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Abstract

Explaining the predictions of AI models is paramount
in safety-critical applications, such as in legal or med-
ical domains. One form of explanation for a prediction
is an extractive rationale, i.e., a subset of features of an
instance that lead the model to give its prediction on the
instance. Previous works on generating extractive ratio-
nales usually employ a two-phase model: a selector that
selects the most important features (i.e., the rationale)
followed by a predictor that makes the prediction based
exclusively on the selected features. One disadvantage
of these works is that the main signal for learning to
select features comes from the comparison of the an-
swers given by the predictor and the ground-truth an-
swers. In this work, we propose to squeeze more infor-
mation from the predictor via an information calibration
method. More precisely, we train two models jointly:
one is a typical neural model that solves the task at hand
in an accurate but black-box manner, and the other is
a selector-predictor model that additionally produces a
rationale for its prediction. The first model is used as a
guide to the second model. We use an adversarial-based
technique to calibrate the information extracted by the
two models such that the difference between them is an
indicator of the missed or over-selected features. In ad-
dition, for natural language tasks, we propose to use a
language-model-based regularizer to encourage the ex-
traction of fluent rationales. Experimental results on a
sentiment analysis task as well as on three tasks from
the legal domain show the effectiveness of our approach
to rationale extraction.

1 Introduction
Although deep neural networks have recently been con-
tributing to state-of-the-art advances in various areas
(Krizhevsky, Sutskever, and Hinton 2017; Hinton et al.
2012; Sutskever, Vinyals, and Le 2014), such black-box
models may not be deemed reliable in situations where
safety needs to be guaranteed, such as legal judgment pre-
diction and medical diagnosis. Interpretable deep neural net-
works are a promising way to increase the reliability of neu-
ral models (Sabour, Frosst, and Hinton 2017). To this end,
extractive rationales, i.e., subsets of features of instances on
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Figure 1: A sample rationale in legal judgement prediction.
The human-provided rationale is shown in bold in Sample 1.
In Sample 2, the selector missed the key information “he
stole a VIVO X9”, but the predictor only tells the selector
that the whole extracted rationale (in bold) is not so infor-
mative, by producing a low probability of the correct crime.

which models rely for their predictions on the instances, can
be used as evidence for humans to decide whether or not to
trust a predicted result and, more generally, to trust a model.

Previous works mainly use selector-predictor types of
neural models to provide extractive rationales, i.e., models
composed of two modules: (i) a selector that selects a subset
of important features, and (ii) a predictor that makes a pre-
diction based solely on the selected features. For example,
Yoon, Jordon, and van der Schaar (2018) and Lei, Barzilay,
and Jaakkola (2016) use a selector network to calculate a se-
lection probability for each token in a sequence, then sample
a set of tokens that is exclusively passed to the predictor.

An additional typical desideratum in natural language
processing (NLP) tasks is that the selected tokens form a
semantically fluent rationale. To achieve this, Lei, Barzilay,
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and Jaakkola (2016) added a non-differential regularizer that
encourages any two adjacent tokens to be simultaneously se-
lected or unselected. Bastings, Aziz, and Titov (2019) fur-
ther improved the quality of the rationales by using a Hard
Kuma regularizer that also encourages any two adjacent to-
kens to be selected or unselected together.

One drawback of previous works is that the learning sig-
nal for both the selector and the predictor comes mainly
from comparing the prediction of the selector-predictor
model with the ground-truth answer. Therefore, the explo-
ration space to get to the correct rationale is large, decreas-
ing the chances of converging to the optimal rationales and
predictions. Moreover, in NLP applications, the regularizers
commonly used for achieving fluency of rationales treat all
adjacent token pairs in the same way. This often leads to the
selection of unnecessary tokens due to their adjacency to in-
formative ones.

In this work, we first propose an alternative method to ra-
tionalize the predictions of a neural model. Our method aims
to squeeze more information from the predictor in order to
guide the selector in selecting the rationales. Our method
trains two models: a “guider” model that solves the task at
hand in an accurate but black-box manner, and a selector-
predictor model that solves the task while also providing
rationales. We use an adversarial-based method to encour-
age the final information vectors generated by the two mod-
els to encode the same information. We use an information
bottleneck technique in two places: (i) to encourage the fea-
tures selected by the selector to be the least-but-enough fea-
tures, and (ii) to encourage the final information vector of the
guider model to also contain the least-but-enough informa-
tion for the prediction. Secondly, we propose using language
models as regularizers for rationales in natural language un-
derstanding tasks. A language model (LM) regularizer en-
courages rationales to be fluent subphrases, which means
that the rationales are formed by consecutive tokens while
avoiding unnecessary tokens to be selected simply due to
their adjacency to informative tokens. The effectiveness of
our LM-based regularizer is proved by both mathematical
derivation and experiments. All the further details are given
in the Appendix of the extended (ArXiv) paper.

Our contributions are briefly summarized as follows:

• We introduce an adversarial approach to rationale extrac-
tion for neural predictions, which calibrates the informa-
tion between a guider and a selector-predictor model, such
that the selector-predictor model learns to mimic a typical
neural model while additionally providing rationales.

• We propose a language-model-based regularizer to en-
courage the sampled tokens to form fluent rationales.

• We experimentally evaluate our method on a sentiment
analysis dataset with ground-truth rationale annotations,
and on three tasks of a legal judgement prediction dataset,
for which we conducted human evaluations of the ex-
tracted rationales. The results show that our method im-
proves over the previous state-of-the-art models in preci-
sion and recall of rationale extraction without sacrificing
the prediction performance.

2 Approach
Our approach is composed of a selector-predictor architec-
ture, in which we use an information bottleneck technique
to restrict the number of selected features, and a guider
model, for which we again use the information bottleneck
technique to restrict the information in the final feature vec-
tor. Then, we use an adversarial method to make the guider
model guide the selector to select least-but-enough features.
Finally, we use an LM regularizer to make the selected ra-
tionale semantically fluent.

2.1 InfoCal: Selector-Predictor-Guider with
Information Bottleneck

The high-level architecture of our model, called InfoCal, is
shown in Fig. 2. Below, we detail each of its components.

Selector. For a given instance (x, y), x is the input with n
features x = (x1, x2, . . . , xn), and y is the ground-truth cor-
responding label. The selector network Sel(z̃sym|x) takes x
as input and outputs p(z̃sym|x), which is a sequence of proba-
bilities (pi)i=1,...,n representing the probability of choosing
each feature xi as part of the rationale.

Given the sampling probabilities, a subset of features is
sampled using the Gumbel softmax (Jang, Gu, and Poole
2016), which provides a differentiable sampling process:

ui ∼ U(0, 1), gi = − log(− log(ui)) (1)

mi =
exp((log(pi) + gi)/τ)∑
j exp((log(pj) + gj)/τ)

, (2)

where U(0, 1) represents the uniform distribution between 0
and 1, and τ is a temperature hyperparameter. Hence, we ob-
tain the sampled mask mi for each feature xi, and the vector
symbolizing the rationale z̃sym = (m1x1, . . . ,mnxn). Thus,
z̃sym is the sequence of discrete selected symbolic features
forming the rationale.

Predictor. The predictor takes as input the rationale z̃sym
given by the selector, and outputs the prediction ŷsp. In the
selector-predictor part of InfoCal, the input to the predic-
tor is the multiplication of each feature xi with the sampled
mask mi. The predictor first calculates a dense feature vec-
tor z̃nero,1 then uses one feed-forward layer and a softmax
layer to calculate the probability distribution over the possi-
ble predictions:

z̃nero = Pred(z̃sym) (3)
p(ŷsp|z̃sym) = Softmax(Wpz̃nero + bp). (4)

As the input is masked bymi, the prediction ŷsp is made ex-
clusively based on the features selected by the selector. The
loss of the selector-predictor model is the cross-entropy loss:

Lsp = − 1

K

∑
k

log p(y(k)
sp |x(k))

= − 1

K

∑
k

logE
Sel(̃z(k)sym |x(k))p(y

(k)
sp |z̃(k)sym)

≤ − 1

K

∑
k

E
Sel(̃z(k)sym |x(k)) log p(y

(k)
sp |z̃(k)sym),

(5)

1Here, “nero” stands for neural feature (i.e., a neural vector rep-
resentation) as opposed to a symbolic input feature.
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Figure 2: Architecture of InfoCal: the grey round boxes
stand for the losses, and the red arrows indicate the data re-
quired for the calculation of losses. FFL is an abbreviation
for feed-forward layer.

where K represents the size of the training set, the super-
script (k) denotes the k-th instance in the training set, and
the inequality follows from Jensen’s inequality.

Guider. To guide the rationale selection of the selector-
predictor model, we train a guider model, denoted PredG,
which receives the full original input x and transforms it into
a dense feature vector znero, using the same predictor archi-
tecture but different weights, as shown in Fig. 2. We generate
the dense feature vector in a variational way, which means
that we first generate a Gaussian distribution according to
the input x, from which we sample a vector znero:

h = PredG(x), µ =Wmh+ bm, σ =Wsh+ bs (6)
u ∼ N (0, 1), znero = uσ + µ (7)
p(ŷguide|znero) = Softmax(Wpznero + bp). (8)

We use the reparameterization trick of Gaussian distribu-
tions to make the sampling process differentiable (Kingma
and Welling 2013). Note that we share the parameters Wp

and bp with those in Eq. 4.
The guider model’s loss Lguide is as follows:

Lguide = −
1

K

∑
k

log p(y
(k)
guide|x

(k))

≤ − 1

K

∑
k

Ep(znero|x(k)) log p(y
(k)
guide|z

(k)
nero),

(9)

where the inequality again follows from Jensen’s inequality.
The guider and the selector-predictor are trained jointly.

Information Bottleneck. To guide the model to select
the least-but-enough information, we employ an information
bottleneck technique (Li and Eisner 2019). We aim to mini-
mize I(x, z̃sym)−I(z̃sym, y)

2, where the former term encour-
ages the selection of few features, and the latter term encour-
ages the selection of the necessary features. As I(z̃sym, y) is
implemented by Lsp (the proof is given in Appendix A.1 in

2I(a, b) =
∫
a

∫
b
p(a, b) log p(a,b)

p(a)p(b)
=Ea,b[

p(a|b)
p(a)

] denotes the
mutual information between the variables a and b.

the extended paper), we only need to minimize the mutual
information I(x, z̃sym):

I(x, z̃sym) = Ex,̃zsym

[
log

p(z̃sym|x)
p(z̃sym)

]
. (10)

However, there is a time-consuming term p(z̃sym) =∑
x p(z̃sym|x)p(x), which needs to be calculated by a loop

over all the instances x in the training set. Inspired by Li
and Eisner (2019), we replace this term with a variational
distribution rφ(z) and obtain an upper bound of Eq. 10:

I(x, z̃sym) ≤ Ex,̃zsym

[
log

p(z̃sym|x)
rφ(z)

]
. Since z̃sym is a sequence

of binary-selected features, we sum up the mutual informa-
tion term of each element of z̃sym as the information bottle-
neck loss:

Lib =
∑
i

∑
z̃i

p(z̃i|x) log
p(z̃i|x)
rφ(zi)

, (11)

where z̃i represents whether to select the i-th feature: 1 for
selected, 0 for not selected.

To encourage znero to contain the least-but-enough in-
formation in the guider model, we again use the informa-
tion bottleneck technique. Here, we minimize I(x, znero) −
I(znero, y). Again, I(znero, y) can be implemented by Lguide.
Due to the fact that znero is sampled from a Gaussian dis-
tribution, the mutual information has a closed-form upper
bound:

Lmi = I(x, znero) ≤ Eznero

[
log

p(znero|x)
p(znero)

]
=

= 0.5(µ2 + σ2 − 1− 2 log σ).

(12)

The derivation is in Appendix A.2 in the extended paper.

2.2 Calibrating Key Features via Adversarial
Training

We would like to tell the selector what kind of information
is still missing or has been wrongly selected. Since we al-
ready use the information bottleneck principal to encourage
znero to encode the information from the least-but-enough
features, if we also require z̃nero and znero to encode the same
information, then we would encourage the selector to se-
lect the least-but-enough discrete features. To achieve this,
we use an adversarial-based training method. Thus, we em-
ploy an additional discriminator neural module, called D,
which takes as input either z̃nero or znero and outputs 0 or
1, respectively. The discriminator can be any differentiable
neural network. The generator in our model is formed by
the selector-predictor that outputs z̃nero. The losses associ-
ated with the generator and discriminator are:

Ld = − logD(znero) + logD(z̃nero) (13)
Lg = − logD(z̃nero). (14)

2.3 Regularizing Rationales with Language
Models

For NLP tasks, it is often desirable that a rationale is formed
of fluent subphrases (Lei, Barzilay, and Jaakkola 2016). To

13773



this end, previous works propose regularizers that bind the
adjacent tokens to make them be simultaneously sampled or
not. For example, Lei, Barzilay, and Jaakkola (2016) pro-
posed a non-differentiable regularizer trained using REIN-
FORCE (Williams 1992). To make the method differen-
tiable, Bastings, Aziz, and Titov (2019) applied the Kuma-
distribution to the regularizer. However, they treat all pairs
of adjacent tokens in the same way, although some adjacent
tokens have more priority to be bound than others, such as
“He stole” or “the victim” rather than “. He” or “) in” in
Fig. 1.

We propose a novel differentiable regularizer for extrac-
tive rationales that is based on a pre-trained language model,
thus encouraging both consecutiveness and fluency of tokens
in the extracted rationale. The LM-based regularizer is im-
plemented as follows:

Llm = −
∑
i

mi−1 log plm(mixi|x<i), (15)

where the mi’s are the masks obtained in Eq. 2. Note that
non-selected tokens are masked instead of deleted in this
regularizer. The language model can have any architecture.

First, we note that Llm is differentiable. Secondly, the fol-
lowing theorem guarantees thatLlm encourages consecutive-
ness of selected tokens.

Theorem 1. If the following is satisfied for all i, j:

• m′i < ε� 1− ε < mi, 0 < ε < 1, and
•
∣∣p(m′ixi|x<i)− p(m′jxj |x<j)∣∣ < ε,

then the following two inequalities hold:
(1) Llm(. . . ,mk, . . . ,m

′
n) < Llm(. . . ,m

′
k, . . . ,mn).

(2) Llm(m1, . . . ,m
′
k, . . .) > Llm(m

′
1, . . . ,mk, . . .).

The theorem says that for the same number of selected
tokens, if they are consecutive, then they will get a lower
Llm value. Its proof is given in Appendix A.3 in the extended
paper. The pre-training procedure of the language model is
shown in Appendix C in the extended paper.

2.4 Training and Inference
The total loss function of our model, which takes the gen-
erator’s role in adversarial training, is shown in Eq. 17. The
adversarial-related losses are denoted by Ladv. The discrim-
inator is trained by Ld from Eq. 13.

Ladv = λgLg + Lguide + λmiLmi (16)
Jtotal = Lsp + λibLib + Ladv + λlmLlm, (17)

where λib, λg, λmi, and λlm are hyperparameters.
At training time, we optimize the generator loss Jtotal

and discriminator loss Ld alternately until convergence.
The detailed algorithm for training is given in Appendix
D in the extended paper. At inference time, we run the
selector-predictor model to obtain the prediction and the ra-
tionale z̃sym.

3 Experiments
We performed experiments on two NLP applications: multi-
aspect sentiment analysis and legal judgement prediction.

Figure 3: MSE of all aspects of BeerAdvocate. The blue
dashed line represents the full-text baseline (all tokens are
selected).

Figure 4: The precision (left) and recall (right) for rationales
on the smell aspect of the BeerAdvocate test set.

3.1 Beer Reviews
Data. To provide a quantitative analysis for the extracted
rationales, we use the BeerAdvocate3 dataset (McAuley,
Leskovec, and Jurafsky 2012). This dataset contains in-
stances of human-written multi-aspect reviews on beers.
Similarly to Lei, Barzilay, and Jaakkola (2016), we consider
the following three aspects: appearance, smell, and palate.
McAuley, Leskovec, and Jurafsky (2012) provide manually
annotated rationales for 994 reviews for all aspects, which
we use as test set. The detailed data preprocessing and ex-
perimental settings are given in Appendix B in the extended
paper.

Evaluation Metrics and Baselines. For the evaluation of
the selected tokens as rationales, we use precision, recall,
and F1-score. Typically, precision is defined as the per-
centage of selected tokens that also belong to the human-
annotated rationale. Recall is the percentage of human-
annotated rationale tokens that are selected by our model.
The predictions made by the selected rationale tokens are
evaluated using the mean-square error (MSE).

We compare our method with the following baselines:

• Attention (Lei, Barzilay, and Jaakkola 2016): This method
calculates attention scores over the tokens and selects top-
k percent tokens as the rationale.

• Bernoulli (Lei, Barzilay, and Jaakkola 2016): This method
uses a selector network to calculate a Bernoulli distribu-
tion for each token, and then samples the tokens from the

3https://www.beeradvocate.com/
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Method Appearance Smell Palate
P R F % selected P R F % selected P R F % selected

Attention 80.6 35.6 49.4 13 88.4 20.6 33.4 7 65.3 35.8 46.2 7
Bernoulli 96.3 56.5 71.2 14 95.1 38.2 54.5 7 80.2 53.6 64.3 7
HardKuma 98.1 65.1 78.3 13 96.8 31.5 47.5 7 89.8 48.6 63.1 7
InfoCal 98.5 73.2 84.0 13 95.6 45.6 61.7 7 89.6 59.8 71.7 7
InfoCal(HK) 97.9 71.7 82.8 13 94.8 42.3 58.5 7 89.4 56.9 69.5 7
InfoCal−Ladv 97.3 67.8 79.9 13 94.3 34.5 50.5 7 89.6 51.2 65.2 7
InfoCal−Llm 79.8 54.9 65.0 13 87.1 32.3 47.1 7 83.1 47.4 60.4 7

Table 1: Precision, recall, and F1-score of selected rationales for the three aspects of BeerAdvocate. In bold, the best perfor-
mance. “% selected” means the average percentage of tokens selected out of the total number of tokens per instance.

distributions as the rationale.
• HardKuma (Bastings, Aziz, and Titov 2019): This method

replaces the Bernoulli distribution by a Kuma distribution
to facilitate differentiability.

The details of the choice of neural architecture for each
module of our model, as well as the training setup are given
in Appendix B in the extended paper.

Results. The rationale extraction performances are shown
in Table 1. The precision values for the baselines are directly
taken from (Bastings, Aziz, and Titov 2019). We use their
source code for the Bernoulli4 and HardKuma5 baselines.
We trained these baseline for 50 epochs and selected the
models with the best recall on the dev set when the preci-
sion was equal or larger than the reported dev precision. For
fair comparison, we used the same stopping criteria for Info-
Cal (for which we fixed a threshold for the precision at 2%
lower than the previous state-of-the-art).

We also conducted ablation studies: (1) we removed
the adversarial loss and report the results in the line
InfoCal−Ladv, and (2) we removed the LM regularizer and
report the results in the line InfoCal−Llm.

In Table 1, we see that, although Bernoulli and HardKuma
achieve very high precisions, their recall scores are signifi-
cantly low. In comparison, our method InfoCal significantly
outperforms the previous methods in the recall scores for all
the three aspects of the BeerAdvocate dataset (we performed
Student’s t-test, p < 0.01). Also, all the three F-scores of In-
foCal are a new state-of-the-art performance.

In the ablation studies, we see that when we remove
the adversarial information calibrating structure, namely, for
InfoCal−Ladv, the recall scores decrease significantly in all
the three aspects. This shows that our guider model is critical
for the increased performance. Moreover, when we remove
the LM regularizer, we find a significant drop in both preci-
sion and recall, in the line InfoCal−Llm. This highlights the
importance of semantical fluency of rationales, which are
encouraged by our LM regularizer.

We also replace the LM regularizer with the regularizer
used in the HardKuma method with all the other parts of
the model unchanged, denoted InfoCal(HK) in Table 1. We
found that the recall and F-score of InfoCal outperforms In-

4https://github.com/taolei87/rcnn
5https://github.com/bastings/interpretable predictions

foCal(HK), which shows the effectiveness of our LM regu-
larizer.

We further show the relation between a model’s perfor-
mance on predicting the final answer and the rationale se-
lection percentage (which is determined by the model) in
Fig. 3, as well as the relation between precision/recall and
training epochs in Fig. 4. The rationale selection percentage
is influenced by λib. According to Fig. 3, our method In-
foCal achieves a similar prediction performance compared
to previous works, and does slightly better than HardKuma
for some selection percentages. Fig. 4 shows the changes in
precision and recall with training epochs. We can see that
our model achieves a similar precision after several train-
ing epochs, while significantly outperforming the previous
methods in recall, which proves the effectiveness of our pro-
posed method.

3.2 Legal Judgement Prediction
Datasets and Preprocessing. We use the CAIL2018 data-
set6 (Zhong et al. 2018) for three tasks on legal judgment
prediction. The dataset consists of criminal cases published
by the Supreme People’s Court of China.7 To be consistent
with previous works, we used two versions of CAIL2018,
namely, CAIL-small (the exercise stage data) and CAIL-big
(the first stage data).

The instances in CAIL2018 consist of a fact descrip-
tion and three kinds of annotations: applicable law articles,
charges, and the penalty terms. Therefore, our three tasks on
this dataset consist of predicting (1) law articles, (2) charges,
and (3) terms of penalty according to the given fact descrip-
tion. The detailed experimental settings are given in Ap-
pendix B in the extended paper.

Overall Performance. We again compare our method
with the Bernoulli (Lei, Barzilay, and Jaakkola 2016) and
the HardKuma (Bastings, Aziz, and Titov 2019) methods on
rationale extraction. These two methods are both single-task
models, which means that we train a model separately for
each task. We also compare our method with three multi-
task methods listed as follows:

• FLA (Luo et al. 2017) uses an attention mechanism to

6https://cail.oss-cn-qingdao.aliyuncs.com/CAIL2018 ALL
DATA.zip

7http://cail.cipsc.org.cn/index.html
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Small Tasks Law Articles Charges Terms of Penalty

Metrics Acc MP MR F1 %S Acc MP MR F1 %S Acc MP MR F1 %S

Single

Bernoulli 0.812 0.726 0.765 0.756 100 0.810 0.788 0.760 0.777 100 0.331 0.323 0.297 0.306 100
Bernoulli 0.755 0.701 0.737 0.728 14 0.761 0.753 0.739 0.754 14 0.323 0.308 0.265 0.278 30
HardKuma 0.807 0.704 0.757 0.739 100 0.811 0.776 0.763 0.776 100 0.345 0.355 0.307 0.319 100
HardKuma 0.783 0.706 0.735 0.729 14 0.778 0.757 0.714 0.736 14 0.340 0.328 0.296 0.309 30
InfoCal 0.834 0.744 0.776 0.786 14 0.849 0.817 0.798 0.813 14 0.358 0.372 0.335 0.337 30
InfoCal−Ladv 0.826 0.739 0.774 0.777 14 0.845 0.804 0.781 0.797 14 0.351 0.374 0.329 0.330 30
InfoCal−Ladv−Lib 0.841 0.759 0.785 0.793 100 0.850 0.820 0.801 0.814 100 0.368 0.378 0.341 0.346 100
InfoCal−Llm 0.822 0.723 0.768 0.773 14 0.843 0.796 0.770 0.772 14 0.347 0.361 0.318 0.320 30

Multi
FLA 0.803 0.724 0.720 0.714 − 0.767 0.758 0.738 0.732 − 0.371 0.310 0.300 0.299 −
TOPJUDGE 0.872 0.819 0.808 0.800 − 0.871 0.864 0.851 0.846 − 0.380 0.350 0.353 0.346 −
MPBFN-WCA 0.883 0.832 0.824 0.822 − 0.887 0.875 0.857 0.859 − 0.414 0.406 0.369 0.392 −

Big Tasks Law Articles Charges Terms of Penalty

Metrics Acc MP MR F1 %S Acc MP MR F1 %S Acc MP MR F1 %S

Single

Bernoulli 0.876 0.636 0.388 0.625 100 0.857 0.643 0.410 0.569 100 0.509 0.511 0.304 0.312 100
Bernoulli 0.857 0.632 0.374 0.621 14 0.848 0.635 0.402 0.543 14 0.496 0.505 0.289 0.306 30
HardKuma 0.907 0.664 0.397 0.627 100 0.907 0.689 0.438 0.608 100 0.555 0.547 0.335 0.356 100
HardKuma 0.876 0.645 0.384 0.609 14 0.892 0.676 0.425 0.587 14 0.534 0.535 0.310 0.334 30
InfoCal 0.956 0.852 0.742 0.805 20 0.955 0.868 0.788 0.820 20 0.556 0.519 0.362 0.372 30
InfoCal−Ladv 0.953 0.844 0.711 0.782 20 0.954 0.857 0.772 0.806 20 0.552 0.490 0.353 0.356 30
InfoCal−Ladv−Lib 0.959 0.862 0.751 0.791 100 0.957 0.878 0.776 0.807 100 0.584 0.519 0.411 0.427 30
InfoCal−Llm 0.953 0.851 0.730 0.775 20 0.950 0.857 0.756 0.789 20 0.563 0.486 0.374 0.367 30

Multi
FLA 0.942 0.763 0.695 0.746 − 0.931 0.798 0.747 0.780 − 0.531 0.437 0.331 0.370 −
TOPJUDGE 0.963 0.870 0.778 0.802 − 0.960 0.906 0.824 0.853 − 0.569 0.480 0.398 0.426 −
MPBFN-WCA 0.978 0.872 0.789 0.820 − 0.977 0.914 0.836 0.867 − 0.604 0.534 0.430 0.464 −

Table 2: The overall performance on the CAIL2018 dataset (Small and Big). The results from previous works are directly quoted
from Yang et al. (2019), because we share the same experimental settings, and hence we can make direct comparisons. %S rep-
resents the selection percentage (which is determined by the model). “Single” represents single-task models, “Multi” represents
multi-task models. The best performance is in bold. The red numbers mean that they are less than the best performance by no
more than 0.01. The underlined numbers are the state-of-the-art performances, all of which are obtained by multi-task models.

capture the interaction between fact descriptions and ap-
plicable law articles.

• TOPJUDGE (Zhong et al. 2018) uses a topological archi-
tecture to link different legal prediction tasks together, in-
cluding the prediction of law articles, charges, and terms
of penalty.

• MPBFN-WCA (Yang et al. 2019) uses a backward verifi-
cation to verify upstream tasks given the results of down-
stream tasks.

The results are listed in Table 2.
On CAIL-small, we observe that it is more difficult for

the single-task models to outperform multi-task methods.
This is likely due to the fact that the tasks are related, and
learning them together can help a model to achieve better
performance on each task separately. After removing the re-
striction of the information bottleneck, InfoCal−Ladv−Lib
achieves the best performance in all tasks, however, it selects
all the tokens in the review. When we restrict the number of
selected tokens to 14% (by tuning the hyperparameter λib),
InfoCal (in red) only slightly drops in all evaluation met-
rics, and it already outperforms Bernoulli and HardKuma,
even if they have used all tokens. This means that the 14%
selected tokens are very important to the predictions. We
observe a similar phenomenon for CAIL-big. Specifically,
InfoCal outperforms InfoCal−Ladv−Lib in some evaluation
metrics, such as the F1-score of law article prediction and
charge prediction tasks.

Rationales. The CAIL2018 dataset does not contain anno-
tations of rationales. Therefore, we conducted human evalu-
ation for the extracted rationales. Due to limited budget and
resources, we sampled 300 examples for each task. We ran-
domly shuffled the rationales for each task and asked six
undergraduate students from Peking University to evaluate
them. The human evaluation is based on three metrics: use-
fulness (U), completeness (C), and fluency (F); each scored
from 1 (lowest) to 5. The scoring standard for human anno-
tators is given in Appendix E in the extended paper.

The human evaluation results are shown in Table 3. We
can see that our proposed method outperforms previous
methods in all metrics. Our inter-rater agreement is accept-
able by Krippendorff’s rule (2004), which is shown in Ta-
ble 3.

A sample case of extracted rationales in legal judgement
is shown in Fig. 5. We observe that our method selects all
the useful information for the charge prediction task, and
the selected rationales are formed of continuous and fluent
sub-phrases.

4 Related Work
Explainability is currently a key bottleneck of deep-lear-
ning-based approaches. The model proposed in this work be-
longs to the class of self-explanatory models, which contain
an explainable structure in the model architecture, thus pro-
viding explanations for their predictions. Self-explanatory
models can use different types of explanations, such as
feature-based explanations (Lei, Barzilay, and Jaakkola
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Law Charges ToP
U C F U C F U C F

Bernoulli 4.71 2.46 3.45 3.67 2.35 3.45 3.35 2.76 3.55
HardKuma 4.65 3.21 3.78 4.01 3.26 3.44 3.84 2.97 3.76
InfoCal 4.72 3.78 4.02 4.65 3.89 4.23 4.21 3.43 3.97
α 0.81 0.79 0.83 0.92 0.85 0.87 0.82 0.83 0.94

Table 3: Human evaluation on the CAIL2018 dataset. “ToP”
is the abbreviation of “Terms of Penalty”. The metrics are:
usefulness (U), completeness (C), and fluency (F), each
scored from 1 to 5. Best performance is in bold. α repre-
sents Krippendorff’s alpha values.

The People’s Procuratorate of Yongshun County alleged that on 

January 11, 2014, the defendant Li XX and Peng XX (a separate case 

dealt with) forcibly had sexual relaEons with the vicEm Zou XX in a 

room of Xindu Hotel in Yongshun County . In this regard, the public 

prosecuEon agency cited the following evidence: capture history, 

household registraEon cerEficate, call list, descripEon of the 

situaEon; idenEficaEon transcripts; on-site inspecEon transcripts 

and on-site photos; physical evidence inspecEon reports and 

physical evidence idenEficaEon documents; witnesses Liu A, Liu B, 

TesEmony of Liu C, Zou XX, Du XX; confession and defense of 

defendant Li XX; audio-visual materials. The court held that the 

defendant Li XX used violence and verbal threats with others to 

forcibly have sexual relaEons with the vicEm Zou XX in the Xindu 

Hotel room in Yongshun County. His behavior has violated the Item 

(4) of the Criminal Law of the PRC, the facts of the crime are clear, 

and the evidence is reliable and sufficient, and the criminal 

responsibility should be invesEgated for the crime of × ×. In the joint 

crime, the defendant Li XX played the main role and was the 

principal offender…..

Figure 5: An example of extracted rationale for charge pre-
diction. The correct charge is “Rape”. The original fact de-
scription is in Chinese, we have translated it to English. It is
easy to see that the extracted rationales are very helpful in
making the charge prediction.

2016; Yoon, Jordon, and van der Schaar 2018; Chen et al.
2018; Yu et al. 2019; Carton, Mei, and Resnick 2018) and
natural language explanations (Hendricks et al. 2016; Cam-
buru et al. 2018; Park et al. 2018; Kim et al. 2018). Our
model uses feature-based explanations.

Self-explanatory models with feature-based explana-
tions can be further divided into two branches. The first
branch is formed of representation-interpretable approaches,
which map specific features into latent spaces and then
use the latent variables to control the outcomes of the
model, such as disentangling methods (Chen et al. 2016;
Sha and Lukasiewicz 2021), information bottleneck meth-
ods (Tishby, Pereira, and Bialek 2000), and constrained
generation (Sha 2020). The second branch consists of
architecture-interpretable models, such as attention-based
models (Zhang et al. 2018; Sha et al. 2016, 2018a,b; Liu
et al. 2018), neural Turing machines (Collier and Beel 2018;
Xia et al. 2017; Sha et al. 2020), capsule networks (Sabour,
Frosst, and Hinton 2017), and energy-based models (Grath-
wohl et al. 2019). Among them, attention-based models
have an important extension, that of sparse feature learning,

which implies learning to extract a subset of features that are
most informative for each example. Most of the sparse fea-
ture learning methods use a selector-predictor architecture.
Among them, L2X (Chen et al. 2018) and INVASE (Yoon,
Jordon, and van der Schaar 2018) make use of information
theories for feature selection, while CAR (Chang et al. 2019)
extracts useful features in a game-theoretic approach.

In addition, rationale extraction for NLP usually raises
one desideratum for the extracted subset of tokens: ra-
tionales need to be fluent subphrases instead of separate
tokens. To this end, Lei, Barzilay, and Jaakkola (2016)
proposed a non-differentiable regularizer to encourage se-
lected tokens to be consecutive, which can be optimized
by REINFORCE-style methods (Williams 1992). Bastings,
Aziz, and Titov (2019) proposed a differentiable regularizer
using the Hard Kumaraswamy distribution; however, this
still does not consider the difference in the importance of
different adjacent token pairs.

Our adversarial calibration method is inspired by distill-
ing methods (Hinton, Vinyals, and Dean 2015). Distilling
methods are usually applied to compress large models into
small models while keeping a comparable performance. For
example, TinyBERT (Jiao et al. 2019) is a distillation of
BERT (Devlin et al. 2019). Our method is different from dis-
tilling methods, because we calibrate the final feature vector
instead of the softmax prediction.

The information bottleneck (IB) theory is an important
basic theory of neural networks (Tishby, Pereira, and Bialek
2000). It originated in information theory and has been
widely used as a theoretical framework in analyzing deep
neural networks (Tishby and Zaslavsky 2015). For example,
Li and Eisner (2019) used IB to compress word embeddings
in order to make them contain only specialized information,
which leads to a much better performance in parsing tasks.

Adversarial methods, which had been widely applied in
image generation (Chen et al. 2016) and text generation (Yu
et al. 2017), usually have a discriminator and a generator.
The discriminator receives pairs of instances from the real
distribution and from the distribution generated by the gen-
erator, and it is trained to differentiate between the two. The
generator is trained to fool the discriminator (Goodfellow
et al. 2014). Our information calibration method generates
a dense feature vector using selected symbolic features, and
the discriminator is used for measuring the calibration ex-
tent.

5 Summary and Outlook
In this work, we proposed a novel method to extract ratio-
nales for neural predictions. Our method uses an adversarial-
based technique to make a selector-predictor model learn
from a guider model. In addition, we proposed a novel reg-
ularizer based on language models, which makes the ex-
tracted rationales semantically fluent. The experimental re-
sults showed that our method improves the selection of ra-
tionales by a large margin.

As future work, the main architecture of our model can
be directly applied to other domains, e.g., images or tabular
data. However, it remains an open question what would be a
good regularizer for these domains.
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