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Abstract

Real-life applications, heavily relying on machine lear-
ning, such as dialog systems, demand out-of-domain
detection methods. Intent classification models should
be equipped with a mechanism to distinguish seen in-
tents from unseen ones so that the dialog agent is ca-
pable of rejecting the latter and avoiding undesired be-
havior. However, despite increasing attention paid to the
task, the best practices for out-of-domain intent detec-
tion have not yet been fully established.
This paper conducts a thorough comparison of out-
of-domain intent detection methods. We prioritize the
methods, not requiring access to out-of-domain data
during training, gathering of which is extremely time-
and labor-consuming due to lexical and stylistic vari-
ation of user utterances. We evaluate multiple con-
textual encoders and methods, proven to be efficient,
on three standard datasets for intent classification, ex-
panded with out-of-domain utterances. Our main find-
ings show that fine-tuning Transformer-based encoders
on in-domain data leads to superior results. Maha-
lanobis distance, together with utterance representa-
tions, derived from Transformer-based encoders, out-
performs other methods by a wide margin (1-5% in
terms of AUROC) and establishes new state-of-the-art
results for all datasets.
The broader analysis shows that the reason for success
lies in the fact that the fine-tuned Transformer is ca-
pable of constructing homogeneous representations of
in-domain utterances, revealing geometrical disparity to
out of domain utterances. In turn, the Mahalanobis dis-
tance captures this disparity easily.

Introduction
The usability of dialog systems depends crucially on the ca-
pability of dialog agents to recognize user intents. Recently
deep classifiers have been widely used to recognize user in-
tents, leveraging efficient pre-training, and large amounts
of labeled data. However, the scope of annotated corpora
is inherently limited, leading to unsatisfactory results when
presented with unseen intents. Rather than trying to match
user utterances to a limited number of intent classes, dia-
log agents may be equipped with an auxiliary mechanism to
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distinguish between seen and unseen intents, i.e., to identify
out-of-domain (OOD) utterances. The OOD detection mech-
anism must handle unseen intents to prevent the erroneous
actions of dialog agents.

Multiple recent papers emphasize the increasing impor-
tance of OOD utterances detection caused by the spreading
integration of classification models to real-life applications
and dialog systems. Simultaneously, in the overwhelming
majority of papers, the task is approached in an unsupervised
way, see (Gangal et al. 2020; Larson et al. 2019; Zheng,
Chen, and Huang 2020). To this end, the primary approach
relies on a decision rule, which is defined to score each utter-
ance. The scores are further used to reject OOD utterances
or to subject to further processing in-domain (ID) ones. An
intuitive yet efficient decision rule determines a threshold
for softmax output probabilities, measuring the classifier’s
confidence. The less confident the classifier is, the higher are
the chances to reject the utterance. Other decision rules rely
on distance-based approaches to check whether an utterance
falls out of ID space.

With Transformer-based contextual encoders becoming
core to almost, if not all, Natural Language Processing
(NLP) methods, undoubtedly, their performance for intent
classification is well-studied. However, the performance of
Transformers in the OOD detection task so far has been lit-
tle explored. Hendrycks et al. (2020) provide evidence that
Transformers generalize well to unseen domains in senti-
ment classification and sentence pair modeling tasks, sug-
gesting that Transformers will perform better than previous
models for the task of OOD utterance detection, too. This
paper fills this gap in the evaluation of Transformers.

The key idea of this paper is to conduct a comprehensive
comparison of the performance of different contextual en-
coders in multiple settings. We adopt three dialog datasets
designed for the task of OOD intent detection along with
the current best practices and state-of-the-art methods for
the task. Although Transformers primarily outperform other
contextual encoders by a wide margin, they serve as espe-
cially useful embedders for the distance-based methods of
OOD detection. When fine-tuned on ID data, Transformers
form dense clusters of ID utterances, which are easy to lo-
cate with Mahalanobis distance.

To summarize, the key contributions of the paper are as
follows:
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1. We evaluate multiple contextual encoders and best
practices for OOD detection on three common datasets
for intent classification, expanded with out-of-domain
utterances;

2. We show that not only fine-tuning Transformers on ID
data consistently improves OOD detection, but also that
when combined with Mahalanobis distance, it estab-
lished new state-of-the-art results;

3. We discover that the fine-tuned Transformer is capable
of constructing homogeneous representations of ID ut-
terances, revealing geometrical disparity to OOD ones,
captured easily in turn by the Mahalanobis distance.

Related Work
Methods for OOD detection can be roughly grouped based
on whether they have access to OOD data and whether they
utilize ID labels.

Classification methods require access to OOD data for
supervision. Larson et al. (2019) use two supervised set-
tings: 1) binary classification, so that all ID classes are clas-
sified against OOD one, and 2) training an additional class
for OOD inputs. (Kamath, Jia, and Liang 2020) train an
additional model, a calibrator, which identifies inputs on
which the classifier errs, and rejects those inputs, for which
an error is likely. (Hendrycks, Mazeika, and Dietterich 2018)
utilize OOD data for outlier detection by training models to
increase entropy on OOD examples.

However, in real-life applications gathering and maintain-
ing OOD data is complicated by the lexical and stylistic vari-
ation of user utterances (Schuster et al. 2019). For this rea-
son, methods without OOD supervision gain more attention.

Outputs of the classifier, trained with the supervision of
ID classes, can be exploited as a score for OOD inputs. Max-
imum softmax probability (Hendrycks and Gimpel 2017) is
recognized as a strong baseline, when used with deep clas-
sifiers, improved further by introducing temperature scaling
(Liang, Li, and Srikant 2018). KL-divergence captures the
changes in prediction distributions learned for an ID class
by the classifier and detects the arbitrary guesses made for
OOD inputs (Yilmaz and Toraman 2020).

Generative methods use a natural ability of language
models and other generative models to estimate the likeli-
hood of the inputs (Nalisnick et al. 2018; Ren et al. 2019).
(Zheng, Chen, and Huang 2020) utilize ID inputs and unla-
beled data to generate pseudo-OOD utterances with a gen-
erative adversarial network, improving OOD detection on a
dialog dataset.

Distance-based methods treat distance estimation as an
OOD score: the further an input is from ID inputs, the higher
are the chances that it is OOD (Mandelbaum and Weinshall
2017; Gu, Akoglu, and Rinaldo 2019; Lee et al. 2018).

Other research direction include Bayesian estimation for
uncertanity derived from learned distributions over network
weights (Malinin and Gales 2018; Blundell et al. 2015), pro-
cessing of lexical features (Ghosal et al. 2018) and training
prototypical networks to define class prototypes for each ID
class (Tan et al. 2019).

Background
Let DID = {(x1,y1), . . . ,(xn,yn)} be a dataset, where xi is an
input utterance and yi ∈ ϒ is its class label. Than ϒ is the set
of seen, in-domain classes, and the total number of classes
is |ϒ| = N. Assume that ID utterances are drawn from the
distribution PID and that there exists an OOD distribution,
POOD, which differs from PID. Finally, suppose that a scoring
function maps an utterance x into a real number. The OOD
detector then accepts the ID utterances and rejects the OOD
utterances according to the decision rule in Eq. 1.

R(x) =
{

reject, if d(x)≥ θ

accept, otherwise
(1)

where θ is a threshold, d can be either independent from
y, otherwise model joint d(x,y) or conditional d(x|y) de-
pendence. Ideally, we want d(x) < d(x̂) for all x ∼ PIN ,
x̂∼ POOD.

Methods
We adopt several methods that do not rely on access to OOD
data and are shown to be effective for OOD detection in vi-
sion and natural language tasks. We exploit Maximum Soft-
max Probability (MSP) as a strong baseline (Hendrycks and
Gimpel 2017), Likelihood ratio (Gangal et al. 2020) as the
current state-of-the-art method for dialog data. We use Ma-
halanobis distance (De Maesschalck, Jouan-Rimbaud, and
Massart 2000), an advanced distance-based method, com-
puted in multiple ways. It is the most straightforward to
compute the Mahalanobis distance to the closest ID classes,
assuming that the ID labels are provided. If not, marginal
Mahalanobis distance allows computing the distance to the
ID data centroid.

Maximum Softmax Probability (MSP) requires a pre-
trained classifier f with a softmax output layer (Hendrycks
and Gimpel 2017). Let py(x) denote the probability, as-
signed by f , to the utterance x to belong to class y. The less
classifier is confident with its prediction, the higher is the
OOD score:

d(x) = 1−max
y∈ϒ

py(x). (2)

To prevent the classifier from becoming too confident in
its prediction, (Liang, Li, and Srikant 2018) introduce soft-
max temperature scaling at the test time: py(x) = e

zy
τ / ∑

y∈ϒ

e
zy
τ

, where zy denotes the logit for label y while τ denotes the
softmax temperature.

Likelihood Ratio (LLR) exploits two language models
(Gangal et al. 2020). One of them, L(x), is trained on source
data and aims to capture ID utterances’ semantics. The sec-
ond language model, Lbg, addressed as a background model,
is trained on corrupted with some noise source data and
aimed at learning the background statistics. The final score
is computed as follows in Eg. 3.

d(x) =− log
L(x)

Lbg(x)
, (3)

Mahalanobis distance is a way to determine the close-
ness of an utterance to a set of utterances belonging to the
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class c. Following (Lee et al. 2018), we define Mahalanobis
distance, serving as OOD score, as:

d(x) = min
c∈ϒ

(ψ(x)−µc)
T

Σ
−1(ψ(x)−µc), (4)

where ψ(x) is a vector representation of the utterance x, µc
is the centroid for a class c and Σ is the co-variance matrix.
The estimations of µc and Σ are defined by

µc =
1

Nc
∑

x∈Dc
in

ψ(x),

Σ =
1
N ∑

c∈ϒ

∑
x∈Dc

in

(ψ(x)−µc)(ψ(x)−µc)
T ,

where Dc
IN = {x|(x,y) ∈ Din, y = c}, N is the total number

of utterances, and Nc is the number of utterances belonging
to class c.

Datasets
To the best of our knowledge, we are the first to evaluate
OOD detection with three NLU datasets, consisting of both
ID and OOD utterances.

CLINC150 is an intent classification dataset, modeling a
real-life situation. Some utterances fall out of domains, cov-
ered by train data (Larson et al. 2019). The total number of
ID classes in CLINC150 is equal to 150. The OOD utter-
ances relate to actions not supported by existing ID intents.

ROSTD extends the English part of multilingual dialog
dataset with OOD utterances (Schuster et al. 2019; Gangal
et al. 2020). The hierarchical label structure of ROSTD al-
lows us to experiment with both a larger number of classes
(12) or “coarsened” classes (3). Following (Gangal et al.
2020), we experiment with both variants and refer to them
as ROSTD and ROSTD-COARSE. The OOD part consists
mainly of subjective, under-specified, or over-emotional ut-
terances that do not fall into ID classes.

SNIPS has no explicit ID/OOD split. The total number
of intents is 7. Following (Lin and Xu 2019) setup, we ran-
domly split all labels into ID and OOD parts. The ID part
covers about 75% of the whole dataset. We average the re-
sults of all splits.

Table 1 presents with dataset statistics.

Embeddings and Encoders
We evaluate three representation models, ranging from bag-
of-words, static pre-trained word embeddings up to contex-
tualized encoders.

CLINC150 ROSTD SNIPS

Number train IND 15K 30K 13K
Number val IND 3K 4K 0.7K
Number val OOD 0.1K 1.5K –
Number test IND 4.5K 8.6K 0.7K
Number test OOD 1K 3K –

Table 1: Dataset statistics

Bag-of-words. We use the bag-of-words model (Harris
1954), which shows stable performance due to its low vari-
ance.

Static word embeddings. We use GloVe (Pennington,
Socher, and Manning 2014) as inputs to a convolutional neu-
ral network (CNN) and long short-term memory (LSTM),
trained further with the supervision of ID data. The CNN
architecture follows one used in (Zheng, Chen, and Huang
2020). We use GloVe vectors as inputs to language models
needed for LLR. LSTM is used as an underlying model of
LLR, trained on ID data with language modeling objective.
We train the background model on the ID data with added
uniform noise. We find that 0.5 noise probability performs
the best.

Pre-trained Transformers. We utilize multiple BERT-
based models (Devlin et al. 2019), which are pre-trained
Transformers, trained with a self-supervised masked lan-
guage modeling objective. Additionally to BERT-base and
BERT-large, we use RoBERTa-base and RoBERTa-large
models (Liu et al. 2019). We use distilled versions of both
BERT and RoBERTa, DistillBERT and DistillRoBERTa
(Sanh et al. 2019).

Each CNN, LSTM, and Transformer model is used as a
classifier with the MSP method and as an embedder with
Mahalanobis distance. We follow the standard fine-tuning
procedure to fine-tune each model for three ID intent clas-
sification tasks. We tune hyper-parameters to maximize per-
formance on the validation set for each of the ID intent clas-
sification tasks. We perform our experiments with PyTorch1,
PyTorch Lightning and Hugging Face Transformers library
(Wolf et al. 2019).

Evaluation
The task of OOD detection is a binary classification task,
where OOD utterances should be distinguished from ID ut-
terances. In the unsupervised setting, a scoring function is
used to assign an OOD score.

AUROC, the area under the Receiver Operating Charac-
teristic, can be interpreted as the probability of randomly
sampled ID utterance having a lower OOD score than ran-
domly sampled OOD one.

AUPROOD, the area under Precision-Recall Curve, re-
quires taking OOD as the positive class. It is more suitable
for highly imbalanced data in comparison to AUROC.

FPR@X corresponds to False Positive Ratio with the de-
cision threshold is set to θ = sup{θ̃ ∈ R | TPR(θ̃) ≤ X}
where TPR ∈ [0,1] is a True Positive Rate. This metric also
requires selecting one class as positive. Different approaches
are used, e.g. Gangal, Arora, Einolghozati, and Gupta (2020)
treat the OOD class as positive one, while Zheng, Chen,
and Huang (2020) choose ID class. We report both metrics:
FPR@XID means that ID class is treated as positive, and
FPR@XOOD means the same for OOD class.

Two metrics, AUROC and AUPROOD are threshold-
independent. FPR@X requires picking a threshold.

1PyTorch version 1.4.0, PyTorch Lightning version 0.7.5, Hug-
ging Face Transformers version 2.8.0
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Dataset Model AUROC ↑ AUPROOD ↑ FPR@95OOD ↓ FPR@95ID ↓

CLINC150

BoW MSP 91.5±0.0 66.7±0.2 31.7±0.4 43.9±0.9
LSTM MSP 90.9±0.6 67.8±2.1 31.2±2.0 50.7±3.0
CNN MSP 94.1±0.6 80.8±2.1 26.4±4.0 24.4±2.8
CNN Maha 95.2±0.2 76.2±1.4 16.4±1.1 27.8±1.6

LLR 91.4±0.3 73.1±1.0 37.0±1.5 39.9±1.5
BERTbase Maha 97.3±0.1 88.6±1.0 10.9±0.7 12.5±1.1
BERTbase SNGP1 96.9±1.0 88.0±1.0 – –
RoBERTa MSP 97.1±0.6 91.2±1.3 11.6±2.4 12.5±2.2
RoBERTa Maha 98.4±0.1 94.5±0.5 6.8±0.8 7.3±1.1

ROSTD

BoW MSP 94.2±0.1 86.7±0.1 30.5±0.4 25.8±0.2
LSTM MSP 73.7±8.3 60.6±12.1 63.0±6.0 57.4±13.8
CNN MSP 95.2±1.2 88.2±2.8 22.2±6.3 32.5±6.0
CNN Maha 98.1±0.2 93.3±0.7 7.6±1.5 7.8±1.3

LLR 97.7±0.2 95.6±0.3 12.3±1.7 9.3±1.0
RoBERTa MSP 99.3±0.2 98.2±0.4 2.2±0.8 1.8±0.9
RoBERTa Maha 99.8±0.1 99.5±0.3 0.5±0.4 1.0±0.5

ROSTD-coarse

BoW MSP 98.0±0.1 96.0±0.1 7.8±0.7 6.6±0.2
LSTM MSP 86.3±7.8 80.2±10.6 52.7±13.5 32.0±15.3
CNN MSP 97.0±0.8 94.7±1.3 19.8±8.1 10.4±2.7
CNN Maha 99.0±0.2 97.5±0.4 4.5±1.1 4.6±0.8

LLR 97.7±0.2 95.5±0.4 12.5±1.4 9.1±0.9
RoBERTa MSP 99.2±0.5 98.8±0.5 0.6±0.5 1.7±0.9
RoBERTa Maha 99.8±0.1 99.6±0.1 0.2±0.1 0.7±0.4

SNIPS 75

BoW MSP 92.4±2.0 76.9±6.8 30.7±4.3 41.6±6.3
LSTM MSP 81.7±10.9 59.6±15.3 49.9±24.7 59.0±15.3
CNN MSP 93.7±2.3 78.7±9.1 24.4±9.1 20.2±8.8
CNN Maha 87.1±9.4 75.4±12.6 49.3±33.6 37.8±18.7

LLR 83.5±5.2 61.3±12.9 65.1±16.0 58.1±9.0
RoBERTa MSP 95.3±2.8 85.7±5.6 25.5±22.3 18.2±9.1
RoBERTa Maha 97.6±1.9 92.9±5.4 12.3±10.3 11.2±10.5

Table 2: Comparison of OOD detection performance. Each result is an average of 10 runs. ↑ – greater
is better, ↓ – lower is better

Out-of-Domain Detection
Transformers With Mahalanobis Distance are
Better at OOD Detection Than Other Models
Table 2 presents with the results of experiments. On all
datasets, RoBERTa equipped with the Mahalanobis dis-
tance outperforms baselines, and other methods, including
RoBERTa with the MSP score. Advantages are even more
evident for CLINC150, which is less lexically and syntacti-
cally diverse and challenging.

On the CLINC150 dataset, Mahalanbois distance com-
bined with Transformer-based embeddings outperforms re-
cently proposed BERT SNGP (Spectral-normalized Neural
Gaussian) (Liu et al. 2020). In order to make a fair compar-
ison, we show the performance of the BERTbase Maha.

LSTM with MSP performs at the baseline level and is
outperformed with CNN with MSP, followed by the previ-
ously established state-of-the-art method, LLR (Gangal et al.
2020). In turn, it does not cope well with CLINC150 and

1Results are adopted from (Liu et al. 2020)

SNIPS and is slightly outperformed by CNN with Maha-
lanobis distance. LLR might be challenging to apply, as the
background model can still learn semantics from the data,
even though it is trained on the noisy inputs. There is a high
variance in the background model training due to the exten-
sive vocabulary size.

The Mahalanobis distance and its variants depend pri-
marily on the embeddings learned by a model. All mod-
els equipped with MSP were fine-tuned using cross-entropy
loss for intent classification. The Table 2 confirms that such
fine-tuning does not always help the models generate infor-
mative embeddings. CNN with the Mahalanobis distance
shows moderate performance on the ROSTD dataset and
its coarse version. However, performance severely drops on
more challenging datasets.

Semantically Close ID and OOD Classes are Often
Confused
RoBERTa with the Mahalanobis distance score is affected
by multiple factors, such as annotation issues and confusion
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RoBERTa CNN
CLINC150 ROSTD SNIPS CLINC150 ROSTD SNIPS

Pairwise similarity
between centroids 0±0.08 −0.05±0.13 −0.16±0.12 0.35±0.11 0.24±0.09 0.15±0.02

Centroid length 19.75±0.23 18.09±0.36 18.57±0.64 23.07±1.38 19.12±1.11 18.29±1.08
Similarity between ID
instances and centroids 0.96±0.11 0.95±0.08 0.98±0.04 0.92±0.08 0.96±0.44 0.99±0.05

Table 3: Descriptive statistics of embedding space. Both spaces are derived from fine-tuned models with ID supervision. We
show statistics for only one of the SNIPS splits

Figure 1: t-SNE visualization of CLINC150 ID classes. Em-
beddings are derived from fine-tuned RoBERTa for ID clas-
sification. ID classes are easily separated

between semantically related utterances.
Mislabeled instances cause top errors made for

CLINC150, e.g. give me the weather forecast for to-
day is labeled as OOD but is related to the intent weather.
Similarly, an OOD utterance how old is Jennifer Anniston?
is incorrectly assigned with the intent how old are you?,
used to question about the dialog agent’s personality.

Other errors include confusion between semantically re-
lated utterances. For example, CLINC150 contains intent
text that is related only to sending a text message. Utter-
ances related to similar actions, such as read my friend’s text
message, are erroneously accepted.

Similar issues appear in SNIPS. The structure of ID-OOD
splits explains the high variance of metrics. If two semanti-
cally related or often confused intents get into different sets,
the resulting measures drop significantly. For example, it
is challenging if the intent SearchScreenEvent is ID and
SearchCreativeWork is OOD. The rest of the ID intents do
not provide enough supervision to learn the former intent’s
exact semantics to more clearly separate from the latter.

On the ROSTD dataset, we observe the same errors
caused by the semantic similarity between an OOD utter-
ance and ID intents. Another source of errors is the lexical
discrepancy between ID utterances in the train and test sets.

Is Bigger Model Better?
We utilize base, large, and distilled versions of BERT-based
models. Fig. 2 compares the performance of models with
different sizes on two datasets, CLINC150 and ROSTD. On
a more diverse dataset, CLINC150, we see that larger mod-

 









 

 

 

 

 

 



            

Figure 2: Comparison of models of different sizes on
ROSTD and CLINC150. Maha stands for Mahalanobis dis-
tance

els outperform smaller versions. On the ROSTD dataset, this
difference is not so prominent but persists. By comparing
distilled versions with their respective teachers, we note that
the distillation does not affect the Mahalanobis distance, un-
like the MSP score. Hence, Mahalanobis distance is more
robust to distillation than MSP.

Diverse Pre-Training Data Improves OOD
Detection
Fig. 2 shows that RoBERTa has better OOD detection ca-
pabilities than BERT. The core difference between the two
models is that RoBERTa was pre-trained on a larger and
more diverse dataset than BERT. Thus, we hypothesize that
pre-training on larger amounts of data improves model ro-
bustness to OOD instances. Recent studies confirm this ef-
fect in computer vision (Hendrycks, Lee, and Mazeika 2019;
Orhan 2019) and natural language processing (Hendrycks
et al. 2020).

Features of Embeddings Space
Transformer models, fine-tuned on ID data, coupled with
Mahalanobis distance, show excellent performance for OOD
detection. A possible explanation could be the way the space
of Transformer-based embeddings is settled. Further, we
compare geometrical features of two different embedding
spaces, derived from RoBERTa model and CNN for com-
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(a) RoBERTa, no fine-tuning (b) RoBERTa, fine-tuned (c) CNN, trained

Figure 3: These heatmaps represent each utterance from the CLINC150 test set as the vector of Mahalanobis distance terms,
computed according to Eq. 5 and sorted in the decreasing order of explained variance. Each row stands for an utterance. The
horizontal solid line separates the OOD utterances (above the line) from the ID ones (below the line). The vertical solid line
splits each heatmap into two parts: to the left are components numbered lower than 150, to the right are components numbered
above 150. 150 is the number of classes in the CLINC150 dataset. Only fine-tuned RoBERTa-based vectors clearly distinguish
ID and OOD utterances. The difference between ID and OOD is less evident in (c) and almost indistinguishable in (a). However,
in (b), the values of the components, starting from the 150th one (in yellow), are lower than those of ID ones (in red).

parison (see Table 3). The differences between the spaces
are even sharper if the number of ID classes is high.

ID class centroids are mutually orthogonal. The pair-
wise cosine similarity between centroids approaches zero
as its mean value and standard deviation are close to zero.
This reveals that the centroids are mutually orthogonal, as
all angles are close to π

2 . This phenomenon is present for the
space of Transformer-based embeddings and does not hold
for CNN-based embeddings.

ID class centroids lay on a sphere. The length of
Transformer-based centroids does not vary much, as the de-
viation from the sphere is less than 2% of its radius. On the
other hand, CNN embeddings deviate more significantly.

ID classes form clusters around centroids. The devia-
tion of ID instances from the centroids according to cosine
similarity is small both for CNN and RoBERTa embeddings.
ID data is well clustered, and the classes are well separated
from each other, as depicted in Fig. 1.

ID data can be approximated by low-dimensional sub-
space in the embedding space, because ID embeddings are
close to class centroids, and the number of classes is signifi-
cantly lower than the dimension of the embeddings (N� d).

For further analysis, we consider several Mahalanobis dis-
tance variants. Following Kamoi and Kobayashi (2020), we
introduce the equivalent Mahalanobis distance form, based
on Principal Component Analysis of the class-wise centered
ID data:

d(ψ(x)) = min
c

d

∑
i=1

y2
i (ψ(x)−µc)

λi
, (5)

where yi(ψ(x)) is the i-th component of the PCA trans-
form of ψ(x), λi are explained variances of the correspond-
ing principal components, µc are class centroids.

Kamoi and Kobayashi (2020) introduced two modifica-
tions of Eq. 5, namely, marginal Mahalanobis distance,
which ignores class information and uses instead a single
mean vector for all ID classes, (see Eq. 6) and partial Ma-
halanobis distances: it is the version of the equations (5)

and (6) with the summation starting from N-th component.
Eq. 7 corresponds to the partial marginal variant. Marginal
Mahalanobis distance aims at using more compact data rep-
resentation in the form of a single ID centroid, helping to
reduce the amount of data needed for OOD detection. Par-
tial variant utilizes the most important terms only.

d(ψ(x)) =
d

∑
i=1

y2
i (ψ(x)−µ)

λi
(6)

d(ψ(x),N) =
d

∑
i=N

y2
i (ψ(x)−µ)

λi
, (7)

where

µ =
1
N ∑

x∈Din

ψ(x),

stands for the ID data centroid.
Mahalanobis distance can efficiently utilize low-

dimensional nature of ID data. Following the properties
of PCA (Murphy 2012), if the data is approximately N-
dimensional, it is explained by the first N principal compo-
nents. That means that for ID data, all the terms in the Eq.
6, 7 are little, while OOD data can be detected by important

loadings of the terms y2
i

λi
with i > N. To check this, we plot

the terms of the Eq. 7 for ID and OOD data, Fig. 3. Fig. 3
shows that when decomposed with the Mahalanobis distance
embeddings of fine-tuned RoBERTa fall into two parts. The
last components of OOD embeddings have a higher vari-
ance when compared to the first ones. This phenomena is
observed neither for ID embeddings nor for RoBERTa with-
out fine-tuning nor for the trained CNN.

Comparison of Other Distances
We compare Mahalanobis distance variants to explore this
matter: original, marginal Mahalanobis, and their partial ver-
sions. Additionally, we exploit Euclidean distance to com-
plete our evaluation.

13680



 











  

 



     

Figure 4: Comparison of different distances. Mahalanobis
distance and its variants outperform Euclidean distance by a
wide margin.
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Figure 5: OX: fraction of train data used, CLINC150, OY:
performance of OOD detection score. Mahalanobis distance
and its variants need less data for OOD detection.

All Mahalanobis distance variants outperform Euclidean
distance by far; see Fig. 4. Euclidean distance does not
take the correlation between features into account. Although
there is little difference between Mahalanobis distance vari-
ants, partial and marginal variants are more stable when
varying training data size. Marginal Mahalanobis distance
is less affected by the reduction of training data; see 5.

Conclusion
Out-of-Domain (OOD) detection task is becoming core to
modern dialog systems. Successful detection and rejection
of OOD utterances in real-life applications increase the dia-
log assistant’s credibility and improves user experience. This
paper compared multiple techniques for unsupervised OOD
detection, applied to three commonly used NLU datasets, in
particular, CLINC150, ROSTD, and SNIPS. We exploited
different text representation models, ranging from the old-
fashioned bag-of-word modes to the most recent pre-trained
Transformers. We adopted best practices used in the vision
domain and previously established state-of-the-art methods
within the scope of unsupervised methods, namely, Max-
imum Softmax Probability, Likelihood Ratio, and Maha-
lanobis distance, along with its modifications.

With the help of Transformer-based models, equipped

with Mahalanobis distance, we establish new state-of-the-art
results. To that end, we show that fine-tuning with ID data’s
supervision plays a crucial role, allowing re-shaping, favor-
able for the task, of the embedding space. These results are
supported in line with (Reimers and Gurevych 2019), con-
firming that fine-tuning Transformers improves the perfor-
mance of the downstream unsupervised tasks. What is more,
the proposed pipeline, i.e., fine-tuning a Transformer and us-
ing Mahalanobis distance, is robust to distillation. Support-
ing smaller models is essential for edge devices, where dis-
tilled models are usually deployed. Reduced in size, distilled
versions of pre-trained Transformers models perform on par
with the full-size models. Mahalanobis distance remains sta-
ble, even when used with a distilled model.

Still, there are some limitations to the Mahalanobis OOD
score. In the first place, it depends on the geometrical fea-
tures of the embedding space, which could be spoilt if, for
example, the embedder is used simultaneously as a classifi-
cation model and happens to overfit. Secondly, the greatest
challenge is caused by semantically similar utterances, of
which one is ID, and the other is OOD. For example, this
can happen if the dialog assistant supports only one of two
related actions. Future research directions should consider
such cases and the trade-off between the accuracy of intents
classification and OOD detection performance.
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