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Abstract

The progress in Query-focused Multi-Document Summariza-
tion (QMDS) has been limited by the lack of sufficient large-
scale high-quality training datasets. We present two QMDS
training datasets, which we construct using two data augmen-
tation methods: (1) transferring the commonly used single-
document CNN/Daily Mail summarization dataset to create
the QMDSCNN dataset, and (2) mining search-query logs to
create the QMDSIR dataset. These two datasets have com-
plementary properties, i.e., QMDSCNN has real summaries
but queries are simulated, while QMDSIR has real queries but
simulated summaries. To cover both these real summary and
query aspects, we build abstractive end-to-end neural network
models on the combined datasets that yield new state-of-the-
art transfer results on DUC datasets. We also introduce new
hierarchical encoders that enable a more efficient encoding
of the query together with multiple documents. Empirical re-
sults demonstrate that our data augmentation and encoding
methods outperform baseline models on automatic metrics,
as well as on human evaluations along multiple attributes.

1 Introduction
Query-focused multi-document summarization (QMDS)
aims at generating a short summary from a set of documents
that answers a query. Compared to the popular single docu-
ment summarization (SDS) task (Rush, Chopra, and Weston
2015; Chopra, Auli, and Rush 2016; Nallapati et al. 2016;
Celikyilmaz et al. 2018; Chen and Bansal 2018; Gehrmann,
Deng, and Rush 2018), research in QMDS has received less
attention. This is partially due to the scarcity of large-scale
high-quality QMDS datasets. The SDS has variety of high-
quality datasets (Hermann et al. 2015; Grusky, Naaman, and
Artzi 2018) on different domains such as news (Napoles,
Gormley, and Durme 2012; Nallapati et al. 2016), scien-
tific articles (Qazvinian and Radev 2008), etc., however,
not many high-quality datasets exist for QMDS training and
evaluation.

Another overlooked feature of QMDS is that it tries to
solve more realistic query-based scenarios than the SDS
or multi-document summarization (MDS) tasks. Different
from these tasks, QMDS task considers summarizing only
salient information that best answers the query in a logical
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Figure 1: Sample from our QMDSIR dataset, which illus-
trates how a set of retrieved documents based on a query
can provide complementary information that can be used to
reconstruct the information in the answer passage (used as
gold summary).

order. In fact, QMDS is more realistic for various applica-
tions such as personalized information retrieval (IR), conver-
sational IR, and recommendation engines, in which search
results can be tailored to an information need. To support
research on challenging QMDS task, we introduce two data
augmentation methods and new neural models.
Two new data augmentation methods. Recently, multi-
ple new MDS datasets have been introduced: A large-scale
dataset by Liu et al. (2018) named WikiSum, and a smaller
MDS by Fabbri et al. (2019). Even though WikiSum also
includes the topic of the article as query, it is mostly used
to train MDS models (Liu et al. 2018; Liu and Lapata
2019), since a topic is more generic to be used as an infor-
mation seeking query. To this end, we introduce two new
data augmentation methods to enable large-scale training
of QMDS models. In the first method, we restructure the
single-document CNN/Daily Mail (CNN/DM) dataset (Her-
mann et al. 2015) to create a new QMDS dataset by chunk-
ing the documents into small documents of paragraphs and
use the title of the article as a query. We refer to this dataset
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as QMDSCNN, which has ∼300K samples. For the second
method, we mine real-user web queries, top ranked web doc-
uments, and answer passages from the search log of Bing
(see Fig. 1). We consider the answer passage returned by
Bing, which is extracted from one of the top ranked docu-
ments as the summary and the rest of the documents as input
documents forming our second QMDS dataset. We call this
dataset as QMDSIR, which has ∼100K samples. These two
new datasets have complementary properties: QMDSCNN
has manually written summaries and noisy queries, while
the QMDSIR has real queries but automatically generated
summaries. Thus, we combine these two datasets to obtain a
balanced set of high-quality augmented data, which we used
to train our novel, large-scale QMDS models.
Novel models for query-focused MDS task.1 Liu and
Lapata (2019) presented a hierarchical encoder-decoder
transformer MDS model with attention layers and incor-
porated the query by simply concatenating to the top-
ranked document. Focusing on building a better abstractive
end-to-end neural network-based QMDS model, we intro-
duce HEROSumm: HiErarchical QueRy focused Order-
aware multi-document Summarization model, extending the
model in Liu and Lapata (2019) with three novel compo-
nents: (a) Hierarchical Encoding: unlike previous work,
which uses a single global representation of the multi-
document encoder during the decoding of the summary,
we use both the local and global representations from the
encoder during decoding; (b) Ordering Component: The
QMDS model of (Liu and Lapata 2019) receives the rank
order of documents as input from an external module. If
the order information is incorrect, it can adversely affect
the QMDS model’s performance. Hence, to eliminate this
cascading error effect, we introduce a new document order-
ing module that learns the ordering pattern while training
the QMDS model parameters end-to-end. (c) Query Com-
ponent: Unlike previous work, which prepends the query
to top document during encoding, we enrich our QMDS
model with an additional transformer component that en-
codes the query. The decoder then attends the local and/or
global layers of the multiple document encoders which are
conditioned on the query output encoding.

Our quantitative evaluations show that the HEROSumm
model, which includes new QMDS focused components,
can generate more accurate summaries than the baseline. We
also demonstrate that neural models trained on the QMD-
SCNN and QMDSIR datasets constructed with our data aug-
mentation methods show promising attributes of transfer-
ability compared to the models trained on the WikiSum
dataset, when tested on real QMDS datasets with summaries
written by humans (DUC 2006 and 2007). We further vali-
date the superiority of our data augmentation methods via
human evaluation studies along multiple attributes.

2 Related Work
Earlier MDS Research. Earlier extractive MDS work
have used various approaches including maximum marginal
relevance (MMR) to reduce redundancy (Carbonell and

1Code: https://github.com/ramakanth-pasunuru/QmdsCnnIr

Goldstein 1998), clustering based on topic detection (Radev
et al. 2004), graph-based (Erkan and Radev 2004) or
hierarchical LDA-style models (Haghighi and Vander-
wende 2009), and variants of query-focused summariza-
tion (Dang 2005), that orient the summary around a given
query (Daumé III and Marcu 2006; Zhao, Wu, and Huang
2009). Earlier abstractive MDS focused on template- and
planner-based (McKeown and Radev 1995; Radev and
McKeown 1998; Barzilay, McKeown, and Elhadad 1999)
and graph-based methods (Ganesan, Zhai, and Han 2010).
Recent MDS Research. Recent neural SDS models have
shown significant improvements on both extractive (Nallap-
ati, Zhou, and Ma 2016; Cheng and Lapata 2016; Narayan,
Cohen, and Lapata 2018) and abstractive (Rush, Chopra,
and Weston 2015; Chopra, Auli, and Rush 2016; Nallap-
ati et al. 2016; Celikyilmaz et al. 2018; Chen and Bansal
2018; Gehrmann, Deng, and Rush 2018) setups. How-
ever, MDS models with neural networks are limited by
the unavailability of large-scale MDS datasets. Zhang, Tan,
and Wan (2018) adapts a state-of-the-art SDS model for
MDS. Feigenblat et al. (2017) introduces a extractive-based
QMDS model using the Cross-Entropy method. Baumel,
Eyal, and Elhadad (2018) introduces query relevance to
adapt SDS model to QMDS. Lebanoff, Song, and Liu (2018)
exploits the MMR method to fuse disparate sentences from
multi-document inputs. Liu and Lapata (2019) introduced a
hierarchical transformer model to better encode global and
local aspects in multiple documents. In this work, focusing
on the coherency aspect of summaries, we design compo-
nents to attend the query and the local and global aspects of
documents better, while tracking the ordering information to
generate more accurate and focused summaries.
MDS Datasets. Recent introduction of large-scale MDS
datasets, WikiSum (Liu et al. 2018), Multi-News (Fabbri
et al. 2019), Wikipedia Current Events (Ghalandari et al.
2020), set a promising direction for developing powerful
neural network models. Focusing on query focused summa-
rization of more realistic scenarios, we constructed two new
large-scale QMDS datasets, based on popular single docu-
ment CNN/DM dataset and real search query logs.

3 Two New QMDS Datasets
3.1 QMDSCNN Dataset
CNN/Daily Mail (CNN/DM) is a commonly used SDS
dataset (Hermann et al. 2015). The documents are online
news articles and the summaries are human written high-
lights of corresponding articles. We use the scripts provided
by See, Liu, and Manning (2017) to obtain this dataset.
We present here step-by-step instructions for converting the
CNN/DM SDS dataset into a QMDS dataset:
Step-1: Generate a query per document. We use the title
of news article as the query to enable a query-focused setup.
Step-2: Chunk documents. Each news article has multi-
ple small paragraphs (approximately 20 small paragraphs),
and the sentences in the summary span across these small
paragraphs. We randomly group these small paragraphs into
chunks (one to four paragraphs per chunk), each chunk
forming a new document. In essence, we split the original
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Statistics Train Val Test

QMDSCNN (# samples) 287,113 13,368 11,490
- Avg. # documents 6.5 6.5 6.5
- Avg. Doc. length (# tokens) 355 346 353
- Avg. Query length (# tokens) 13.8 14.5 14.2

QMDSIR (# samples) 82,076 10,259 10,260
- Avg. # documents 5.8 5.4 5.5
- Avg. Doc. length (# tokens) 1,291 1,402 1,379
- Avg. Query length (# tokens) 6.2 6.2 6.2

Table 1: QMDSCNN and QMDSIR statistics.

article into anywhere from one to four smaller documents,
composing new query-documents-summary triplets.
Step-3: Create new documents from documents on the
same topic. CNN/DM dataset contains several documents
on similar or the same topic, mostly written by different
newsgroups on the same day. Our goal is to collate these
documents of similar topics and select chunks from them
to append to our new triplets datasets as follows:2 We take
the entire CNN/DM dataset and index all the chunks with
BM25 (Robertson and Walker 1994).3 For each newly con-
structed query-documents-summary triplet, we take the title
of the summary as query, send to the BM25 search engine,
which returns chunks from the entire dataset related to the
title (as query). We take the top four chunks and append to
the original query-documents-summary triplet as new docu-
ments. We provide details on the data curation pipeline with
example triplets in the arXiv version of this paper.

Table 1 presents the statistics of QMDSCNN dataset. The
average number of documents and document length are
roughly same across train/val/test sets. Each triplet sample
contains around 5-8 documents, from which four documents
are retrieved using BM25 as described previously.
Is QMDSCNN dataset suitable for QMDS? Firstly, an ac-
curate abstractive summary should be entailed by the input
document and contain only the salient information (Guo, Pa-
sunuru, and Bansal 2018). Specifically for the QMDS task,
the query should also be entailed by the summary. Since the
documents along with their titles and summaries are all writ-
ten by humans in the CNN/DM dataset, we assume that the
summaries should reflect the title, as well as each summary
should be entailed by its corresponding document. We ex-
tend the document list of a given query-documents-summary
triplet with additional chunks as new relevant documents.
Since these relevant documents are retrieved based on the
relatedness to the query (title of the summary), they extend
the entailment chain such that the abstractive summary of a
triplet is also entailed by the corresponding augmented doc-
uments.

Secondly, a good summary should contain sentences that

2In the scenario where there are no similar topics, the retrieved
documents are still useful to simulate the use case of QMDS for
presenting the search results, where the returned document set con-
tains both relevant and irrelevant documents.

3BM25 is a ranking function used by search engines to estimate
the relevance of documents to a given search query.

span across multiple documents. We measure this by tak-
ing a summary and corresponding documents from a query-
documents-summary triplet (excluding the retrieved docu-
ments), and align each sentence in the summary to one of
the documents. We found that there are many triplets whose
summary spans multiple documents, thus, enabling multi-
document properties. Statistics and additional analysis are
in the arXiv version of this paper.

3.2 QMDSIR Dataset

The QMDSIR contains queries that are issued by actual
search engine users. This is more realistic than using the
titles of articles as queries as in the WikiSum dataset. We
follow these steps to construct the QMDSIR dataset:
Step-1: Sample search logs. We randomly sample English
queries from Bing search logs in the United States, during
the first six months of 2019. Only queries that have natu-
ral language answers returned and the answer passages that
received positive user feedback are kept.
Step-2: Capture summary text and documents. For each
posed-query, we collect the top 10 ranked documents from
Bing and the displayed answer passage. The answer passage
is extracted from one of the top ranked documents by Bing’s
production QA system, which is a constantly updated state-
of-the-art neural-based single-document extractive summa-
rization model. We use this answer passage as the target
summary. We identify the document from which the answer
passage is extracted, and omit that document from the can-
didate documents to enforce the needs of MDS.
Step-4: Construct dataset. The query, the extracted answer
passage as summary, and the rest of the top-ranked docu-
ments represent the triplets of our QMDSIR dataset (see Ta-
ble 1 for statistics).
Is QMDSIR dataset suitable for QMDS? Since we use real
search query logs, the documents in a triplet are closely re-
lated to the query with a potential to answer the query, how-
ever, they may or may not contain the direct answer. As
shown in Figure 1, collectively the documents may include
content to form a summary that can answer the query. This
makes our dataset more abstractive in nature as a QMDS
model will need to recover and generate the answer passage
(summary) using the query and all the other (top-ranked)
documents in the triplet.

4 Models

Notation. Our QMDS datasets comprise of instances of
triplets of query-documents-summary, [q, {Di}Ni , y], repre-
senting the query q, list-of-documents {Di}Ni and the sum-
mary text y. Each input document Di of the triplet, is repre-
sented as sequence of tokens, Di={wij}Tj=1, in which wij is
the jth token in the ith ranked document Di. We represent
the latent representations as follows: let the input to the en-
coder of the transformer be h0

ij . Then the input and output
representations of any transformer encoder block in the lth

layer is represented with hl−1
ij and hl

ij , respectively.
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Figure 2: Comparison of (a) baseline and (b) HEROSumm model with three new components that extends the baseline QMDS
model: Hierarchical Encodings, Ordering Component and Query Encoder, enlarged on the right of (b). Unlike baseline model,
the HEROSumm decoder attends to both the local and global layers.

4.1 Baseline QMDS Model
Our baseline is similar to the previous work of Liu and Lap-
ata (2019),4 in which multiple documents are first separately
encoded via transformer local encoder layers. Next, we add
global transformer layers with multi-head pooling and inter-
paragraph attention to allow each document to be aware of
the information present in the other documents. Later, we
use the output of the global encoder as the encoder context
for the transformer decoder layers (see Fig. 2a). In this base-
line, we append the query to the first document. Also, we
encode the document ranking information in the form of po-
sitional encoding which is obtained from a separate docu-
ment ranker model (Liu and Lapata 2019).
Document Encoding. Each word token wij in each docu-
ment Di is mapped to an embedding vector we

ij . Since trans-
formers have no sequence information, we use position en-
coding embeddings similar to Vaswani et al. (2017). Differ-
ent from SDS models, for MDS we encode both the inter
and intra document positions of each word token wij . For
this, we use two positional encoders, one for inter-document
level, representing the order of the document and another for
intra-document level, representing the position of the token
in the document. Then the positional encoding of a token wij

is concatenation of the inter pei and intra pej document posi-
tion encodings, respectively. Finally, the input to the trans-
former h0

ij is represented as: h0
ij = we

ij + [pei ; p
e
j ], where [; ]

presents the concatenation operation.
4Liu and Lapata (2019) considered their model in a MDS setup,

however, we view it as a simple QMDS model.

Local Transformer Layer. We use the same transformer
layer proposed in Vaswani et al. (2017) as our local trans-
former layer. This layer has the traditional multi-head atten-
tion module, feed-forward network, and layer normalization.
Global Transformer Layer. Our global transformer layer
is similar to that of Liu and Lapata (2019), which primar-
ily encodes the inter-document context information. This
layer has 3 components: (1) multi-head pooling to obtain a
fixed length document representations; (2) inter-document
attention to model the dependencies across multiple doc-
uments; and (3) concatenation of the input with the con-
text from inter-attention followed by a feed-forward network
(see Fig. 2a). More details on global transformer layer can
be found in Liu and Lapata (2019).
Decoder Transformer. We use the same decoder trans-
former layer proposed in Vaswani et al. (2017), as shown
on the right side of the Fig. 2a.

4.2 HEROSumm Model
Extending the baseline model, our HEROSumm model in-
troduces three new components: a new encoder for the
query, varying hierarchical encoding inputs for the decoder,
as well as unsupervised learning of the order of the salient
concepts to be presented in the generated summary. All these
components are targeted on the encoder, so in Fig. 2b we are
only showing the encoder part of the model.
Query Encoder. Unlike the baseline model in which the
query text is simply appended to the top-ranked document
before sending it to the encoder, we encode the query via
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a separate transformer encoder layer. This layer is inserted
between local and global layers of the encoder, as shown in
Fig. 2b (with an enlarged view provided on the right of the
figure). A separate query layer creates a hierarchy of infor-
mation encoding, i.e., the local layers enable a rich intra-
document feature representation, the query layer conditions
this local layer features w.r.t. the given query, and the global
layer enable the inter-document feature representation on the
query conditioned local layers.

Let qk be the kth token in the query, and hl
ij be the out-

put of jth token in ith ranked document of the last local
layer before the query layer. The query input representation
(hq

k) for the query layer is a combination of its token embed-
dings (qek) and the positional encoding pqk, which is defined
as hq

k = wq
k + pqk. We encode the query input along with the

last local layer output (hl
ij) in the following steps to form

our transformer encoder query layer:

o1i = LN(hl
i +MHA(hl

i, h
l
i,MHP(hq)))

o2i = LN(o1i + FFN(o1i ))
(1)

where, MHA is multi-head attention, MHP is multi-head
pooling (Liu and Lapata 2019) which is applied on full query
tokens (hq), LN is layer normalization, and FFN is feed-
forward networks. o2i is the output from this layer which is
used as input to the transformer encoder global layer.
Hierarchical Encodings. Unlike the baseline model (Liu
and Lapata 2019), in which the decoder only attends to the
global layer features, the HEROSumm decoder attends to
both the output of the local and global layers taking into
account both context. Our intuition is that the local lay-
ers carry information specific to the individual documents,
while the global layers carry information w.r.t. all the doc-
uments. Specifically, the decoder utilizes the global proper-
ties from all documents by attending over to the output of
the global layer. It can also attend to the local layers to focus
on the specific aspects of the documents, in which salient
information related to the query may be more pronounced.
We concatenate the output of the local and global layers and
project it through a linear layer, as shown in Fig. 2b top-left.
Self Ordering Transformer Encodings. In QMDS, the
rank-order of the list of documents is an important infor-
mation as it helps the model to weigh in on the documents
relevant to the query. Otherwise, focusing equally on all doc-
uments makes it very hard for the model to weed out the
salient information and also present them in the correct or-
der in the summary. Previous work (Liu and Lapata 2019)
introduced a two-stage pipeline to inject the ordering into
their model. In the stage-1, a document ranker is trained sep-
arately to learn the importance of a document w.r.t. a given
query. In the stage-2, they use these importance scores to
rank the documents and encode them in the model. How-
ever, the errors introduced by the document ranker can po-
tentially have cascading effects on the performance of the
final summarization model.

To address this issue, we propose a single-stage model
that jointly learns to rank the documents while learning to
generate salient summary via our ordering component (see
Fig. 2b). Instead of using the positional encoding of the doc-

ument positions predicted by the document ranker, we ig-
nore the document position embeddings in the initial layer
of the transformer, and encode the positional embeddings of
the documents at the final layer of the transformer encoder.
For this, we use a self-attention module (Lin et al. 2017)
to know the importance of each document in the multi-
document setup. We then encode this importance informa-
tion in a novel way via a positional encoding module:

PE(Di,2j) = sin(ri/10000
2j/dmodel)

PE(Di,2j+1) = cos(ri/10000
2j/dmodel)

(2)

where, PE(Di, 2j) represents the 2jth dimensional posi-
tional encoding representation of document Di, ri is the
importance score assigned for document Di using the self-
attention module, and dmodel is the model’s hidden size.
This positional encoding module allows us to convert an
unordered importance score into an ordering representation,
since unordered score projected on a sinusoidal wave are po-
sitioned in an orderly fashion. Finally, we concatenate the fi-
nal global layer representations of the encoder with the doc-
ument ordering-based positional encoding representations to
form the final encoder representations (Fig. 2b, top-left).

5 Experimental Setup5

Datasets. We use three large datasets for training QMDS
models: our two datasets QMDSCNN and QMDSIR, de-
scribed in Sec. 3.1, and the WikiSum. We also use DUC
2006 and DUC 2007 datasets for evaluating our models.6
Model Ablations and Training. We experiment with four
different ablations of HEROSumm (HS in short) model ex-
tending the baseline QMDS model of Liu and Lapata (2019)
with only hierarchical encodings, only the ordering compo-
nent, and with the query encoding. HS-Joint, our full model,
combines two or three of these components depending on
the type of the dataset used in the experiments.
Evaluation Metrics. We use ROUGE (Lin 2004), i.e.,
ROUGE-1, ROUGE-2, and ROUGE-L as our automatic
evaluation metrics. We report sentence-level ROUGE F1
scores for all large-scale datasets. For DUC datasets, we re-
port sentence-level ROUGE recall with 250 word limit.

6 Results
We present empirical results of our proposed models on vari-
ous datasets. We first report on three large-scale QMDS aug-
mented datasets: WikiSum, QMDSCNN, and QMDSIR, to
understand how well various models fit the augmented data.
Validating the superiority of our proposed models and aug-
mentation methods, we also show transfer results of training
on our augmented datasets by using DUC 2006 and 2007
(two human-annotated real QMDS datasets) as test sets.

6.1 Results on Accuracy
WikiSum Dataset. Table 2 shows the results on the Wik-
iSum dataset. We observe that both hierarchical encodings

5Due to space constraints and no supplementary allowed in
AAAI rules, we provide more details in the arXiv version.

6https://www-nlpir.nist.gov/projects/duc/data.html
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Model R-1 R-2 R-L

Liu and Lapata (2019)? 38.03 24.68 36.20
HS w/ Hierarchical Encodings 38.14 24.88 36.33
HS w/ Ordering Component 38.57 25.13 36.71
HS w/ Query Encoding 35.70 21.86 33.70
HS-Joint Model 38.37 24.90 36.52

Table 2: Performance of our baseline and variations of
HEROSumm (HS) model on WikiSum dataset. R-1, R-2,
and R-L denote sentence-level ROUGE-1, ROUGE-2, and
ROUGE-L, respectively. ? is the reproduced result from the
code provided by Liu and Lapata (2019).

and ordering methods improve the performance of the model
in comparison to the corresponding baseline.78 However, the
addition of separate query encoding did not improve the re-
sults, in fact, they become worse. This can be explained by
the fact that this dataset may not be well suited for evaluating
the QMDS models since the queries are constructed from the
title of the Wikipedia article while the summaries are taken
as the first paragraph of the article. Thus, neither the queries
nor the summaries are natural nor constructed to reflect the
properties of a high-quality QMDS dataset. Finally, we com-
bine the hierarchical and ordering methods to form the joint
model (see Fig. 2) which again performs significantly better
than the baseline with p < 0.05 in all metrics.
QMDSCNN Dataset. Table 3 presents the evaluation results
of our baseline and three of our HEROSumm model varia-
tions (using hierarchical encodings, ordering, and query en-
coding) on the new QMDSCNN dataset. We observe that
both HS models with hierarchical encodings and query-
based methods perform significantly better than the baseline,
however, HS with ordering method did not work well on this
dataset.9 For this experiment, our HS-Joint model combines
the hierarchical encodings and the query encoder compo-
nents. We observe that HS-Joint model is significantly better
in context match accuracy than the baseline with p < 0.01.
Our HS with hierarchical encodings method outperformed
the HS-Joint model. This can be attributed to the fact that hi-
erarchical modeling of local and global information is more
crucial for this dataset while summaries don’t share comple-
mentary information with the query.
QMDSIR Dataset. Table 4 shows the results on QMDSIR
dataset, comparing our model ablations against the base-
line. For this experiment, our HS-Joint model is a combi-
nation of hierarchical encodings and query encoding com-
ponents. We observe that HS with query encodings method
performs significantly better than the baseline (with p <

7HEROSumm (HS) with hierarchical encodings and HS with
ordering method are statistically significantly better than baseline
with p < 0.05 and p < 0.01, respectively, in all metrics.

8We initially tried the random ranking order of input docu-
ments, and it performed worse than original order (baseline in Ta-
ble 2), which in turn performed lower than our ordering component.

9Both hierarchical encodings and query-based methods per-
form significantly better than baseline with p<0.01 in all metrics.
Ordering method also performed well on ROUGE-1/L (p<0.01).

Model R-1 R-2 R-L

Liu and Lapata (2019) 36.31 15.40 33.38
HS w/ Hierarchical Encodings 37.88 16.36 35.23
HS w/ Ordering Component 36.95 14.95 34.34
HS w/ Query Encoding 36.96 16.05 34.37
HS-Joint Model 37.09 16.33 34.45

Table 3: Accuracy results on QMDSCNN dataset.

Model R-1 R-2 R-L

Liu and Lapata (2019) 43.60 21.88 39.40
HS w/ Hierarchical Encodings 43.37 21.64 39.21
HS w/ Ordering Component 39.37 18.79 35.61
HS w/ Query Encoding 44.11 22.62 39.93
HS-Joint Model 45.53 23.44 41.15

Table 4: Accuracy results on QMDSIR dataset.

0.01 on ROUGE-1 and ROUGE-2 metrics, and p < 0.05
on ROUGE-L), suggesting that this dataset enables efficient
use of the queries by the QMDS models. Overall, we achieve
best results with our HS-Joint model in comparison to our
baseline and other HS ablations with p<0.01 in all metrics.

6.2 Results on Transfer Learning
We use the DUC 2006 and 2007 datasets for transfer learn-
ing experiments with two scenarios. In the first scenario, we
train on the 3 large QMDS datasets and show transfer re-
sults on the DUC 2006 and 2007 datasets. In the second one,
we finetune models from the first scenario on DUC 2006,
and then test on DUC 2007. We evaluate on quantitative
and qualitative metrics using ROUGE and human evalua-
tions, respectively. In both scenarios, we compare results of
the baseline model (Liu and Lapata 2019) to our HS-Joint
model, which is the last row in Table 2, 3, & 4. Our data aug-
mentation methods are not specific to solve DUC datasets,
but rather aim to improve QMDS in general, where DUC
is one of the standard evaluation sets on which we show
improvements via transfer setup. We believe our data aug-
mentation methods would be useful for the community in
creating larger-scale training datasets for QMDS.
Impact of our data augmentation methods. Table 5 shows
results when DUC 2006 and DUC 2007 datasets are used
as test sets and compare our HS-Joint models against the
baseline models. We report recall scores with 250 word
length. Based on pre-training experiment results on DUC
2006 in Table 5(a) and on DUC 2007 in Table 5(b), our
data augmentation methods perform better than training on
the WikiSum dataset by a large margin. Our baseline models
trained on the combined datasets, QMDSCNNIR, outperform
all other baseline models. However, on the HS-joint models,
QMDSCNNIR is not better than individual data augmenta-
tion methods. This suggests that we might also need better
weighted sampling or curriculum learning when we combine
these two datasets, which we leave for future work. How-
ever, we believe that the individual contributions of our two
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(a) DUC 2006 test set (b) DUC 2007 test set (c) DUC 2007 test set
Model Dataset R-1 R-2 R-L R-SU4 R-1 R-2 R-L R-SU4 R-1 R-2 R-L R-SU4

Baseline

No-Pretraining - - - - - - - - 10.01 1.42 9.80 3.18
WikiSum 24.00 4.28 22.72 8.16 23.42 4.41 22.17 8.05 34.34 6.35 32.07 11.42
QMDSIR 29.65 3.83 27.93 9.63 29.35 3.75 27.45 9.55 32.81 4.15 30.54 10.53
QMDSCNN 30.45 6.13 28.61 10.39 31.72 7.07 29.69 11.34 36.80 7.36 34.49 12.53
QMDSCNNIR 30.57 6.17 28.88 10.57 32.33 6.98 30.50 11.63 37.07 7.36 34.62 12.60

HS-Joint

No-Pretraining - - - - - - - - 18.80 2.40 18.17 5.94
WikiSum 22.96 4.09 21.76 7.89 22.91 4.45 21.74 7.92 29.97 4.22 27.98 9.10
QMDSIR 30.17 4.01 28.31 9.79 29.74 3.74 27.83 9.71 31.33 4.02 29.29 10.10
QMDSCNN 31.14 6.28 29.28 10.90 34.14 7.60 32.08 12.50 38.31 7.64 35.65 13.26
QMDSCNNIR 30.83 6.18 29.17 10.91 33.13 7.37 31.05 12.04 36.26 6.49 33.79 12.34

Table 5: Transfer results where each model is trained on various datasets, and tested respectively on (a) DUC 2006 and (b) DUC
2007. In (c), the pre-trained models of (b) are then fine-tuned on DUC 2006 dataset.

data augmentation methods (QMDSCNN and QMDSIR) are
still useful. We observe similar behavior on the DUC 2007
after fine-tuning in Table 5(c).
Impact of new QMDS components. Compared to the
baseline model, our HS-Joint models, which incorporate
novel QMDS focused components, yield much better results
when trained on datasets constructed with data augmenta-
tion methods and tested on real human datasets as shown
in Table 5. Results support that with better data augmenta-
tion and a much better transformer architecture, we can build
more accurate models with higher transfer capabilities.10

Human evaluation. We also evaluate our data augmentation
methods using head-to-head human evaluations on Amazon
Mechanical Turk (AMT). We compare summaries generated
by two baseline models: one trained on the WikiSum (WIKI)
and another one on the QMDSCNNIR (CB) dataset, combin-
ing our two new datasets. We generate samples from DUC
2006 and DUC 2007 test dataset, and each sample is evalu-
ated by 3 judges. For DUC 2007, we use the same models
fine-tuned on the DUC 2006 dataset as explained earlier. For
each test dataset, we ask the turkers to choose between the
two model summaries that answer the given query based on
5 different aspects:11 (1) Informativeness: which summary
is better in terms of answering the query better? (2) Non-
redundancy: which summary is better in terms of repeating
less of the same ideas? (3) Coherence: which summary is
better in terms of expressing ideas in the clearest manner flu-
ently? (4) Order: which summary is better at presenting the
information in the logical order? (5) Focus: which summary
is better in terms of only sharing the main ideas with no extra
superfluous details? We also ask the turkers to compare the
summaries on overall quality. We chose the turkers who are
located in the USA and UK, have at least 10, 000 approved
HITs, and have an approval rate of greater than 98%. We pay
$0.5 for a HIT. The results are as shown in Table 6, where on

10The current SOTA extractive QMDS model (Roitman et al.
2020) achieves R-1/R-2/R-SU4 scores of 43.94/10.09/15.96 on
DUC 2006 and 46.02/12.53/17.91 on DUC 2007. However, it is not
strictly comparable with our end-to-end abstractive QMDS models.

11During AMT evaluation, we also show one of the gold sum-
maries without providing the original documents.

Criteria DUC 2006 DUC 2007

WIKI CB = WIKI CB =

Informativeness 30 107 12 52 63 20
Non-redundancy 27 110 12 51 58 25
Coherence 27 112 11 55 59 20
Order 25 112 11 56 63 12
Focus 21 117 12 61 59 13
Overall 23 103 24 46 53 35

Table 6: Human evaluation between baseline model trained
on WikiSum (WIKI) and QMDSCNNIR (CB) datasets. ‘=’
denotes no difference between the two.

DUC 2006, our data augmentation CB method yields much
better results compared to the one on WikiSum in all as-
pects.12 On DUC 2007, a fine-tuning setup, we still see that
our method is better in all aspects except focus.13 Overall,
these human evaluations also suggest that our augmentation
methods are better than previous work (WikiSum).

7 Conclusions
To support research on query-focused multi-document sum-
marization task, we introduce two new data augmentation
methods using existing and new data sources. We further in-
troduce a new transformer encoder-decoder model that ex-
tends the baseline models with new components to encode
the queries together with multiple documents in a hierar-
chical setting. New components enrich the information pro-
vided to the decoder that generates focused summaries. We
show that summaries generated by the models trained on
augmented datasets are more accurate compared to the exist-
ing datasets. Additionally, our best model can generate sum-
maries that are coherent and contain specific information re-
lated to the query with better order of events.

12Our CB augmentation method is statistically significantly bet-
ter than WikiSum in all 5 aspects with p < 0.001 based on boot-
strap test (Noreen 1989; Efron and Tibshirani 1994).

13Even though our method performed lower on the focus aspect,
the difference is very low (lowest w.r.t. all other aspects).
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