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Abstract

We propose a novel Transformer encoder-based architecture
with syntactical knowledge encoded for intent detection and
slot filling. Specifically, we encode syntactic knowledge into
the Transformer encoder by jointly training it to predict syn-
tactic parse ancestors and part-of-speech of each token via
multi-task learning. Our model is based on self-attention and
feed-forward layers and does not require external syntactic
information to be available at inference time. Experiments
show that on two benchmark datasets, our models with only
two Transformer encoder layers achieve state-of-the-art re-
sults. Compared to the previously best performed model with-
out pre-training, our models achieve absolute F1 score and
accuracy improvement of 1.59% and 0.85% for slot filling
and intent detection on the SNIPS dataset, respectively. Our
models also achieve absolute F1 score and accuracy improve-
ment of 0.1% and 0.34% for slot filling and intent detection
on the ATIS dataset, respectively, over the previously best
performed model. Furthermore, the visualization of the self-
attention weights illustrates the benefits of incorporating syn-
tactic information during training.

Introduction

Recent years have seen great success in applying deep learn-
ing approaches to enhance the capabilities of virtual assis-
tants (VAs) such as Amazon Alexa, Google Home and Ap-
ple Siri. One of the challenges for building these systems
is mapping the meaning of users’ utterances, which are ex-
pressed in natural language, to machine comprehensible lan-
guage (Allen 1995). An example is illustrated in Figure 1. In
this utterance “Show the cheapest flight from Toronto to St.
Louis”, the machine needs to map this utterance to an in-
tent Airfare (intent detection) and to slots such as Toronto:
FromLocation (slot filling). In this work, we focus on intent
detection and slot filling and refer to these as Natural Lan-
guage Understanding (NLU) tasks.

Previous works show that a simple deep neural archi-
tecture delivers better performance on NLU tasks when
compared to traditional models such as Conditional Ran-
dom Fields (Collobert et al. 2011). Since then, deep neu-
ral architectures, predominantly recurrent neural networks,
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Figure 1: An example of NLU tasks.

have become an indispensable part of building NLU sys-
tems (Zhang and Wang 2016; Goo et al. 2018; E et al.
2019). Transformer-based architectures, as introduced more
recently by (Vaswani et al. 2017), have shown significant
improvement over previous works on NLU tasks (Chen,
Zhuo, and Wang 2019; Qin et al. 2019). Recent studies
show that although the Transformer model can learn syntac-
tic knowledge purely by seeing examples, explicitly feed-
ing this knowledge to such models can significantly en-
hance their performance on tasks such as neural machine
translation (Sundararaman et al. 2019) and semantic role la-
beling (Strubell et al. 2018). While incorporating syntac-
tic knowledge has been shown to improve performance for
NLU tasks (Tur et al. 2011; Chen et al. 2016), both of these
assume syntactic knowledge is provided by external models
during training and inference time.

In this paper, we introduce a novel Transformer encoder-
based architecture for NLU tasks with syntactic knowledge
encoded that does not require syntactic information to be
available during inference time. This is accomplished, first,
by training one attention head to predict syntactic ancestors
of each token. The dependency relationship between each
token is obtained from syntactic dependency trees, where
each word in a sentence is assigned a syntactic head that is
either another word in the sentence or an artificial root sym-
bol (Dozat and Manning 2016). Adding the objective of de-
pendency relationship prediction allows a given token to at-
tend more to its syntactically relevant parent and ancestors.
In addition to dependency parsing knowledge, we encode
part of speech (POS) information in Transformer encoders
because previous research shows that the POS information
can help dependency parsing (Nguyen and Verspoor 2018).
The closest work to ours is (Strubell et al. 2018). However,
they focused on semantic role labeling and trained one atten-
tion head to predict the direct parent instead of all ancestors.

We compare our models with several state-of-the-art neu-



ral NLU models on two publicly available benchmarking
datasets: the ATIS (Hemphill, Godfrey, and Doddington
1990) and SNIPS (Coucke et al. 2018) datasets. The results
show that our models outperform previous works. To exam-
ine the effects of adding syntactic information, we conduct
an ablation study and visualize the self-attention weights in
the Transformer encoder.

Problem Definition

We define intent detection (ID) and slot filling (SF) as
an utterance-level and token-level multi-class classification
task, respectively. Given an input utterance with 7" tokens,
we predict an intent 3" and a sequence of slots, one per
token, {y§'°t, y5lt, ... yslot} as outputs. We add an empty
slot denoted by “O” to represent words containing no labels.
The goal is to maximize the likelihood of correct the intents

and slots given input utterances.

Proposed Model

We jointly train our model for NLU tasks (i.e., ID and SF),
syntactic dependency prediction and POS tagging via multi-
task learning (Caruana 1993), as shown in Figure 2. For
dependency prediction, we insert a syntactically-informed
Transformer encoder layer after the (x + y)th layer. In this
encoder layer, one attention head is trained to predict the full
ancestry for each token on the dependency parsing tree. For
POS tagging, we add a POS tagging model that shares the
first x Transformer encoder layers with the NLU model. We
describe the details of our proposed architecture below.

Input Embedding

The input embedding model maps a sequence of token rep-
resentations {¢1,ts,...,¢r} into a sequence of continuous
embeddings {eg, €1, €2, ...,er}, with ¢y being the embed-
ding of a special start-of-sentence token, “[SOS]”. The em-
beddings are then fed into the NLU model.

Transformer Encoder Layer

The Transformer encoder layers are originally proposed
in (Vaswani et al. 2017). Each encoder layer consists of a
multi-head self-attention layer and feed forward layers with
layer normalization and residual connections. We stack mul-
tiple encoder layers to learn contextual embeddings of each
token, each with H attention heads. Suppose the output em-
beddings of the encoder layer j — 1 is EU~1) each attention
head h at layer j first calculates self-attention weights by the
scaled dot product (1).

o D
Ay = softmax(——=2 )
h ( \/CTk )

In (1), the query Q;L] ) and key K }(1,] ) are two different linear
transformations of F—1_ d}. is the dimension of the query
and the key embeddings. The output of the attention head h
is calculated by:

FO = A0y @
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Figure 2: A high level overview of the proposed architecture.
Note that x, y and z all refer to number of layers that can
vary depending on implementation. “MLP” refers to a multi-
layer perceptron (MLP).

in which the value V}fj ) is also a linear transformation of
EU=1)_ The outputs of H attention heads are concatenated
as the self-attended token representations, followed by an-

other linear transformation:
Multi = [F9 P ... FOwF 3)

which is fed into the next feed forward layer. Residual con-
nections and layer normalization are applied after the multi-
head attention and feed forward layer, respectively.

Encoding Syntactic Dependency Knowledge

As shown in Figure 3, the syntactically-informed trans-
former encoder layer differs from the standard Transformer
encoder layer by having one of the H attention heads
trained to predict the full ancestry for each token, i.e., par-
ents, grandparents, great grandparents, etc. Different from
(Strubell et al. 2018), we use full ancestry prediction instead
of just direct parent prediction. Later we will demonstrate
the benefits of our approach in the Results section.

Given an input sequence of length 7', the output of a reg-
ular attention head is a 7' x T matrix, in which each row
contains the attention weights that a token puts on all the to-
kens in the input sequence. The output of the syntactically-
informed attention head is also a T" x T" matrix but this atten-
tion head is trained to assign weights only on the syntactic
governors (i.e., ancestors) of each token.

To train this attention head, we define a loss function by
the difference between the output attention weight matrix of
the syntactically-informed attention head and a predefined
prior attention weight matrix. The prior attention weight ma-
trix contains the prior knowledge that each token should at-
tend to its syntactic parse ancestors, with attention weights
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Figure 3: Overview of the syntactically-informed Transformer layer. One out of the H attention heads is trained for predicting
syntactic parse ancestors of each token. For each token, this attention head outputs a distribution over all positions in the
sentence, which corresponds to the probability of each token being the ancestor of this token. The loss function is defined as the
mean Kullback-Leibler (KL) divergence between the output distributions of all tokens and the corresponding prior distributions.

being higher on ancestors that are closer to that token. Dur-
ing training, we obtain the prior attention weights based on
the outputs of a pre-trained dependency parser.

For example, in the utterance “list flights arriving in
Toronto on March first”, the syntactic parse ancestors of
word “first” are “March”, “arriving” and “flights” which are
1, 2 and 3 hops away on the dependency tree, respectively,
as shown in Figure 4. The ancestors are syntactically mean-
ingful for the determination of the slot of “first”, which is
“arrive date, day number” in this case.

To train the attention head to assign higher weights on the
ancestors of each token, we define prior attention weights
of each token based on the distance between the token and
its ancestors. Formally, the prior attention weights of token

1 are defined as:

- { softmax(—d; ;/T)

10 if j ¢ ancestors(i)

4)

in which d; ; is the distance between token ¢ and j, so ftmax
is the Softmax function, 7 is the temperature of the Softmax
function controlling the variance of the attention weights
over all the ancestors and 7,5 € {1,2,...,T}. The stack
of prior attention weights of all T" tokens is a 7' x T" matrix,
denoted by WP"i°"  We train our model to decrease the dif-

ference between W?Tie and the attention matrix W, *) out-
put by the attention head & at the sth layer. The difference is
measured by the mean of row-wise KL divergence between
these two matrices, which is used as an additional loss func-
tion besides the NLU loss functions. We refer to this loss as
dependency loss denoted by £9°?-, formally:

prior if j € ancestors(i)

.3

T
. 1 i S
Lo = > Dien (WP || W)

i=1
W,gs) = softmax(Q(s)Udep'(K(S))T) 6)
in which D (-) denotes the KL divergence, Q) and K

&)
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Figure 4: Syntactic dependency tree of “list flights arriv-
ing in Toronto on March first” and prior attention weights
of word “first”.

W(s) is the ith row of

are linear transformations of E(=1, W,
W,ES), and U%P is a parameter matrix. In (6) we use the
biaffine attention instead of the scaled dot product attention,
which has been shown to be effective for dependency pars-
ing (Dozat and Manning 2016).

We treat 7 as a hyperparameter and tune it on the valida-
tion set. With 7 — 07, attention head h will be trained to
only pay attention to the direct parent of each token, a spe-
cial case used by (Strubell et al. 2018). Thus, our method is
a more general approach compared to (Strubell et al. 2018).

Encoding Part-of-Speech Knowledge

Part-of-Speech (POS) information is important for disam-
biguating words with multiple meanings (Alva and Hegde
2016). This is because an ambiguous word carries a specific
POS in a particular context (Pal, Munshi, and Saha 2015).
For instance, the word “May” could be either a verb or a
noun. Being aware of its POS tag is beneficial for down-
stream tasks, such as predicting the slots in the utterance



“book a flight on May 1st”. Furthermore, previous studies
have shown that while models trained for a sufficiently large
number of steps can potentially learn underlying patterns of
POS, the knowledge is imperfect (Jawahar, Sagot, and Sed-
dah 2019; Sundararaman et al. 2019). For these reasons, we
explicitly train our model to perform POS tagging using the
POS tags generated by a pretrained POS tagger.

Similar to slot filling, we simplify POS tagging as a token-
level classification problem. We apply a MLP-based classi-
fier on the output embeddings of the rth transformer encoder
layer and use cross entropy as the loss function:

piy = softmax(MLP(e,;)) @)
T O
Lroe = =% "% yie logply ®)
i=1 o=1
in which p??° is the predicted probability of the ith token’s

POS label being the oth label in the POS label space, O is
the total number of POS labels, y9° is the one-hot represen-

tation of the groundtruth POS label.

Intent Detection and Slot Filling

Intent detection: We apply a linear classifier on the em-
bedding of the “[SOS]” token, er, o, which is output by the
last Transformer encoder layer L. Cross entropy loss is used
for intent detection. The loss on one utterance is defined as:

int.

pitt = softmax(W™te] o 4 b"") )
N .
L:int. - _ Z y;nt logp;lnt. (10)
n=1

in which Wt and b are the parameters of the linear
classifier, """ is the one-hot representation of the ground
truth intent label, NV is the total number of intent labels and
pitt- is the predicted probability of this utterance’s intent
label being the nth label in the intent label space.

Slot filling: We apply a MLP-based classifier on the em-
beddings output by the last Transformer encoder layer using
cross entropy as the loss function. The loss on one utterance
is defined as follow:

pflft = softmax(MLP(er;)) (11)
T S

£t ==y logpily! (12)
i=1 s=1

in which pffft is the predicted probability of the ¢th token’s
slot being the sth label in the slot space, .S is the total num-
ber of slots, and y5!° is the one-hot representations of the

ground truth slot label.

Multi-task Learning

We train our model via multi-task learning (Caruana 1993).
Our loss function is defined as:

L= £NLU + Cd(—:p . Edep + cPos . ppos (13)
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where LVEU equals to £5!°t for slot filling, £ for intent

detection or £5°* 4 £ for joint training, and c?P and
cP?® are coefficients of the dependency prediction loss and
the POS tagging loss, respectively. c?°P and ¢P°® are treated
as hyperparameters and selected based on validation perfor-
mance.

Experiments
Datasets

We conducted experiments on two benchmark datasets: the
Airline Travel Information Systems (ATIS) (Hemphill, God-
frey, and Doddington 1990) and SNIPS (Coucke et al. 2018)
datasets. The ATIS dataset has a focus on airline information
and has been used as benchmark on NLU tasks. We used the
same version as (Goo et al. 2018; E et al. 2019) that contains
4,478 utterances for training, 500 for validation and 893 for
testing. The SNIPS dataset has a focus on personal assistant
commands, with a larger vocabulary size and more diverse
intents and slots. It contains 13,084 utterances for training,
700 for validation and 700 for testing.

Evaluation Metrics

We use classification accuracy for intent detection and the
F1 score for slot filling, which is the harmonic mean of pre-
cision and recall. For the SNIPS dataset, we use the same
version and evaluation method as pervious works (Zhang
et al. 2020). For the ATIS dataset, we find that previous
works use two different evaluation methods for intent de-
tection on utterances with multiple labels. The first method
counts a prediction as correct if it is equal to one of the
ground truth labels of the utterance (Liu and Lane 2016). We
refer this method as the single label matching method (ID-
S). The second method counts a prediction as correct only
if it matches all labels of the utterance (Goo et al. 2018;
E et al. 2019). We refer this method as the multiple label
matching method (ID-M). We report both in our results.

Implementation Details

Our experiments are implemented in PyTorch (Paszke et al.
2017). The hyperparameters are selected based on the per-
formance on the validation set. We use the Adam opti-
mizer (Kingma and Ba 2015) with [ 0.9, B2
0.999, ¢ = 1077 and the weight decay fix as described
in (Loshchilov and Hutter 2017). Our learning rate sched-
ule first increases the learning rate linearly from 0 to 0.0005
(warming up) and then decreases it to 0 following the values
of the cosine function. We use warming up steps = 20% of
the total training steps. The specific number of warming up
steps is determined by validation performance. We use the
implementation of the optimizer and learning rate scheduler
of the Transformers library (Wolf et al. 2019).

We use Stanza (Qi et al. 2020) to generate training la-
bels for POS tagging and dependency prediction. For the
NLU model trained with both dependency prediction and
POS tagging, c?P and cP°® are both set to 1. For the NLU
model trained with only dependency prediction, ¢%? is set
to 5. We used weight decay of 0.1 and dropout rate (Sri-
vastava et al. 2014) of 0.1 and 0.3 for the SNIPS and ATIS



SNIPS ATIS

SF 1D SF  ID-M 1ID-S
Joint Seq (Hakkani-Tiir et al. 2016) 87.30 96.90 9430 92.60 -

Attention-based RNN (Liu and Lane 2016) 87.80 96.70 95.78 - 97.98
Slot-Gated (Goo et al. 2018) 89.27 96.86 9542 9541 -
SF-ID, SF first (E et al. 2019) 9143 9743 95.75 97.76 -
SF-ID, ID first (E et al. 2019) 9223 97.29 95.80 97.09 -
Stack-Propagation (Qin et al. 2019) 94.20 98.00 95.90 96.90 -
Graph LSTM (Zhang et al. 2020) 95.30 98.29 9591 97.20 -

TF 96.37 98.29 9531 9642 97.65

SyntacticTF (Independent) 96.56 98.71 9594 97.76 98.10

SyntacticTF (Joint) 96.89 99.14 96.01 97.31 98.32
JointBERT (Chen, Zhuo, and Wang 2019)*  97.00  98.60 96.10 97.50 -

Table 1: SF and ID results on the ATIS and SNIPS dataset (%). TF refers to the Transformer encoder-based model trained
without syntactic information. SyntacticTF refers to our model. Independent and Joint refer to independently and jointly training
for SF and ID, respectively. ID-M refers to multiple label matching for intent detection evaluation and ID-S refers to single label
matching. *This work relies on pretraining, which is not required by other works in the table.

dataset, respectively. We use batch size of 32 and train each
model for 100 epochs. We report the testing results of the
checkpoints achieving the best validation performance.

We use the concatenation of GloVe embeddings (Pen-
nington, Socher, and Manning 2014) and character embed-
dings (Hashimoto et al. 2017) as token embeddings and keep
them frozen during training. The hidden dimension of the
Transformer encoder layer is 768 and the size of feed for-
ward layer is 3072. Considering the small size of the two
datasets, we only use two Transformer encoder layers in to-
tal (with z = 1, y = 0 and z = 0 as in Figure 2), each
of which has 4 attention heads. The dimension of Q(*) and
K (%) is 200. For slot filing, we apply the Viterbi decoding at
test time. BIO is a standard format for slot filling annotation
schema, as shown in Figure 1. The transition probabilities
are manually set to ensure the output sequences of BIO la-
bels to be valid, by simply specifying the probabilities of
invalid transition to zero and the probabilities of valid tran-
sition to one.

Baseline Models

We compare our proposed model with the following baseline
models:

Joint Seq (Hakkani-Tiir et al. 2016) is a joint model for
intent detection and slot filling based on the bi-directional
LSTM model.

Attention-based RNN (Liu and Lane 2016) is a sequence-
to-sequence model with the attention mechanism.

Slot-Gated (Goo et al. 2018) utilizes intent information
for slot filling through the gating mechanism.

SF-ID (E et al. 2019) is an architecture that enables the
interaction between intent detection and slot filling.

Stack-Propagation (Qin et al. 2019) is a joint model based
on the Stack-Propagation framework.

Graph LSTM (Zhang et al. 2020) is based on the Graph
LSTM model.
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¢ JointBERT (Chen, Zhuo, and Wang 2019) is a joint NLU
model fined tuned from the pretrained BERT model (De-
vlin et al. 2018).

¢ TF is the Transformer encoder-based model trained with-
out syntactic information.

Results

Table 1 shows the performance of the baseline and proposed
models for SF and ID on the SNIPS and ATIS dataset, re-
spectively. Overall, our proposed models achieve the best
performance on the two benchmarking datasets. On the
SNIPS dataset, our proposed joint model achieves an ab-
solute F1 score and accuracy improvement of 1.59% and
0.85% for SF and ID, respectively, compared to the best per-
formed baseline model without pre-training (Zhang et al.
2020). On the ATIS dataset, our proposed joint model also
achieves an absolute F1 score and accuracy improvement of
0.1% and 0.34% for SF and ID-S, compared to the best per-
formed baseline model for SF (Zhang et al. 2020) and ID-
S (Liu and Lane 2016), respectively. In addition, our pro-
posed independent model achieves the same performance as
the best performed baseline model on ID-M (E et al. 2019,
SF-ID, SF first).

Besides, the model based on Transformer encoder without
syntactic knowledge can achieve SOTA results on the SNIPS
dataset and is slightly worse than the SOTA results on the
ATIS dataset. This indicates the powerfulness of the Trans-
former encoder for SF and ID. Moreover, the further im-
provement of our models over the baseline models demon-
strates the benefits of incorporating syntactic knowledge.
Additionally, compared to previous works with heteroge-
nous model structures, our models are purely based on self-
attention and feed forward layers.

We also find that our proposed models can outperform
the JointBERT model with pre-training (Chen, Zhuo, and
Wang 2019) for intent detection tasks. Compared to the
JointBERT model, our proposed joint model achieves an ab-
solute accuracy improvement of 0.54% for ID on the SNIPS



SNIPS ATIS
SF ID SF  ID-M 1ID-S
TF 96.37 98.29 95.31 9642 97.65
TF + D 96.31 98.43 95.99 96.53 98.76
TF + P 96.47 98.57 95.82 97.31 98.10
TF+D+P 96.56 98.71 95.94 97.76 98.10

Table 2: Results of ablation study. TF refers to the baseline
models with two Transformer encoder layers. D and P refers
to dependency prediction and POS tagging, respectively.

dataset; and our proposed independent model achieves an
absolute accuracy improvement of 0.26% for ID-M on the
ATIS dataset. While our proposed model does not outper-
form the JointBERT model for SF, the performance gap is
relatively small ( 0.11% on SNIPS and 0.09% on ATIS). It
should be noted that our model does not require pre-training
and the size of our model is only one seventh of the Joint-
BERT model (16 million vs. 110 million parameters).

Previous works have shown that models like BERT can
learn syntactic knowledge by self-supervision (Clark et al.
2019; Manning et al. 2020). This can partially explain why
the JointBERT can achieve very good results without being
fed with syntactic knowledge explicitly.

Ablation Study

Table 2 shows the ablation study results of the effects of
adding different syntactic information. A first observation
is that the model trained with a singe syntactic task, ei-
ther dependency prediction or POS tagging, outperforms the
baseline Transformer encoder-based model without syntac-
tic information. This gives us confidence that syntactic in-
formation can help improve model performance. Moreover,
training a Transformer model with both the syntactic tasks
achieves even better results than training with a single syn-
tactic task. This could be because the POS tagging task im-
proves the performance of the dependency prediction task
(Nguyen and Verspoor 2018), which in turn improves the
performance of SF and ID.

Interestingly, we observe that the addition of dependency
prediction reduces the performance of slot filling on the
SNIPS dataset (96.31%) when compared to the baseline
Transformer encoder-based model (96.37%). There are sev-
eral potential reasons. Firstly, the sentences in the SNIPS
dataset are overall shorter than the ATIS dataset so that
the syntactic dependency information might be less help-
ful. Secondly, previous work has shown that syntactic pars-
ing performance often suffers when a named entity span has
crossing brackets with the spans on the parse tree (Finkel
and Manning 2009). Thus, the dependency prediction per-
formance of our model might decrease due to the presence
of many name entities in the SNIPS dataset, such as song
names and movie names, which could introduce noisy de-
pendency information into the attention weights and degrade
the performance on the NLU tasks.
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SNIPS ATIS
SF ID SF ID-S
TF + Par. 96.20 98.29 95.58 98.10
TF + Anc. 9631 98.43 95.99 98.76

Table 3: Intent detection and slot filling results of Trans-
former (TF) encoder-based models with dependency parent
prediction (Par.) and dependency ancestor prediction (Anc.)
on the ATIS and SNIPS dataset.

Qualitative Analysis

We qualitatively examined the errors made by the Trans-
former encoder-based models with and without syntactic in-
formation to understand in what ways syntactic information
helps improve the performance. Our major findings are:

ID errors related to preposition with nouns: Preposi-
tions, when appearing between nouns, are used to describe
their relationship. For example, in the utterance “kansas city
to atlanta monday morning flights”, the preposition “fo”
denotes the direction from “kansas city” (departure loca-
tion, noun) to “atlanta” (arrival location, noun). Without this
knowledge, a model could misclassify the intent of this ut-
terance as asking for city information rather than flight in-
formation. We found that about 50% of the errors made by
the model without syntactic information contain this pattern,
whereas less than 10% of the misclassified utterances con-
tain this pattern for the model with syntactic information
(See Appendix A for the full list).

SF errors due to POS confusion: A Word can have mul-
tiple meanings depending on context. For example, the same
word “may” can be a verb expressing possibility, or as a
noun referring to the fifth month of the year. We found that
correctly recognizing the POS of words could potentially
help reduce slot filling errors. For example, in this utterance
“May I have the movie schedules for Speakeasy Theaters”,
the slot for “May” should be empty, but the model without
syntactic information predicts it as “Time Range”. By con-
trast, the model with syntactic information predicts correctly
for this word, probably because the confusion of noun vs.
verb for the word “May” is addressed by incorporating POS
information. More examples are included in Appendix A.

Parent Prediction vs. Ancestor Prediction

We compare our approach of predicting all ancestors of each
token with the approach described in (Strubell et al. 2018),
which only predicts direct dependency parent of each to-
ken. Results in Table 3 show that the model with our ap-
proach can achieve better results for both ID and SF on the
two datasets, which demonstrates that our approach is more
beneficial to the NLU tasks. We hypothesize that incorpo-
rating syntactic ancestor prediction can better capture long-
distance syntactic relationship. As shown in (Tur, Hakkani-
Tiir, and Heck 2010), long distance dependencies are im-
portant for slot filling. For example, in the utterance “Find
flights to LA arriving in no later than next Monday”, a 6-
gram context is needed to figure out that “Monday” is the
arrival date instead of the departure date.
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Figure 5: Visualization of the attention weights of the model
with and without syntactic supervision for slot filling. L;
and A; stands for the ith Transformer layer and jth attention
head, respectively. The attention head inside the red-dotted
box is trained for dependency prediction.

Visualization of Attention Weights

We visualize the attention weights output by models trained
with and without syntactic information to understand what
the models have learned by incorporating syntactic informa-
tion. We select the utterance “show me the flights on ameri-
can airlines which go from st. petersburg to ontario califor-
nia by way of st. louis” from the ATIS testing set. Only the
model trained with syntactic information predicts the slot
labels correctly. As shown in Figure 5, the model without
syntactic information has simple attention patterns on both
layers, such as looking backward and looking forward. Other
attention heads seem to be random and less informative.

In contrast, the model with syntactic information has
more informative attention patterns. On the first layer, all
the attention heads present simple but diverse patterns. Be-
sides looking forward and backwards, the second attention
head looks at both directions for each token. On the sec-
ond layer, however, we observe more complex patterns and
long-distance attention which could account for more task-
oriented operations. Therefore, it is possible that the Trans-
former encoder learns attention weights better with syntactic
information supervision so that the encoder can leave more
power for the end task.

Related Work

Research on intent detection and slot filling emerged in the
1990s from the call classification systems (Gorin, Riccardi,
and Wright 1997) and the ATIS project (Price 1990). Early
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work has primarily focused on using a traditional machine
learning classifier such as CRFs (Haffner, Tur, and Wright
2003). Recently, there has been an increasing application of
neural models on NLU tasks. These approaches, primarily
based on RNNs, have shown that neural approaches outper-
form traditional models (Mesnil et al. 2014; Tur et al. 2012;
Zhang and Wang 2016; Goo et al. 2018; E et al. 2019). For
example, Mesnil et al (2015) employed RNNSs for slot filling
and found an 2.3% relative improvement of F1 compared to
CRF (Mesnil et al. 2014). Some works also explored Trans-
former encoder and graph LSTM-based neural architectures
(Chen, Zhuo, and Wang 2019; Zhang et al. 2020).

Syntactic information has been shown to be beneficial to
many tasks, such as neural machine translation (Akoury, Kr-
ishna, and Iyyer 2019), semantic role labeling (Strubell et al.
2018), and machine reading comprehension (Zhang et al.
2020). Research on NLU tasks has also shown that incorpo-
rating syntactic information into machine learning models
can help improve the performance. Moschitti et al. (2007)
used syntactic information for slot filling, where the authors
used a tree kernel function to encode the structural informa-
tion acquired by a syntactic parser. An extensive analysis on
the ATIS dataset revealed that most NLU errors are caused
by complex syntactic characteristics, such as prepositional
phrases and long distance dependencies (Tur, Hakkani-Tiir,
and Heck 2010). Tur et al. (2011) proposed a rule-based de-
pendency parsing based sentence simplification method to
augment the input utterances based on the syntactic struc-
ture. Compared to previous works, our work is the first to
encode syntactical knowledge into end-to-end neural mod-
els for intent detection and slot filling.

Conclusion

In this paper, we propose to encode syntactic knowledge into
the Transformer encoder-based model for intent detection
and slot filling. Experimental results indicate that a model
with only two Transformer encoder layers can already match
or even outperform the SOTA performance on two bench-
mark datasets. Moreover, we show that the performance of
this baseline model can be further improved by incorpo-
rating syntactical supervision. The visualization of the at-
tention weights also reveals that syntactical supervision can
help the model to better learn syntactically-related patterns.
For future work, we will evaluate our approach with larger
model sizes on larger scale datasets containing more syntac-
tically complex utterances. Furthermore, we will investigate
incorporating syntactic knowledge into models pretrained
by self-supervision and applying those models on the NLU
tasks.
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Appendix A

Below lists examples of the intent detection errors made
by the model without syntactic information that are related



to one specific grammar pattern between prepositions and
nouns.

* cleveland to kansas city arrive monday before 3 pm
* kansas city to atlanta monday morning flights

* new york city to las vegas and memphis to las vegas on
Sunday

Below lists examples of the slot filling errors made by
the model without syntactic information that contain POS
confusion.

* cleveland to kansas city arrive monday before 3 pm

* new york city to las vegas and memphis to las vegas on
Sunday

* baltimore to kansas city economy

The Transformer encoder-based model without syntac-
tic information made mistakes on all these utterances. The
model trained with POS tagging and the model trained with
both POS tagging and dependency prediction fail on the last
utterance in the list below. The model trained with depen-
dency prediction does not make any mistakes on all these ut-
terances. We underline the words that are assigned to wrong
slots by the model without syntactic information.

* book areservation for velma an a and rebecca for an amer-
ican pizzeria at (correct: B — TimeRange; prediction:
B — RestaurantName) 5 Am in MA

* Where is Belgium located (correct: Other; prediction:
B — Patial Relation)

¢ May(correct: Other; prediction: B—TimeRange) I have
the movie schedules for Speakeasy Theaters
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