair comparison, we implement all these
methods using the Transformer-base (Vaswani et al. 2017)
backbone and report results trained on the same corpora.

FT: Luong, Pham, and Manning (2015) first train a NMT
model on source-domain corpus, and then fine-tune the
model on target-domain corpus.

Mixed FT: Chu, Dabre, and Kurohashi (2017) extend the
fine-tuning approach by training on source-domain data,
and then fine-tuning on source-domain and target-domain
data.

AdvEmb: Miyato, Dai, and Goodfellow (2017) provide a
virtual adversarial training method for the label (decoded
words in our case) by applying perturbations to the word
embeddings, which is less prone to overfitting.

TAG: Johnson et al. (2017); Caswell, Chelba, and Grang-
ier (2019); Marie, Rubino, and Fujita (2020) provide an
domain-aware method that introduces domain tag to the
source sentence.

ADAP: Bapna and Firat (2019) propose an efficient do-
main adaptation method that consists of injecting tiny task
specific adapter layers into a pre-trained NMT model.

*k

DAFE: Dou et al. (2019) propose a domain-aware ap-
proach that adapts models with domain-aware feature em-
beddings, which are learned via an auxiliary language
modeling task.

AdvAug: Cheng et al. (2020) provide an adversarial aug-
mentation method to minimize the vicinal risk over virtual
sentences sampled from vicinity distributions for adver-
sarial sentences that describes a smooth interpolated em-
bedding space centered around observed training sentence
pairs.

For analysis, we also show training NMT models with d-
ifferent corpora, including:



Train@ Method Test2010  Test2011  Test2012  Test2013  Test2014  Test2015  Average A
Target-domain _ B2% 21.78 2437 22.93 2321 21.62 24.07 23.00 -
AdvEmb 22.33 25.80 23.95 23.57 21.48 24.11 2354  +0.54
corpus AdvAug 22.49 26.02 24.14 24.80 21.53 25.23 24.04  +1.04
Source 19.27 2171 2117 24.90 21.76 25.06 2231 069
Joint 22.37 26.81 25.11 28.07 24.61 28.13 2585  +2.85
FT 25.18 25.71 2241 25.72 24.40 26.78 2503 +2.03
TAG 25.01 28.55 2778 30.42 25.90 28.67 2772 4472
ADAP 24.89 25.81 22.54 24.82 25.01 2591 2483  +1.83
Joint corpus  PAFE 25.10 27.78 27.18 29.36 25.62 27.27 2705  +4.05
Mixed FT 25.48 28.89 27.97 31.01 26.15 28.81 2805  +5.05
AdvAug 22.65 27.01 25.63 28.15 24.89 26.71 2584  +2.84
CDA 27.13 29.16 2921 32.16 2751 29.87 2917  +6.17
CDA W/0 Lniz  25.81 28.90 2771 31.47 26.36 28.97 2820  +5.20
CDA W/0 Logy  26.16 28.98 28.67 31.88 26.90 29.37 2866  +5.66
CDA W/0 Lyme  26.58 29.06 28.73 31.91 26.58 29.54 2873 +5.73

Table 3: Results of informal Chinese-to-English translation. ”"w/0” means “without”.

* Base: We only use the small target-domain corpus to train
the NMT model.

* Source: We only use the large source-domain corpus to
train the NMT model.

* Joint: We combine the target-domain and source-domain
corpora to train the NMT model.

Informal Language Translation Results

The translation results of informal language translation for
Zh—En and En—Zh are shown in Table 2 and Table 3, re-
spectively. From the results, we can see that:

o Although the data augmentation methods with the target-
domain corpus lead to different degrees of improvement,
methods using a larger-scale source-domain corpus out-

perform them by a large margin.

Even NMT models trained only on the source-domain
corpus (Source), their performances are close to or better
than the ones trained using only the target-domain corpus,
which shows that there are a large number of common
translation patterns between the two domains of texts.

All methods that consider domain adaptation (FT, TAG,
ADAP, DAFE, Mixed FT and CDA) are significantly
better than Source method, which shows that it is impor-
tant to consider the differences between the two domains.

Experimental results show that our model consistently
outperforms several baseline methods on both Zh—En
and En—Zh translations. Our method yields more than
1 BLEU point gains over the strongest baseline method
Mixed FT (around 2 BLEU points on Test2015 of
Zh—En), demonstrating the superiority of CDA.

The ablation studies of three losses in our method demon-
strate that all our losses are useful. The source-side mixup
loss has the greatest impact on the performance, which is
designed to smooth the transition between domain distri-
butions. This further validates that the superiority of CDA
comes from trying to fill the gap between domains.
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Cross-domain Language Translation Results

To further demonstrate the effectiveness of CDA in bridging
the gap between domains, we also conduct experiments on
cross-domain translation tasks. Table 4 shows cross-domain
translation results of En—Zh, Zh—En, De—En and En—Fr
tasks. The experiment results show that: 1) NMT is sensi-
tive to domain shift and performs poorly if the domains are
quite different. For example, the improvement of the formal
domain in the spoken domain is much greater than the im-
provement of the Koran domain in the IT domain. 2) Al-
though the difference between some domains is huge, e.g.,
Koran and IT, Methods (FT, TAG, ADAP, DAFT, Mixed
FT CDA) that utilizes corpus from other domains still bring
some improvements. 3) Compared with baseline methods,
our proposed method still keeps the advantages on different
tasks. As shown in Table 4, CDA yields more than 1 BLEU
point gains over the strongest baseline method in all 10 set-
tings, which is consistent with the findings in informal lan-
guage translation experiments. It also shows the generality
of CDA, suggesting its potential in more language pairs and
tasks.

Visualization of Counterfactual Representations

To qualitatively analyze how CDA bridging the gap between
domains, we visualize the formal, informal and two types of
counterfactual representations (i.e, Adv and Mix) of part of
the train set in the informal En—Zh translation task, with
the dimension reduction technique of t-SNE (Maaten and
Hinton 2008). As can be seen in Figure 2, the adversarial
counterfactual samples (in green color) fill the latent space
of target-domain data and the mixup counterfactual samples
(in purple color) smooth the space between P (source do-
main samples, in red color) and P, (target domain samples,
in blue color), that is, bridging the generalization gap of t-
wo distributions. This encourages CDA to produce a more
reasonable prediction in the latent space between the source
domain and the target domain, and makes it better combine
knowledge from two domains.



Train@ Method ' En — Zh . Zh — En De — En En — Fr
Thesis Edu.  Spoken Thesis Edu. Spoken Koran IT Med. Par.
Target-domain Base 3274 28.16 9.28 25.61 23.27 9.73 2381 3545 6125 32.71
corpus AdvEmb 32.87 28.31 9.67 26.76  23.82 9.90 23.99 3551 61.21 32.83
AdvAug 3298 28.86 10.83 2743 2411 10.41 2420 36.07 62.04 3296
Source 25.33  20.56 18.01 14.01  20.71 13.41 8.56 9.54 13.65 1552
Joint 3455 3218 2251 25.37 2498 19.46 20.61 3297 5935 30.26
FT 36.24 33.63 2293 26.31  25.10 20.13 24.05 3575 6274 33.10
TAG 3529 3397  22.88 2445 2517 19.94 2443 3580 62.88 3341
ADAP 36.18  33.81 21.73 2421 25.14 19.98 2417 3595 63.01 3347
Joint DAFE 3443 3410 2278 25.13  25.08 19.80 2476  36.11 63.23 33.52
corpus Mixed FT 37.17 3586  23.71 26.58 25.21 21.19 2443 3591 6335 34.10
AdvAug 34.15 3385 2281 25.81 2524  20.03 23.15 33.68 6136 33.87
CDA 39.17 3719 2418 27.68 26.17 2247 2543 3710 64.35 35.27
CDA w/o Lz 3791 3557  23.85 26.81 25.71 21.51 2489 3630 6346 3431
CDA w/o Lado 38.54 3642  24.02 27.15 2597 22.04 25.03 36.52 63.86 34.69
CDA w/o Lym: 3897  36.67  24.10 27.51 26.05 2231 25.18 36.65 64.10 35.07
Table 4: Results of cross-domain language translation. ”w/0” means “without”.
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Figure 2: Visualization of encoder representations.

Related Work

Domain Adaptation for Neural Machine Translation are
categorized into data-centric and model-centric methods by
Chu and Wang (2018). For data-centric methods, CDA has
connections to dynamic data selection and curriculum learn-
ing (van der Wees, Bisazza, and Monz 2017; Zhang et al.
2019; Caswell, Chelba, and Grangier 2019; Marie, Rubino,
and Fujita 2020), on which the model is learned by grad-
ually including from easy to complex samples in training
S0 as to increase the entropy of training samples. For data-
centric methods, our work is related to fine-tuning and in-
stance weighting (Luong, Pham, and Manning 2015; Chu,
Dabre, and Kurohashi 2017), which also up-weight and
down-weight certain examples at specific training phases.
However, the difference is that we construct new counterfac-
tual samples that are more useful for target-domain transla-
tion based on the observed samples.

Robust Neural Machine Translation hopes to improve
the translation of noise text, such as natural noise (e.g.,
spelling/typographical/grammatical errors, code switching
and profanity), adversarial samples. The dominant ap-
proaches are data cleaning and data augmentation (Cheng,
Jiang, and Macherey 2019; Zou et al. 2020; Li and Specia

tic phenomena of informal language translation in this study.

Low-resource Machine Translation has been widely in-
vestigated to utilize corpora of other languages with rich re-
sources to improve low-resource language translation (Sen-
nrich and Zhang 2019), such as multilingual machine trans-
lation (Johnson et al. 2017; Dabre, Fujita, and Chu 2019)
and meta-learning (Gu et al. 2018). However, different from
them, we focus on the improvement of translations in spe-
cific domains in the same language pair.

Our work is also related to Counterfactual Augmenta-
tion, which also generates counterfactual examples to cre-
ate possible alternatives to existing samples. Although it
has been used for providing explanations for the predic-
tions (Feder et al. 2020), extending the decision boundary
(Swaminathan and Joachims 2015; Besserve et al. 2020; Fu
et al. 2019), and increasing the robustness (Kusner et al.
2017; Garg et al. 2019), we believe that this is the first work
that applies counterfactual augmentation to domain adapta-
tion for neural machine translation.

Conclusions

In this paper, we propose a counterfactual domain adapta-
tion method to improve the informal language translation by
utilizing large-scale parallel corpora of formal texts, which
constructs the counterfactual representations that do not ex-
ist in the observed samples but can guide the model to ex-
plore the latent space of the target-domain distribution and
bridge the gap between the source-domain distribution and
the target-domain distribution. Experiments on both infor-
mal language translation tasks and cross-domain language
translation tasks show that our method outperforms the base
model and the baseline methods, demonstrating the effec-
tiveness and robustness of the proposed approach.
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