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Abstract

Named Entity Recognition (NER) is a vital task in various
NLP applications. However, in many real-world scenarios
(e.g., voice-enabled assistants) new named entity types are
frequently introduced, entailing re-training NER models to
support these new entity types. Re-annotating the original
training data for the new entity types could be costly or even
impossible when storage limitations or security concerns re-
strict access to that data, and annotating a new dataset for
all of the entities becomes impractical and error-prone as the
number of types increases. To tackle this problem, we intro-
duce a novel Continual Learning approach for NER, which
requires new training material to be annotated only for the
new entity types. To preserve the existing knowledge previ-
ously learned by the model, we exploit the Knowledge Distil-
lation (KD) framework, where the existing NER model acts
as the teacher for a new NER model (i.e., the student), which
learns the new entity types by using the new training mate-
rial and retains knowledge of old entities by imitating the
teacher’s outputs on this new training set. Our experiments
show that this approach allows the student model to “pro-
gressively” learn to identify new entity types without forget-
ting the previously learned ones. We also present a compar-
ison with multiple strong baselines to demonstrate that our
approach is superior for continually updating an NER model.

1 Introduction
Named Entity Recognition (NER) or Slot Filling are com-
mon NLP tasks that require extracting entities from unstruc-
tured text. In the standard setting, an NLU system is trained
to recognize a fixed set of entity types (e.g., Person, Or-
ganization, Protein, or Law). However, in real scenarios,
NLU systems are continually evolving to support new func-
tionalities and this typically implies that new entity types
must be recognized. For instance, voice assistants like Siri
or Alexa continually introduce new intents to their capabil-
ities and consequently new entity types are often added to
their slot filling models. The simplest solution for accom-
modating new entity types consists of (i) updating the anno-
tation guidelines to cover the new types and re-annotating
the training material; (ii) restructuring the model to support
the new types; and (iii) re-training the model from scratch
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on the modified data. This procedure is both expensive and
time-consuming. Furthermore, the original training material
may no longer be available due to storage constraints or pri-
vacy concerns. Finally, the original training data may not
necessarily contain enough examples of the additional types.

A possible solution would be to annotate a new dataset
for all the entities that the model should recognize. However,
this can easily become impractical and error-prone when the
number of entities is large. Another option is to annotate a
new dataset only for the new entity types and use this data
to update the model in a Continual Learning (CL) setting
(Lange et al. 2019). However, this approach is vulnerable to
the catastrophic forgetting of previous entity types, a well-
documented concern in CL (Chen et al. 2018). We instead
seek to have the existing NER model impart knowledge
about the entities it already supports to a new model. One
way to do so would be a self-training approach, in which the
existing model is used to annotate the new dataset, i.e., fill-
ing in the gaps from the manual annotation of only the new
entity types. This dataset can then be used to train the new
model to recognize the new and old entity types.

One disadvantage of self-training is that the errors of the
old model are propagated to the new model without tak-
ing into account the uncertainty of the old model’s predic-
tions. We argue that the old model uncertainty can help the
new one to better learn about the old entity types. In order
to leverage such information, in this paper, we investigate
applying Knowledge Distillation (KD) (Hinton, Vinyals,
and Dean 2015) to the CL problem for NER. This tech-
nique involves incorporating the predictions of a “teacher”
model into the objective function of a “student” model being
trained to perform a similar but slightly modified task. The
student is encouraged to behave similarly to the teacher by
learning about its output probability distribution, rather than
just the labels. Though KD has traditionally been used for
the purpose of model compression, i.e., teaching a smaller
and simpler model to make similar but faster predictions
than a large, complex model, more recent works have ap-
plied KD in a CL setting, such as incrementally learning
multiple computer vision tasks (Li and Hoiem 2018).

For the task of NER in a CL setting, we treat a trained
NER model as the teacher and a new model that supports
additional entity types as the student. We conduct an ex-
tensive empirical investigation using BERT-based models on
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two NER datasets, and we show that KD allows new models
to “progressively” learn to identify new entity types while
retaining previous types using unseen data that have only
been annotated for the new types.

Our contributions are (i) we show how to adapt CL
techniques to the NLU domain for progressively learning
new entity types for NER; (ii) our results on two English
NER datasets demonstrate that our CL approach enables the
model to continuously learn new entity types without losing
the capability to recognize previously acquired types; and
(iii) we show that our semi-supervised strategy achieves re-
sults comparable to a fully supervised setting.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 introduces our approach,
and in Section 4 we discuss the experimental results. Finally,
Section 5 discusses the conclusions.

2 Related Work
Continual Learning (also referred to as lifelong learning
(Chen et al. 2018)) studies the problem of learning from a
stream of data. This stream can change over time in terms
of an evolution in the input distribution or by incorporat-
ing new tasks. The goal of CL is to gradually extend the
knowledge acquired in a model (Lange et al. 2019), with-
out incurring any Catastrophic Forgetting (CF) (Goodfellow
et al. 2013), mainly to account for changes in the data distri-
bution. Previous work mostly focused on Computer Vision
(Shmelkov, Schmid, and Alahari 2017; Li and Hoiem 2018;
Rannen et al. 2017) by using Knowledge Distillation (Hin-
ton, Vinyals, and Dean 2015) as the base framework.

In the context of NLU, some works focus on the On-
line Learning aspect of the CL (Filice et al. 2014). Liu,
Ungar, and Sedoc (2019) have approached the task of CL
by proposing an unsupervised method to train sentence en-
coders that can continually learn features from new corpora.
Hu et al. (2019) introduce the Parameter Generation and
Model Adaptation framework for image and text classifiers.
A neural network with two sets of parameters is proposed,
where the first set is shared across different tasks while the
second set is a placeholder, which is filled by a generator
network for each test instance.

In terms of CL for NER specifically, the work which is
most related is by Chen and Moschitti (2019), who pro-
pose an approach for transferring the knowledge of a neu-
ral network for sequence labeling trained on one (source)
dataset to a new model trained on another (target) dataset
in which new label categories appear. Their approach is to
add a “neural adapter” to learn the difference between the
source and the target label distribution. The main difference
from our work is that in each step, we have only the new
entity types annotated in the new dataset, as opposed to hav-
ing all the types annotated. Greenberg et al. (2018) present
a method for training a single CRF extractor from multiple
datasets. They use marginal likelihood training to strengthen
the knowledge acquired on labels that are present in the data,
while filling in “missing labels” for each dataset. Nguyen
et al. (2019) propose a model for solving the Lifelong Learn-
ing problem for Vietnamese NER. The model is a deep neu-
ral network, where at each step the network extracts a set

of “prefix-features” into a knowledge base, which are then
used to solve a new NER task.

Self-training (Triguero, Garcı́a, and Herrera 2015) is the
semi-supervised iterative procedure in which a model is first
trained on a small labeled dataset, and then it is used to pre-
dict labels of unlabeled examples. Then, confidently labeled
examples are selected and included in the training set that is
adopted to re-train the model. Our setting is similar, since we
assume to have partially-annotated data where only new en-
tity types are labeled, and we use a previously trained model
to predict the presence of old entity types. However, our ap-
proach differs from self-training because instead of using
the labels predicted by the model directly, we use the out-
put probability distribution of the model via distillation loss.
This allows for taking into account model uncertainty and
mitigating the propagation of the errors of the old model.

3 Continually Learning Named Entities
In this section, we present our CL approach to add new
entity types to an already trained NER model. Section 3.1
briefly discusses the KD approach (Hinton, Vinyals, and
Dean 2015). Then, Section 3.2 introduces our model update
strategy.

3.1 Knowledge Distillation
Knowledge Distillation (Hinton, Vinyals, and Dean 2015) is
a technique to transfer the knowledge between models with
a process called “distillation”. KD was proposed to trans-
fer knowledge from a cumbersome model into a smaller and
more efficient one. This technique has been used to com-
press huge language models, such as BERT (Devlin et al.
2019), into smaller ones, e.g., DistilBERT (Sanh et al. 2019).

KD works by first training a teacher model on some task.
After training, the teacher will be able to assign a probabil-
ity distribution pT over the categories of the task. pT is typ-
ically computed by the softmax over the logits zj of the last
layer of a neural network architecture, for each category j.
The softmax is defined as softmax(zj) =

exp(zj/Tm)∑
l
exp(zl/Tm)

,

where Tm is a temperature hyper-parameter1, which is typi-
cally set to 1. The teacher is trained by minimizing the cross-
entropy between the one-hot distribution and its predicted
output distribution. Then, a student model is trained by imi-
tating the teacher output distribution over a transfer dataset.
That is, the student is trained by computing the KL diver-
gence between pT (also referred to as the “soft targets”) and
the student output probability distribution pS .

KD has been used for CL in the image domain (Shmelkov,
Schmid, and Alahari 2017; Li and Hoiem 2018; Rannen
et al. 2017) – for example, by updating an image classifier
to support new categories while preventing catastrophic for-
getting (Li and Hoiem 2018).

3.2 Continual Learning for Sequence Tagging
In order to update an NER model to support new entity
types, we adopt KD to prevent catastrophic forgetting of

1As discussed in (Hinton, Vinyals, and Dean 2015), the Tm pa-
rameter can be tuned to obtain a softer distribution.
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Figure 1: AddNER model: the encoder and the linear layer
are copied for the old entities (grey, solid border). A new
output layer (green, dashed border) is meant to recognize a
new entity type. The teacher provides the soft targets for KD,
while the new training data provides the one-hot encoding to
train for the new entity type.

the knowledge already acquired in the model. Let us con-
sider that we have trained an NER model Mi on the set
of entity types Ei = {e1, . . . , en}, and we aim to update
the model in order to also recognize the set of new en-
tity types Enew = {en+1, en+2, . . . , en+m}. We model this
problem as acquiring a new student named-entity recog-
nizer Mi+1 able to tag sentences with respect to the full set
Ei+1 = Ei ∪ Enew = {e1, ..., en+m}. We are given a new
dataset Dnew consisting of sentences annotated only with
respect toEnew. Note that the sentences inDnew potentially
also contain tokens of old types in Ei, but this information
is not annotated in this dataset. We would like Mi+1 to per-
form well on the new entity types in Enew while preserving
the performances on the old entity types in Ei, i.e., we aim
to prevent catastrophic forgetting.

We propose two different student models: the AddNER
and ExtendNER models depicted in Figures 1 and 2, re-
spectively. In both cases, Mi acts as the teacher for KD.
Both Mi and Mi+1 are realized as neural networks com-
posed of encoder layers, which produce an h-dimensional
contextual representation for each token of a sentence, and
tagger layers, which output probability distributions for each
token with respect to the target labels. In the following, we
assume that the tags are provided in the IOB format: for each
token, its tag can indicate the beginning of an entity (B-), a
token inside an entity (I-), or neither, i.e., the “other” tag
(O), which indicates that the token is not an entity.

3.3 AddNER Model
In this schema, the student Mi+1 is a clone of the teacher
Mi, and a new output layer is added2 to recognize the entity

2Notice that (i) if the model is iteratively extended, a new out-
put layer is added at each iteration; (ii) if m is the number of new

types in Enew (Figure 1). During training, Mi+1 observes
examples from Dnew. Given that this dataset contains in-
stances annotated only for Enew, we adopt KD to prevent
catastrophic forgetting on the already acquired entity types.
This means that each sentence is also run through the teacher
Mi, which provides the soft targets for training the student
on the old entity types. At the same time, the annotated data
is used to learn how to recognize the new entity types.Mi+1

is thus trained with two losses: one penalizing forgetting pre-
vious entity types (the green circles in Figure 1) and one that
penalizes errors on the new entity types (the red diamonds).

More formally, for each token of a sentence in Dnew with
associated category y, we obtain the probability distribution
of the teacher pMi

Ei
with respect to the old entity types in Ei.

At the same time, we tag each token of the sentence with
Mi+1 obtaining pMi+1

Ei
for the same entities. The probabil-

ity distribution pMi

Ei
will be used as the soft target to train

Mi+1. That is, Mi+1 is trained by minimizing the KL di-
vergence between the teacher and the student output distri-
butions, i.e., LAdd

KL = KL(pMi

Ei
, p

Mi+1

Ei
). The student model

will also produce the output probability distribution with
respect to the new entity types with the new output layer,
i.e., pMi+1

Enew . This is used to compute the cross-entropy loss,
i.e., LAdd

CE = CE(y, p
Mi+1

Enew), with the one-hot encoding de-
rived from the annotations in Dnew. The model is trained
on the weighted sum of the two losses for each token, i.e.,
LAdd = αLAdd

KL + βLAdd
CE , where α and β are two hyper-

parameters weighting the contribution of the two losses.
Because the AddNER model contains multiple output lay-

ers, the different outputs for a single token need to be con-
solidated. In particular, it may be the case that the prediction
of one layer conflicts with that of another. To resolve these
conflicts, we developed a set of heuristics that merges the
outputs of the different layers for each token:
• If all layers predict the O tag, then output=O.
• If exactly one layer predicts a B- tag and the other layers

predict O, then output=B-.
• If multiple layers predict B- tags and the remaining layers

predict O, then output=B- with the highest probability.
• If a layer predicts an I- tag, output=I- only if it matches

the preceding tag in the sequence, i.e., the tag of the pre-
vious token must be a B- or I- of the same entity type.
Otherwise, the output of that layer is treated as O, and the
heuristics are applied again to determine the final output.

3.4 ExtendNER Model
In this setting, Mi+1 is again a clone of Mi, but the tag-
ger output layer is extended, i.e., new dimensions are added
to the layer to recognize the m new entity types in Enew

(Figure 2). Assuming that Mi was able to recognize n entity
types, its tagger layer can be considered as a matrix with di-
mension h×(2n+1). The output layer ofMi+1 will then be

entity types added in a given iteration, then the matrix of the corre-
sponding output layer will have a dimensionality of h× (2m+ 1)
to accommodate the new labels B-X, I-X for each new entity type
X, and O, according to the IOB tagging schema.
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Figure 2: ExtendNER model: the teacher encoder layers
(grey, solid border) are copied to build the new model. A new
output layer (green, dashed border) substitutes the old one
with the additional dimensions for the new entity type. If a
token is annotated in the new training data, it will contribute
to the cross entropy loss. Otherwise, the teacher soft targets
will be used for the KD loss.

extended to be a matrix with dimension h× (2n+ 2m+ 1)
in order to accommodate the new entity types3.

Again, we adopt KD to prevent catastrophic forgetting
with two loss functions: (i) the KL divergence between the
teacher and the student outputs for the entity types in Ei;
(ii) the cross-entropy between the student output and the
gold annotation in Dnew for the entity types in Enew.

More formally, for each token in a sentence with associ-
ated category y, the model will compute either the KL di-
vergence or the cross-entropy loss, depending on the value
of y. In particular, when y = O, the KL divergence is
computed between the teacher output distribution and the
student output distribution (the green circles in Figure 2):
LEx
KL = KL(pMi

Ei
, p

Mi+1

Ei
). Instead, if y 6= O (i.e., the to-

ken was labeled as one of the entity types in Enew) the
model will compute the cross-entropy loss (the red dia-
monds in Figure 2), i.e., LEx

CE = CE(y, p
Mi+1

Enew). Again, the
model is trained on the weighted sum of the two losses, i.e.,
LEx = αLEx

KL + βLEx
CE .

The final tags are obtained by the Viterbi algorithm
(Vintsyuk 1968) applied as a post-process for the n + m
entity types. The emission probabilities are given by the
Mi+1 outputs, i.e., pMi+1

Ei+1
, while the transition probabili-

ties have been hard-coded to prevent impossible transitions.
The transition probabilities are represented as a matrix Tr
of dimensions (2n + 2m + 1) × (2n + 2m + 1), where
Tr(p, r) = 0 if p → r is an impossible transition, e.g., an
I- tag following an O tag or an I-X tag following an I-Y
tag, where X and Y are two different entity types. Otherwise,
Tr(p, r) =

1
N(p) , whereN(p) is the number of allowed tran-

sitions starting from p, i.e., the probability mass is equally

3Notice that the additional 2m is for accommodating the B-X
and I-X categories for each new entity type X in Enew.

CoNLL-03
Training Validation Test

PER 6,532 1,829 1,597
LOC 7,125 1,832 1,664
ORG 6,271 1,325 1,654

MISC 3,398 916 698
Total 23,326 5,902 5,613

Table 1: Distribution of entity labels in CoNLL-03.

OntoNotes
Training Validation Test

ORG 24,163 3,798 2,002
PER 22,035 3,163 2,134
GPE 21,938 3,649 2,546

DATE 18,791 3,208 1,787
CARD 10,901 1,720 1,005
NORP 9,341 1,277 990

Total 107,169 16,815 10,464

Table 2: Distribution of entity labels in OntoNotes.

distributed among the admissible transitions starting from
the tag p.

4 Experimental Evaluation
Without loss of generality, we consider the case where the
datasetDnew is annotated only for one new entity type ei+1,
i.e., Enew = {ei+1}. This allows us to test the capability of
our approach to learn one entity type at a time. Thus, at step
i+1, we train the model Mi+1 to recognize the entity types
{e1, ..., ei+1}, given the teacher Mi.

4.1 Datasets
To evaluate our approach, we used two well-known NER
datasets: CoNLL-03 English NER (Tjong Kim Sang and
De Meulder 2003) and OntoNotes (Hovy et al. 2006).
CoNLL-03. The English version of this dataset contains
roughly 22k sentences pulled from news stories that have
been annotated w.r.t. 4 named entity types: Person (PER),
Location (LOC), Organization (ORG), and Miscellaneous
(MISC). The distribution of the entity types across the offi-
cial training, validation, and test sets are given in Table 1.
OntoNotes. The English version of this dataset includes
about 144k sentences drawn from a variety of texts, such
as news, transcribed telephone conversations, and weblogs.
Although the dataset has been annotated for 18 entity types,
we restrict our investigation to the 6 most represented types
to ensure a sufficient number of examples for training. The
6 types we considered are: Organization (ORG), Person
(PER), Geo-Political Entity (GPE), Date (DATE), Cardi-
nal (CARD), Nationalities and Religious Political Group
(NORP). Dataset statistics are shown in Table 2.

4.2 Experimental Setup
To test our approach in the CL setting, we divided the official
training and validation sets of CoNLL-03 and OntoNotes
into four and six disjoint subsets, D1, D2, . . ., respectively:
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CoNLL-03 Permutations
PER→ LOC→ ORG→MISC
PER→MISC→ LOC→ ORG
LOC→ PER→ ORG→MSC
LOC→ ORG→MISC→ PER
ORG→ LOC→MISC→ PER
ORG→MISC→ PER→ LOC
MISC→ PER→ LOC→ ORG
MISC→ ORG→ PER→ LOC

OntoNotes Permutations
ORG→ PER→ GPE→ DATE→ CARD→ NORP
DATE→ NORP→ PER→ CARD→ ORG→ GPE
GPE→ CARD→ ORG→ NORP→ DATE→ PER
NORP→ ORG→ DATE→ PER→ GPE→ CARD
CARD→ GPE→ NORP→ ORG→ PER→ DATE
PER→ DATE→ CARD→ GPE→ NORP→ ORG

Table 3: The different permutations in which entity types are
added to our models for each dataset.

eachDi is annotated only for the entity type ei. We first train
an initial model M1 on D1 for e1. This model becomes the
teacher for e1 with which we train a student model M2 on
the second slice D2, which is labeled for e2 only: M2 thus
learns to tag both e1 and e2. We repeat this process for each
slice Di, i.e., training a new student on a new slice using
the previous trained model as the teacher for the previously
learned labels. At each step i, we use the i-th slice of the
validation set for early stopping and evaluate the resulting
model Mi on the official test set annotated for the entity
types {e1, ..., ei}. In order to factor out any dependencies
on the order with which we add entity types, we train/test
with different permutations of the order. In particular, we
perform 8 and 6 different permutations4 for CoNLL-03 and
Ontonotes, respectively, as shown in table 3. We report the
average performances over the different permutations.

We compare our approaches with different strong base-
lines. To investigate the extent to which using KD con-
tributes to imparting knowledge of previously-learned la-
bels, we compare our approach to a non-KD approach. In
particular, after training a model Mi, we use it to annotate
the new slice Di+1 for training Mi+1; with this self-training
approach, Di+1 will contain the annotations for all of the
entity types {e1, ..., ei+1}. A new student model can thus
be trained on Di+1 with respect to all of the labels by us-
ing only the cross-entropy. We will refer to this approach as
hard label. We do not compare results with Chen and Mos-
chitti (2019) since in their work, all entity types are labeled
to train subsequent models (whereas we require annotations
only for the new entity types).

We compare also to a transfer learning approach in which
a new output layer is added to recognize the new entity type,
but the old output layers are frozen in order to retain old
types while training on the new dataset that is only annotated
for the new type. Note that this is comparable to the AddNER

4We created the permutations such that each entity type appears
in each position the same number of times, i.e., twice for CoNLL-
03 and once for OntoNotes. We did not try further permutations
due to budget limitations.

model in structure, but frozen parameters are used instead
of KD to preserve knowledge of previously learned labels.
In this setting, we may choose to freeze the encoder when
updating the model (frozen transfer) or not (free transfer).

We hypothesize that annotating a new dataset for multi-
ple entity types requires more effort and is more error-prone
than annotating it for only one new entity type. To investi-
gate the extent to which our approach can compensate for
having only partially-annotated data, we also tested three
other baselines that are trained on fully-annotated data. In
particular, we evaluate a CL model that, at each step i, is
trained on the dataset slice Di annotated for the new entity
type ei as well as for all the previous types, {e1, ..., ei−1}.
We call this a CL fully-annotated model. We also look at
two non-CL models – one that is trained from scratch on the
fully-annotated Di at each step i, and one that is trained on
all of the fully-annotated dataset slices observed up to and
at step i: (D1, ..., Di). We refer to these as non-CL last slice
models and non-CL complete models, respectively.

For each of the models, the encoder layer is a BERT-based
model (Devlin et al. 2019). The models were implemented
in Pytorch (Paszke et al. 2017) on top of the BERT Hug-
gingface implementation (Wolf et al. 2019), and training was
performed on a single Nvidia V100 GPU.

After initial experimentation with different hyper-
parameters, we chose to train the models with a batch size
of 32, a max sentence length of 50 tokens, and a learning
rate of 5e-5 for 20 epochs with early stopping (patience=3).
For all student models, a temperature Tm = 2 was used, and
α = β = 1 for the weighted sum of the losses.

4.3 Results & Discussion
At each step i, we computed the Precision, Recall, and F1
scores for each entity type. In the following, we report the
macro-average F1 score w.r.t. all the types {e1, ..., ei}, av-
eraged over all of the permutations. We also report statisti-
cal significance tests to assess the differences between the
models’ performances and to answer our Research Ques-
tions (RQ). We computed the F1 score for each model at
the sentence level, i.e., for each sentence in the test set that
contains at least one annotated entity, we computed the F1
score with respect to all supported entities in that sentence
alone. This fine-grained analysis ensures a sufficiently large
sample size (made of independent samples (Gillick and Cox
1989)) to meaningfully perform the test. Statistical signifi-
cance tests refer to a paired t-test with α = 0.05.

Transfer Learning for CL Our first RQ is: Is transfer
learning sufficient for learning new entity types, while pre-
serving knowledge of previously learned entity types?

We performed an experiment with the frozen transfer and
the free transfer models. We trained a modelM1 onD1, and
then trained the transfer learning models on D2, with the
encoder layers either frozen or not, on CoNLL-03. For the
frozen transfer model, the average overall F1 scores at step
2 was 57.49, while for the free transfer models, the average
performance at step 2 was 56.21. In the case of free transfer
models, the low F1 score was largely due to catastrophic for-
getting. In the case of frozen transfer models, while a frozen
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(a) (b)

Figure 3: Plots of overall F1 scores of ExtendNER student model against several comparison models at each step with the
CoNLL-03 dataset (left) and the OntoNotes dataset (right). Scores at each step are averaged over all permutations.

encoder and old output layer mitigates any catastrophic for-
getting, the frozen encoder restricts the model’s ability to
adequately learn the new entity type. This strongly suggests
that the transfer learning approach, whether or not the en-
coder is frozen, cannot be successfully adopted for NER
models in the CL setting. Because of the low F1 scores at
step 2 for CoNLL-03, we did not perform subsequent steps.

AddNER vs. ExtendNER Student Models Our second
RQ is: Are there differences between the AddNER and
ExtendNER models in the CL setting?

In our experiments, we found that for the CoNLL-03
dataset, the ExtendNER model performed 0.06 points bet-
ter than the AddNER model on macro-F1 scores, while for
the OntoNotes dataset, AddNER performed 0.04 points bet-
ter than ExtendNER. These differences are not statistically
significant (p = 0.7 and p = 0.9, respectively), suggest-
ing that the two student models do not meaningfully differ.
Because of this similarity in performance the following dis-
cussion reports results only for ExtendNER.

KD for CL with Limited Annotations Our third RQ is:
Do the student models effectively learn with KD in the CL
setting when new datasets are only minimally-annotated?

To address this question, we report the average F1 score
averaged over all permutations, for each model, at each step
i. These represent how each model Mi performs on all of its
supported entity types, newly and previously learned. These
results are shown in Figure 3, where the leftmost bar repre-
sents the score for the ExtendNER model trained with KD.

We can observe that the ExtendNER model showed an
increase in overall F1 score from step to step. The student
trained using KD does not degrade in overall performance
as new entity types are added, despite the fact that each new
slice of data is only annotated for the newly-added type. In
other words, each student model Mi+1 is able to simultane-
ously learn about e1, ..., ei from the teacher and also learn
about ei+1 from the annotations in Di+1.

Moreover, note that the student model performed better

than the corresponding hard-label model (the second bar in
each cluster). We found that, over all steps and permutations,
the ExtendNER student model performed on average 0.37
points better than the hard-label model in the CoNLL-03 test
set, and 0.81 points better than the hard-label model in the
OntoNotes test set (both significant, p < 0.0001). Although
the difference is slight, the significance test suggests that in-
deed, on average, the ExtendNER student model trained
through KD outperforms the hard-label approach5.

Figure 3 shows also that the ExtendNER model outper-
forms the non-CL last slice models (fourth bar) at every
step for both datasets. This suggests that the cloned encoder
from Mi to Mi+1 was critical in the student’s success, i.e.,
training from scratch on the new data alone is not as ef-
fective, even if the data are annotated for all of the target
entity types. We also note that the overall F1 scores of the
CL fully-annotated models (third bar) are generally greater
than those of the ExtendNER. This is rather unsurprising,
as a CL fully-annotated model leverages knowledge from
the encoder of the teacher model, as well as the true labels
of all the entities. While this difference in terms of sentence-
level F1 scores is slight (0.24 for CoNLL-03 and 0.78 for
OntoNotes), it is a significant difference (both p < 0.01).
The ExtendNER student model does not perform as well as if
it had fully-annotated data; however, as the number of entity
types increases, our models require significantly less annota-
tion than the CL fully-annotated models and can still main-
tain a good overall performance. The same applies when
comparing ExtendNER to the non-CL complete models (last
bar): although the non-CL complete models have a higher
F1, it requires all previous training data to be annotated for
all entity types, which can become prohibitively costly.

5The statistical significance test we implemented ignores false
positives, i.e., cases in which a sentence has no named entities, but
a model predicts that at least one entity is present in the sentence.
However, we found that both the ExtendNER and the hard-label
models exhibit roughly the same rate of false positives for both
datasets (about 6%).
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Figure 4: Plots of F1 scores of ExtendNER student models for each entity type, tracked over all steps. Note that at each step i,
the point on the e1 (red, circles) line represents the model’s average F1 score on e1 after i− 1 additional entity types have been
added, the point on the e2 (orange, stars) line represents the models’ average F1 score on e2 after i − 2 additional entity types
have been added, and so on. Averages are taken over all permutations.

Knowledge Retention with KD Our last RQ is: Do the
student models retain knowledge of the previously learned
entity types when learning a new one?

We address this question by tracking the performance of
the models on its learned entity types from step to step to
see if the performance is retained as new types are added.
In particular, for each permutation, we measure the F1 score
of the initial model trained in step 1 on e1, the F1 score of
ExtendNER trained in step 2 on e1, and so on. The aver-
age F1 score of e1 at each step over all permutations then
represents how well the student models retain knowledge of
e1. We can also track the performance on e2 starting from
step 2 onwards, e3 starting from step 3 onwards, and so on,
to see if similar trends exist. These results for ExtendNER
with KD are shown in Figure 4. We can see that, in gen-
eral, the F1 scores remain about the same or increase from
step to step. This suggests that as new entity types are in-
troduced, ExtendNER retains or even gains knowledge6 on
the entities that were trained through KD. Despite the down-
ward trend of e1 after step 3 on OntoNotes (Figure 4b), we
found that ExtendNER’s average performance on e1 at step
6 (77.88 F1) is lower than step 1 (78.03 F1), but this differ-
ence is not significant (p = 0.9).

As a comparison, we again look at the free transfer mod-
els. The average F1 score of the initial models (for the sin-
gle entity type e1) across all permutations is 83.77 for the
CoNLL-03 dataset; however, the average F1 score of the free
transfer models for e1 at step 2 is 34.95 for CoNLL-03. This
is a clear demonstration of catastrophic forgetting – although
the old output layer is frozen, the encoder is updated in such
a way during training for the new entity type that it can no
longer account for the old entity type.

We also computed the average difference, for every en-

6We believe this phenomenon is simply due to the data augmen-
tation at each step.

tity type in every permutation, between the F1 scores for
every entity type at step i versus step i + 1 to further
measure the ability of ExtendNER to retain knowledge of
previously learned labels after KD. We found that on the
CoNLL-03 dataset, the average F1 score increased signifi-
cantly by 1.308 between consecutive steps (p = 0.0001).
On the OntoNotes dataset, the average F1 score increased
by 0.0341, but this difference is not statistically significant,
(p = 0.7). As we do not see any significant decrease in aver-
age F1 score from one step to the next, these results suggest
that our approach prevents any catastrophic forgetting.

5 Conclusions
In this paper we presented an approach for Continual Learn-
ing for the task of Named Entity Recognition. We showed
how we can extend a model to recognize new entity types.
In particular, we demonstrated that we are able to update
a model with a minimally labeled dataset, i.e., where only
a new entity type is annotated. This setting is challenging,
as common transfer learning approaches incur catastrophic
forgetting. However, this can be useful in scenarios where
either old training data cannot be used anymore (e.g., for pri-
vacy or storage constraints) or annotating data for multiple
entity types is prohibitive (the more entities to annotate, the
harder and more expensive the annotation task can be). In-
stead, we showed how we can prevent forgetting of already
acquired knowledge by means of Knowledge Distillation in
a teacher-student learning framework. Our experimental re-
sults demonstrate the efficacy of our proposal in preventing
the forgetting and in learning new entity types step by step.

In the future, it would be interesting to integrate a learned
CRF layer to take into account the global dependencies be-
tween tags. It would also be interesting to investigate similar
approaches to update a model trained in one domain to sup-
port new entity types in a different domain.
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