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Abstract

Neural sequence-to-sequence models are finding increasing
use in editing of documents, for example in correcting a text
document or repairing source code. In this paper, we argue
that common seq2seq models (with a facility to copy single
tokens) are not a natural fit for such tasks, as they have to
explicitly copy each unchanged token. We present an exten-
sion of seq2seq models capable of copying entire spans of the
input to the output in one step, greatly reducing the number
of decisions required during inference. This extension means
that there are now many ways of generating the same output,
which we handle by deriving a new objective for training and
a variation of beam search for inference that explicitly han-
dles this problem. In our experiments on a range of editing
tasks of natural language and source code, we show that our
new model consistently outperforms simpler baselines.

Introduction
Intelligent systems that assist users in achieving their goals
have become a focus of recent research. One class of such
systems are intelligent editors that identify and correct errors
in documents while they are written. Such systems are usu-
ally built on the seq2seq (Sutskever, Vinyals, and Le 2014)
framework, in which an input sequence (the current state
of the document) is first encoded into a vector represen-
tation and a decoder then constructs a new sequence from
this information. Many applications of the seq2seq frame-
work require the decoder to copy some words in the input.
An example is machine translation, in which most words are
generated, but rare elements such as names are copied from
the input. This can be implemented in an elegant manner
by equipping the decoder with a facility that can “point” to
words from the input, which are then copied into the out-
put (Vinyals, Fortunato, and Jaitly 2015; Grave, Joulin, and
Usunier 2017; Gulcehre et al. 2016; Merity et al. 2017).

Editing sequences poses a different problem from other
seq2seq tasks, as in many cases, most of the input remains
unchanged and needs to be reproduced. When using existing
decoders, this requires painstaking word-by-word copying
of the input. In this paper, we propose to extend a decoder
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with a facility to copy entire spans of the input to the output
in a single step, greatly reducing the number of decoder steps
required to generate an output. This is illustrated in Fig. 1,
where our model inserts two new words into a sentence by
copying two spans of (more than) twenty tokens each.

However, this decoder extension exacerbates a well-
known problem in training decoders with a copying facility:
a target sequence can be generated in many different ways
when an output token can be generated by different means.
In our setting, a sequence of tokens can be copied token-by-
token, in pairs of tokens, in triplets, etc. or in just a single
step. In practice, we are interested in copying the longest
spans possible, as copying longer spans both speeds up de-
coding at inference time and reduces the potential for mak-
ing mistakes. To this end, we derive a training objective that
marginalises over all different generation sequences yield-
ing the correct output, which implicitly encourages copying
longer spans. At inference time, we solve this problem by a
variation of beam search that “merges” rays in the beam that
generate the same output by different means.

In summary, this paper (i) introduces a sequence decoder
able to copy entire spans (Sect. ); (ii) derives a training ob-
jective that encourages our decoder to copy long spans when
possible; (iii) discusses a variation of beam search which
matches our new training objective; and (iv) presents ex-
tensive experiments showing that the span-copying decoder
improves on editing tasks on natural language and program
source code (Sect. ).

Model
The core of our new decoder is a span-copying mecha-
nism that can be viewed as a generalisation of pointer net-
works used for copying single tokens (Vinyals, Fortunato,
and Jaitly 2015; Grave, Joulin, and Usunier 2017; Gulcehre
et al. 2016; Merity et al. 2017). Concretely, modern se-
quence decoders treat copying from the input sequence as
an alternative to generating a token from the decoder vo-
cabulary, i.e. at each step, the decoder can either generate a
token t from its vocabulary or it can copy the i-th token of
the input. We view these as potential actions the decoder can
perform and denote them by Gen(t) and Copy(i).

Formally, given an input sequence in = in0 . . . inn−1,
the probability of a target sequence o = o0 . . . om−1 is com-
monly factorised into sequentially generating all tokens of
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Input
charles Bdea lt ry C Bloc ock C ( september 27 , 1862
— may 13 , 1946 ) , was a british literary scholar ,

who wrote on a wide array of subjects , including chess
, billiards and Bcro que t C .

Output
charles Bdea lt ry C Bloc ock C ( september 27 , 1862
— may 13 , 1946 ) , was a british literary scholar

and translator , who wrote on a wide array of subjects
, including chess , billiards and Bcro que t C .

a1: Copy(1 : 28)

a4: Copy(28 : 48)

Figure 1: Sample edit generated by our span-copying model on the WikiAtomicEdits dataset on the edit representation task of
Yin et al. (2019). B and C represent the BPE start/end tokens. The model first copies a long initial span of text Copy(1 : 28).
The next two actions generate the tokens “and” and “translator”, as in a standard sequence generation models. Then, the model
again copies a long span of text and finally generates the end-of-sentence token (not shown).

the output.

p(o[:m] | in) =
∏

0≤j<m

p(oj | in ,o[:j]) (1)

Here, o[:j] denotes the output tokens o0 . . . oj−1, following
Python’s slicing notation. p(oj | in ,o[:j]) is the probability
of generating the token oj , which is simply the probability of
the Gen(t) action in the absence of a copying mechanism.1
When we can additionally copy tokens from the input, this
probability is the sum of probabilities of all correct actions.
To formalise this, we denote evaluation of an action a into a
concrete token as JaK, where JGen(t)K = t and JCopy(i)K =
ini. Using q(a | o) to denote the probability of emitting an
action a after generating the partial output o, we define

p(oj | o[:j]) =
∑

a,JaK=oj

q(a | o[:j]),

i.e. the sum of the probabilities of all correct actions.

Modelling Span Copying In this work, we are interested
in copying whole subsequences of the input, introducing a
sequence copying action Copy(i : j) with JCopy(i : j)K =
ini . . . inj−1. This creates a problem because the number of
actions required to generate an output token sequence is not
equal to the length of the output sequence anymore; indeed,
there may be many action sequences of different length that
can produce the correct output.

For example, Fig. 2 illustrates all action sequences gener-
ating the output a b f d e given the input a b c d e. For exam-
ple, we can initially generate the token a, copy it from the in-
put, or copy the first two tokens. If we choose one of the first
two actions, we then have the choice of either generating the
token b or copying it from the input and then have to gener-
ate the token f . Alternatively, if we initially choose to copy
the first two tokens, we have to generate the token f next.
We can compute the probability of generating the target se-
quence by traversing the diagram from the right to the left.
p(ε | a b f d e) is simply the probability of emitting a stop
token, where ε denotes the empty sequence. p(e | a b f d)
is the sum of the probabilities q(Gen(e) | a b f d) · p(ε |
a b f d e) and q(Copy(4 : 5) | a b f d) ·p(ε | a b f d e), which

1Note that all occurrences of p (and q below) are implicitly
(also) conditioned on the input sequence in , and so we drop this in
the following to improve readability.

re-use the term we already computed. Following this strat-
egy, we can recursively compute the probability of gener-
ating the output token sequence by computing probabilities
of increasing longer suffixes of it (essentially traversing the
diagram in Fig. 2 from right to left).

Formally, we reformulate Eq. (1) into a recursive defi-
nition that marginalises over all different sequences of ac-
tions generating the correct output sequence, following the
strategy illustrated in Fig. 2. For this we define |a|, the
length of the output of an action, i.e., |Gen(t)| = 1 and
|Copy(i : j)| = j − i. Note that w.l.o.g., we assume that
actions Copy(i : j) with j ≤ i do not exist, i.e. copies of
zero-length spans are explicitly ignored.

p(o[k:] | o[:k]) =
∑

a,∃`.|a|=`
JaK=o[k:k+`]

q(a | o[:k]) · p(o[k+`:] | o[:k+`])

(2)

Here, the probability of generating the correct suffix is only
conditioned on the sequence generated so far and not on the
concrete actions that yielded it. In practice, we implement
this by conditioning our model of q at timestep k on a rep-
resentation hk computed from the partial output sequence
o[: k]. In RNNs, this is modelled by feeding the sequence of
emitted tokens into the decoder, no matter how the decoder
determined to emit these, and thus, one Copy(i : j) action
may cause the decoder RNN to take multiple timesteps to
process the copied token sequence. In causal self-attentional
settings, this is simply the default behaviour. Finally, note
that for numerical stability our implementation uses log-
probabilities, implementing the summation of probabilities
with the standard log-sum-exp trick.

Modelling Action Choices It remains to explain how we
model the per-step action distribution q(a | o). We assume
that we have per-token encoder representations r0 . . . rn−1

of all input tokens and a decoder state hk obtained after
emitting the prefix o[:k]. This can be the state of an RNN cell
after processing the sequence o[:k] (potentially with atten-
tion over the input) or the representation of a self-attentional
model processing that sequence.

As in standard sequence decoders, we use an output em-
bedding projection applied to hk to obtain scores sk,v for all
tokens in the decoder vocabulary. To compute a score for a
Copy(i : j) action, we use a linear layer W to project the
concatenation ri‖rj−1 of the (contextualised) embeddings
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Gen(a)

Copy(0 : 1)

Copy(0 : 2)

p(a b f d e | ε)

Gen(b)

Copy(1 : 2)

p(b f d e | a)

Gen(f)

p(f d e | a b)

Gen(d)

Copy(3 : 4)

Copy(3 : 5)

p(d e | a b f)

Gen(e)

Copy(4 : 5)

p(e | a b f d) p(ε | a b f d e)

Figure 2: Illustration of different ways of generating the sequence a b f d e given an input of a b c d e. Each box lists all correct
actions at a given point in the generation process, and the edges after an action indicate which suffix token sequence still needs
to be generated after it. We use ε to denote the empty sequence, either as prefix or suffix.

of the respective input tokens to the same dimension as hk

and then compute their inner product:

sk,[i:j] = (W · (ri‖rj−1)) · h>k
We then concatenate all sk,v and sk,[i:j] and apply a softmax
to obtain our action distribution q(a | o). Note that for effi-
cient computation in GPUs, we compute the sk,[i:j] for all i
and j and mask all entries where j ≤ i.

Training Objective We train in the standard teacher-
forcing supervised sequence decoding setting, feeding to the
decoder the correct output sequence independent of its deci-
sions. We train by maximising p(o | ε) unrolled according
to Eq. (2). One special case to note is that we make a minor
but important modification to handle generation of out-of-
vocabulary words: iff the correct token can be copied from
the input, Gen(UNK) is considered to be an incorrect ac-
tion; otherwise only Gen(UNK) is correct. This is necessary
to avoid pathological cases in which there is no action se-
quence to generate the target sequence correctly.

We found that using the marginalisation in Eq. (2) dur-
ing training is crucial for good results. Our experiments (cf.
Sect. ) include an ablation in which we generate a per-token
loss based only on the correct actions at each output token,
without taking the remainder of the sequence into account
(i.e., at each point in time, we used a “multi-hot” objective in
which the loss encourages picking any one of the correct ac-
tions). Training using this objective yielded a decoder which
would most often only copy sequences of length one. In con-
trast, our marginalised objective penalises long sequences of
actions and hence pushes the model towards copying longer
spans when possible. The reason for this is that constructing
an output sequence from longer spans implies that the re-
quired action sequence is shorter. As each action decision
(q in Eq. (2)) “costs” some probability mass, as in prac-
tice q will assign some probability to incorrect choices. The
marginalization in our objective ensures that the model is
rewarded for preferring to copy longer (correct) spans, i.e.
shorter action sequences, and hence fewer places at which
probability mass is “spent”. Note that we do not force the
model to copy the longest possible sequence but instead al-
low the optimization process to find the best trade-off.

Beam Decoding Our approach to efficiently evaluate Eq.
(2) at training time relies on knowledge of the ground truth

sequence and so we need to employ another approach at in-
ference time. We use a variation of standard beam search
which handles the fact that action sequences of the same
length can lead to sequences of different lengths. For this, we
consider a forward version of Eq. (2) in which we assume to
have a set of action sequencesA and compute a lower bound
on the true probability of a sequence o by considering all ac-
tion sequences in A that evaluate to o0 . . . ok−1:

p(o[:k]) ≥
∑

[a1...an]∈A
Ja1K‖...‖JanK=o[:k]

∏
1≤i≤n

q(ai | Ja1K‖ . . . ‖Jai−1K)

(3)

If A contains the set of all action sequences generating the
output sequence o0 . . . ok−1, Eq. (3) is an equality. At in-
ference time, we under-approximate A by generating likely
action sequences using beam search. However, we have to
explicitly implement the summation of the probabilities of
action sequences yielding the same output sequence. This
could be achieved by a final post-processing step (as in Eq.
(3)), but we found that it is more effective to “merge” rays
generating the same sequence during the search. In the ex-
ample shown in Fig. 2, this means to sum up the probabili-
ties of the action sequences Gen(a)Gen(b) and Copy(0 : 2),
as they both generate the same output. To group action se-
quences of different lengths, our search procedure is explic-
itly considering the length of the generated token sequence
and “pauses” the expansion of action sequences that have
generated longer outputs. The pseudocode for this procedure
is shown in Alg. 3, where group_by_toks merges different
rays generating the same output.

Complexity Our objective in Eq. (2) can be computed
using the described dynamic program with complexity in
O(N2), where N is the sequence length. On a GPU, this
can be efficiently parallelised, such that for all reasonable
sequence lengths, only a linear number of (highly parallel)
operations is required. In practice, a slowdown is only ob-
served during training, but not during beam decoding. For
example, during training for the task BFPsmall (see Sect. ),
computing the per-step log-probabilities takes about 80ms
per minibatch, whereas marginalisation takes about 52ms
per minibatch. This constitutes 65% extra time required for
the marginalisation.
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def beam_search(beam_size)
beam = [{toks: [START_OF_SEQ], prob: 1}]
out_length = 1
while unfinished_rays(beam):
new_rays = []
for ray in beam:
if len(ray.toks) > out_length
or ray.toks[-1] == END_OF_SEQ:
new_rays.append(ray)

else:
for (act, act_prob) in q(· | ray.toks):
new_rays.append(
{toks: ray.toks ‖ JactK,
prob: ray.prob*act_prob})

beam = top_k(group_by_toks(new_rays),
k=beam_size)

out_length += 1
return beam

Figure 3: Python-like pseudocode of beam search for span-
copying decoders.

Related Work
Copying mechanisms are common in neural NLP. Starting
from pointer networks (Vinyals, Fortunato, and Jaitly 2015),
such mechanisms have been used across a variety of do-
mains (Allamanis, Peng, and Sutton 2016; Gu et al. 2016;
See, Liu, and Manning 2017) as a way to copy elements
from the input to the output, usually as a way to alleviate
issues around rare, out-of-vocabulary tokens such as names.
Marginalising over a single token-copying action and a gen-
eration action has been previously considered (Allamanis,
Peng, and Sutton 2016; Ling et al. 2016) but these works do
not consider spans longer than one “unit”.

Most similar to our work, Zhou et al. (2018) propose
a method to copy spans (for text summarization tasks) by
predicting the start and end of a span to copy. However,
they do not handle the issue of different generation strate-
gies for the same output sequence explicitly and do not
present an equivalent to our training objective and modified
beam search. Dependent on the choice of “copied spans”
used to train the model, it either corresponds to the case of
training our method without any marginalisation, or one in
which only one choice (such as copying the longest match-
ing span) is considered. In our experiments in Sect. , we
show that both variants perform substantially less well than
our marginalised objective.

Our method is somewhat related to the work of van
Merriënboer et al. (2017); Grave et al. (2019), who consider
“multiscale” generation of sequences using a vocabulary of
potentially overlapping word fragments. Doing this also re-
quires to marginalise out different decoder actions that yield
the same output: in their case, generating a sequence from
different combinations of word fragments, in contrast to our
problem of generating a sequence token-by-token or copy-
ing a span. Hence, their training objective is similar to our
objective in Eq. (2). A more important difference is that they
use a standard autoregressive decoder in which the emitted

word fragments are fed back as inputs. This creates the prob-
lem of having different decoder states for the same output
sequence (dependent on its decomposition into word frag-
ments), which van Merriënboer et al. (2017) resolve by aver-
aging the states of the decoder (an RNN using LSTM cells).
Instead, we are following the idea of the graph generation
strategy of Liu et al. (2018), where a graph decoder is only
conditioned on the partial graph that is being extended, and
not the sequence of actions that generated the graph.

Recently, a number of approaches to sequence gener-
ation avoiding the left-to-right paradigm have been pro-
posed (Welleck et al. 2019; Stern et al. 2019; Gu, Wang,
and Zhao 2019; Lee, Mansimov, and Cho 2018), usually by
considering the sequence generation problem as an iterative
refinement procedure that changes or extends a full sequence
in each iteration step. Editing tasks could be handled by such
models by learning to refine the input sequence with the
goal of generating the output sequence. However, besides
early experiments by Gu, Wang, and Zhao (2019), we are
not aware of any work that is trying to do this. Note however
that our proposed span-copying mechanism is also naturally
applicable in settings that require duplication of parts of the
input, e.g. when phrases or subexpressions need to be ap-
pear several times in the output (cf. obj in Fig. 4 for a sim-
ple example). Finally, sequence-refinement models could
also be extended to take advantage of our technique with-
out large modifications, though we believe the marginali-
sation over all possible insertion actions (as in Eq. (2)) to
be intractable in this setting. Similarly, Grangier and Auli
(2017) present QuickEdit, a machine translation method that
accepts a source sentence (e.g. in German) a guess sentence
(e.g. in English) that is annotated (by humans) with change
markers. It then aims to improve upon the guess by generat-
ing a better target sentence avoiding the marked tokens. This
is markedly different as the model accepts as input the spans
that need to be removed or retained in the guess sentence. In
contrast, our model needs to automatically infer this infor-
mation. Concurrently with this work, Stahlberg and Kumar
(2020) proposed a model predicting a sequence of span-level
edits on an input sequence towards producing the output, de-
signed specifically for text-editing. In contrast our method
is also applicable to non-editing problems (e.g., summariza-
tion) which may require copying long spans from an input.

An alternative to sequence generation models for edits
is the work of Gupta et al. (2017), who propose to repair
source code by first pointing to a single line in the output
and then only generate a new version of that line. However,
this requires a domain-specific segmentation of the input –
lines are often a good choice for programs, but (multi-line)
statements or expressions are valid choices as well. Further-
more, the approach still requires to generate a sequence that
is similar to the input line and thus could profit from our
span-copying approach.

Experimental Evaluation
We evaluate our RNN-based implementation on two types
of tasks. First, we evaluate the performance of our mod-
els in the setting of learning edit representations (Yin et al.
2019) for natural language and code changes. Second, we
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WikiAtEds GitHubEdits C# Fixers

Yin et al. (2019) 72.9% 59.6% n/a
S2S+COPYTOK 67.8% 64.4% 18.8%
S2S+COPYSPAN 78.1% 67.4% 24.2%

Table 1: Accuracy for edit representation task.

consider correction-style tasks in which a model has to iden-
tify an error in an input sequence and then generate an out-
put sequence that is a corrected version of the input. In the
evaluation below, S2S+COPYTOK denotes a variant of our
S2S+COPYSPAN model in which the decoder can only copy
single tokens. For all experiments, we use a single NVidia
K80 GPU.

Edit Representations
We first consider the task of learning edit representa-
tions (Yin et al. 2019). The goal is to use an autoencoder-
like model structure to learn useful representations of edits
of natural language and source code. The model consists of
an edit encoder f∆(x−, x+) to transform the edit between
x− and x+ into an edit representation. Then, a neural edi-
tor α(x−, f∆(x−, x+)) uses x− and the edit representation
to reconstruct x+ as accurately as possible. We follow the
same structure and employ our S2S+COPYSPAN decoder to
model the neural editor α. We perform our experiments on
the datasets used by Yin et al. (2019).

Our editor models have a 2-layer biGRU encoder with
hidden size of 64, a single layer GRU decoder with hidden
size of 64, tied embedding layers with a hidden size of 64
and use a dropout rate of 0.2. In all cases the edit encoder
f∆ is a 2-layer biGRU with a hidden size of 64. The GRU
decoders of both models use a Luong-style attention mech-
anism (Luong, Pham, and Manning 2015).

Editing Wikipedia First, we consider the task of learn-
ing edit representations of small edits to Wikipedia arti-
cles (Faruqui et al. 2018).2 The dataset consists of “atomic”
edits on Wikipedia articles without any special filters. Tab. 1
suggests that the span-copying model achieves a signifi-
cantly better performance in predicting the exact edit, even
though our (nominally comparable) S2S+COPYTOK model
performs worse than the model used by Yin et al. (2019).
Our initial example in Fig. 1 shows one edit example, where
the model, given the input text and the edit representation
vector, is able to generate the output by copying two long
spans and generating only the inserted tokens. Note that the
WikiAtomicEdits dataset is made up of only insertions and
deletions. The edit shown in Fig. 1 is generally representa-
tive of the other edits in the test set.

Editing Code We now focus on the code editing task of
Yin et al. (2019) on the GitHubEdits dataset, constructed
from small (less than 3 lines) code edits scraped from

2According to Yin et al. (2019), a part of the data was corrupted
and hence they used a smaller portion of the data.

C# GitHub repositories. These include bug fixes, refactor-
ings and other code changes. Again, the results in Tab. 1
suggest that our span-based models outperform the baseline
by predicting the edited code more accurately.

Yin et al. (2019) also use the edit representations for a
one-shot learning-style task on a “C# Fixers” dataset, which
are small changes constructed using automatic source code
rewrites. Each edit is annotated with the used rewrite rule
so that the dataset can be used to study how well an edit
representation generalises from one sample to another.

As in Yin et al. (2019), we train the models on the larger
and more general GitHubEdits dataset. To evaluate, we com-
pute the edit representation f∆(x−, x+) of one sample of a
group of semantically similar edits in C# Fixers and feed it to
the neural editor with the source code of another sample, i.e.,
compute α(x′−, f∆(x−, x+)). We repeat this experiment by
picking the first 100 samples per fixer, computing the edit
representation of each one and applying the edit to the other
99. The results of this process are shown in the last column
of Tab. 1, suggesting that our span-copying models are able
to improve on the one-shot transfer task as well.

Note that these results are not exactly comparable with
those presented in Yin et al. (2019), as they randomly se-
lect 10 pairs (x−, x+), compute their edit representation and
then for a given x′− compute α(x′−, f∆(x−, x+)) for each of
the 10 edit representations, finally reporting the best accu-
racy score among the 10 candidates. Since this process can-
not be replicated due to the random selection of samples, we
instead opted for the reproducible process described above.

Overall, while our S2S+COPYTOK model is roughly on
par with the numbers reported in Yin et al. (2019), our new
model S2S+COPYSPAN clearly sets a new state of the art.
This improvement can be attributed to the ability of the
model to copy larger spans which allows it to better rep-
resent the relevant edits.

Correction Tasks
Correction tasks were one of the core motivations for our
new decoding strategy, as they usually require to reproduce
most of the input without changing it, whereas only few to-
kens are removed, updated or added. In our experiments, we
focus on source code corrections, but provide an indication
that S2S+COPYSPAN would work also for natural language.

Code Repair Automated code repair systems (Monperrus
2018) are commonly composed of two components, namely
a (heuristic) component that suggests potentially fixed ver-
sions of the input, and an oracle (e.g., a harness executing
a test suite) that checks the candidates for correctness. Re-
cent software engineering research has started to implement
the heuristic component using seq2seq models (Chen et al.
2018; Tufano et al. 2019; Lutellier et al. 2019). The models
are usually viewed as language models (conditioned on the
faulty code) or employ standard neural machine translation
pipelines mapping from “faulty” to “correct” code. The task
usually only requires minor changes to the input code and
consequently most of the input is copied into the output. We
believe that our model is a natural match for this setting.
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Input
Ipublic boolean equals(Object IobjI ){I

I return this.equals(obj);

} I

Output
Ipublic boolean equals(Object obj){I

if ( IobjI == null)

return false;

I return this.equals(obj);

} I

a1: Copy(1 : 9)

a4: Copy(6 : 7)

a8: Copy(9 : 18)

Figure 4: Generation example in BFPsmall (edited for clarity). S2S+COPYSPAN learns to copy long spans while generating the
necessary edits. The non-highlighted output tokens are generated using Gen(t). All other tokens are copied from the input.

To test this hypothesis, we use the two bug-fix pair (BFP)
datasets of Tufano et al. (2019). The BFPsmall dataset con-
tains pairs where each snippet has at most 50 tokens and
the BFPmedium dataset has Java snippets containing from
50 up to 150 tokens. In these datasets, the input is code
with some form of a bug, whereas the output is correct
code. This corpus was constructed by scraping Git com-
mits and filtering for those with commit messages suggest-
ing that the edit fixes a bug. For both the S2S+COPYTOK
and S2S+COPYSPAN models we employ a 2-layer biGRU
as an encoder and a single layer GRU decoder. We use em-
beddings with 32 dimensions and GRUs with hidden units
of size 128. Note that the vocabulary size for this task is
just 400 by construction of the dataset. We employ a Luong-
style (Luong, Pham, and Manning 2015) attention mecha-
nism in the the decoders of both models.

Tab. 2 shows the results of our models, as well as the orig-
inal results reported by Tufano et al. (2019). Overall, the
S2S+COPYSPAN model performs better on both datasets,
achieving a new state of the art. This suggests that the span-
copying mechanism is indeed beneficial in this setting, as
becomes clear in a qualitative analysis. Fig. 4 shows an ex-
ample (slightly modified for readability) of a code repair pre-
diction and the span-copying actions. In this case, the model
has learned to copy all of the input code in chunks, extending
it only by inserting some new tokens in the middle.

We use this task to consider four ablations of our model,
clarifying the impact of each of the contributions of our
paper. To study the effect of marginalising over all correct
choices (Eq (2)), we compare with two alternative solutions.
First, we train the model to always copy the longest possible
span. The results shown in Tab. 2 indicate that this has a sub-
stantial impact on results, especially for results obtained by
beam search. We believe that this is due to the fact that the
model fails to capture the entire spectrum of correct actions,
as the objective penalises correct-but-not-longest copying
actions. This leads to a lack of informed diversity, reducing
the benefits of beam search.

Second, we consider an objective in which we use no
marginalisation, but instead train the model to predict any
one of the correct actions at each step, without any prefer-
ence for long or short copied spans – this corresponds to the
approach of Zhou et al. (2018). Our results show that this
is competitive on shorter output sequences, but quickly de-
grades for longer outputs. We believe that this is due to the
fact that the model is not encouraged to use as few actions as
possible, which consequently means that producing a correct

output can require dozens or hundreds of prediction steps.
We also evaluated our modified beam search in Alg. 3 in

comparison to standard beam search and greedy decoding on
the code repair task. The results show (small) improvements
when considering only the top result, but substantial gains
when taking more decoder results into account.

For a quantitative analysis, we additionally com-
pute statistics for the greedy decoding strategy of
S2S+COPYSPAN. In Fig. 5, we plot the frequency of the
lengths of the copied spans for BFPsmall and BFPmedium.
Given that the merging mechanism in beam decoding does
not offer a unique way for measuring the length of the copied
spans (actions of different lengths are often merged), we dis-
able beam merging for these experiments and employ greedy
decoding. Overall, the results suggest that the model learns
to copy long sequences, although single-copy actions (e.g.,
to re-use a variable name) are also common. In the BFPsmall
dataset, S2S+COPYSPAN picks a Copy(· : ·) action with a
span longer than one token about three times per example,
copying spans 9.6 tokens long on average (median 7). Sim-
ilarly in BFPmedium, S2S+COPYSPAN copies spans of 29.5
tokens long (median 19) This suggests that the model has
learned to take advantage of the span-copying mechanism,
substantially reducing the number of actions that the decoder
needs to perform.

We also find that the S2S+COPYTOK model tends to (mis-
takenly) assign higher scores to the input sequence, with the
input sequence being predicted as an output more often com-
pared to the span-copying model: the MRR of the input sen-
tence is 0.74 for the baseline S2S+COPYTOK model com-
pared to 0.28 for the S2S+COPYSPAN model in the BFPsmall
dataset. This suggests that the strong bias towards copying
required of the baseline model (as most of the decoding ac-
tions are single-token copies) negatively impacts the ten-
dency to generate any change.

Grammar Error Correction A counterpart to code repair
in natural language processing is grammar error correction
(GEC). Again, our span-copying model is a natural fit for
this task. However, this is a rich area of research with highly
optimised systems, employing a series of pretraining tech-
niques, corpus filtering, deterministic spell-checkers, etc. As
we believe our contribution to be orthogonal to the addition
of such systems, we evaluate it in a simplified setting. We
only compare our S2S+COPYSPAN model to our baseline
S2S+COPYTOK model, expecting results substantially be-
low the state of the art and only highlighting the relative
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Accuracy Accuracy@20 MRR Structural Match

On BFPsmall
Tufano et al. (2019) 9.2% 43.5% — —
S2S+COPYTOK 14.8% 42.0% 0.177 18.2%
S2S+COPYSPAN 17.7% 45.0% 0.247 21.2%

S2S+COPYSPAN (always copy longest) 14.2% 33.7% 0.174 14.2%
S2S+COPYSPAN (no marginalization) 16.9% 43.4% 0.210 20.2%

On BFPmedium
Tufano et al. (2019) 3.2% 22.2% — —
S2S+COPYTOK 7.0% 23.8% 0.073 9.4%
S2S+COPYSPAN 8.0% 25.4% 0.105 13.7%

S2S+COPYSPAN (always copy longest) 7.2% 20.0% 0.090 10.8%
S2S+COPYSPAN (no marginalization) 2.5% 11.1% 0.035 3.7%

Table 2: Evaluation of models on the code repair task. Given an input code snippet, each model needs to predict a corrected
version of that code snippet. “Structural Match” indicates that the generated output is identical to the target output up to
renaming the identifiers (i.e., variables, functions).

10 20 30 40 50
3e-4

3e-3

3e-2

3e-1

(a) BFPsmall (µ = 9.6, median: 7)

20 40 60 80 100
3e-4

3e-3

3e-2

3e-1

(b) BFPmedium (µ = 29.5, median: 19)

Figure 5: Length histograms of Copy(· : ·) actions during beam decoding in log-y scale. Beam merging is disabled for com-
puting the statistics of this experiment. For BFPsmall 11.2% of the copy actions are single-copy actions, whereas for BFPmedium
27.1% of the actions are single-copy actions. This suggests that S2S+COPYSPAN uses long span-copying actions in the majority
of the cases where it decides to take a span-copying action.

Prec. Recall F0.5

S2S+COPYTOK 34.9% 6.4% 0.1853
S2S+COPYSPAN 28.9% 10.4% 0.2134

Table 3: Evaluation on Grammar Error Correction
(GEC) (Bryant, Felice, and Briscoe 2017). Note: our
models use no pretraining, spell checking or other external
data, commonly used in GEC tasks.

improvement our contribution offers. Our models have a 2-
layer bi-GRU encoder with a hidden size of 64, a single layer
GRU decoder with hidden size of 64, tied embedding layer
of size 64 and use a dropout rate of 0.2.

We use training/validation folds of the FCE (Yan-
nakoudakis, Briscoe, and Medlock 2011) and
W&I+LOCNESS (Granger 1998; Bryant et al. 2019)
datasets for training and test on the test fold of the FCE
dataset. These datasets contain sentences of non-native
English students along with ground-truth grammar error
corrections from native speakers. Tab. 3 shows the results
computed with the ERRANT evaluation metric (Bryant,
Felice, and Briscoe 2017), where we can observe that our

span-copying decoder again outperforms the baseline de-
coder. Note that the results of both models are substantially
below those of state of the art systems (e.g. Grundkiewicz,
Junczys-Dowmunt, and Heafield (2019)), which employ
(a) deterministic spell checkers (b) extensive monolingual
corpora for pre-training and (c) ensembling.

Conclusion
We have presented a span-copying mechanism for com-
monly used encoder-decoder models. In many real-life
tasks, machine learning models are asked to edit a pre-
existing input. Such models can take advantage of our pro-
posed model. By correctly and efficiently marginalising over
all possible span-copying actions we can encourage the
model to learn to take a single span-copying action rather
than multiple smaller per-token actions.

Of course, in order for a model to copy spans, it needs
to be able to represent all possible plans which is O(n2)
to the input size. Although this is memory-intensive, O(n2)
representations are common in sequence processing (e.g. in
transformers). In the future, it would be interesting to inves-
tigate alternative span representations. Additionally, directly
optimising for the target metrics of each task (rather than
negative log-likelihood) can further improve results.
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Non-monotonic sequential text generation. arXiv preprint
arXiv:1902.02192 .
Yannakoudakis, H.; Briscoe, T.; and Medlock, B. 2011. A
new dataset and method for automatically grading ESOL
texts. In Proceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics: Human Language
Technologies-Volume 1, 180–189. Association for Computa-
tional Linguistics.
Yin, P.; Neubig, G.; Allamanis, M.; Brockschmidt, M.; and
Gaunt, A. L. 2019. Learning to represent edits. In Interna-
tional Conference on Learning Representations (ICLR).

13629



Zhou, Q.; Yang, N.; Wei, F.; and Zhou, M. 2018. Sequential
copying networks. In Thirty-Second AAAI Conference on
Artificial Intelligence.

13630


