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Abstract

Multi-task learning (MTL) has been widely applied in Nat-
ural Language Processing. A major task and its associated
auxiliary tasks share the same encoder; hence, an MTL en-
coder can learn the sharing abstract information between the
major and auxiliary tasks. Task-specific towers are then em-
ployed upon the sharing encoder to learn task-specific infor-
mation. Previous works demonstrated that exchanging infor-
mation between task-specific towers yielded extra gains. This
is known as soft-parameter sharing MTL. In this paper, we
propose a novel gating mechanism for the bridging of MTL
towers. Our method is evaluated based on aspect-based sen-
timent analysis and sequential metaphor identification tasks.
The experiments demonstrate that our method can yield better
performance than the baselines on both tasks. Based on the
same Transformer backbone, we compare our gating mech-
anism with other information transformation mechanisms,
e.g., cross-stitch, attention and vanilla gating. The experi-
ments show that our method also surpasses these baselines.

Introduction
Parameter-sharing-based multi-task learning (MTL) has
been widely applied in diverse Natural Language Process-
ing (NLP) tasks (Ruder et al. 2019; Dankers et al. 2019;
Chen and Qian 2020). Given a set of related tasks, MTL
aims to use a unified model to learn their sharing representa-
tions (Zhang and Yang 2017). Compared to individual pro-
cessing of a single task, introducing related auxiliary tasks
can further boost the performance of a Deep Neural Net-
work (DNN)-based MTL model on the major task. This is
because multiple related tasks support the sharing encoder
of the MTL model in acquiring knowledge from each sub-
task (Zhang and Yang 2017). Thus, the major task is im-
proved by applying the learnt sharing knowledge from dif-
ferent tasks. Besides, introducing multi-tasks can reduce the
risk of overfitting in DNNs (Ruder 2017). Based on the shar-
ing encoder, an MTL model has task-specific towers (a tower
refers to a stack of DNN layers) to learn task-specific knowl-
edge for each subtask. Previous works (Zhang and Yang
2017; Ruder 2017) demonstrated that exchanging informa-
tion between towers can further improve MTL performance,
which is known as soft-parameter sharing. In this paper, we
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propose a novel information transformation (soft-parameter
sharing) mechanism between MTL towers, namely Gated
Bridging Mechanism (GBM).

The motivation of introducing GBM is that gating mech-
anism is intuitive for the filtering of information from aux-
iliary tasks to a main task, because the main task tower can
decide through gating how much information is utilised from
its private tower and its neighbour towers (the auxiliary task
towers). Compared with previous information transforma-
tion methods, e.g., cross-stitch (Misra et al. 2016), attention
(Chen and Qian 2020), and vanilla gating (Dankers et al.
2019), whose mechanisms fuse the information from private
and neighbour towers directly, GBM takes an extra gate to
filter out useless information from neighbour towers before
fusion. The output of GBM is given by the trade-off between
the information from a private tower and the filtered infor-
mation from neighbour towers. Such a method allows an
MTL model to absorb selected information from auxiliary
tasks, hence yielding better performance.

We examine our method with two independent MTL
tasks, namely Aspect-based Sentiment Analysis (ABSA)
and Sequential Metaphor Identification (SMI). ABSA aims
to identify aspect terms, opinion terms and sentiment polar-
ities of the aspect terms in a sequence. We introduce ABSA
in our tests, because conventionally, ABSA has multiple pre-
defined subtasks which are related to each other (He et al.
2019; Chen and Qian 2020). SMI, on the other hand, aims
to identify the metaphoricity of each token in a sequence.
We introduce SMI because it can use a single-task sequence
labelling model (Wu et al. 2018; Gao et al. 2018) or an MTL
model with an auxiliary task (Dankers et al. 2019; Chen et al.
2020). Thus, we can employ different auxiliary tasks with
different utilities for SMI to examine, if GBM can gain infor-
mation from a supportive auxiliary task, e.g., Part-of-Speech
tagging, or filter out useless information which is given by
randomly generated hidden states.

By testing with three publicly available datasets devel-
oped by Pontiki et al. (2014) and Steen et al. (2010) for
ABSA and SMI, respectively, our method yields an average
gain of 1.11% against the strongest baselines on both tasks.
Furthermore, we compare GBM against cross-stitch, atten-
tion and vanilla gating mechanisms. The experiments show
that GBM outperforms these methods based on the same
backbone of BERT (Devlin et al. 2019) and Transformer
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(Vaswani et al. 2017). Finally, we experimentally demon-
strate that GBM can functionally filter out useless informa-
tion and gain useful information from an auxiliary task.

The contribution of this work can be summarised as two-
folds: (1) We propose a novel Gated Bridging Mechanism
(GBM) between multi-task learning (MTL) towers, which
outperforms previous information transformation methods.
(2) Our GBM-based MTL model achieves better perfor-
mance than previous baselines on aspect-based sentiment
analysis and sequential metaphor identification tasks.

Related Work
Multi-task Learning
parameter sharing-based MTL takes advantages in mod-
elling low resource data (Duong et al. 2015), learning from
different tasks (Zhang and Yang 2017) and reducing over-
fitting risks (Ruder 2017). It can be categorised as hard-
parameter sharing methods, soft-parameter sharing meth-
ods, and their combinations.

According to Guo, Lee, and Ulbricht (2020), for hard-
parameter sharing methods, all tasks share the same back-
bone parameters; alternatively, part of backbone parameters
are shared, while each task has its private task-specific tower
upon the sharing backbone (Dong et al. 2015; Long et al.
2017). For soft-parameter sharing, each task has its private
tower, while the activated private parameters are shared or
constrained by different mechanisms between tasks (Duong
et al. 2015; Liu, Qiu, and Huang 2016). Recently, the combi-
nations of hard-parameter sharing and soft-parameter shar-
ing methods are widely applied. Apart from different param-
eter regularisation (Duong et al. 2015; Ruder et al. 2017)
and loss functions (Cipolla, Gal, and Kendall 2018), we are
more interested in information transformation mechanisms.
Misra et al. (2016) proposed Cross-stitch Networks, where
information from previous layers in different towers was
linearly combined, passing to current layers. Liu, Qiu, and
Huang (2016) proposed Recurrent MTL Networks, where
the backbone of a subtask was based on LSTM (Hochreiter
and Schmidhuber 1997). The information between different
towers was exchanged by using a vanilla gating mechanism.
Attention was another widely applied mechanism for fus-
ing information from a main task and its auxiliary tasks, al-
though there were slight modifications on attention for fit-
ting to the tasks (Liu, Johns, and Davison 2019; Liu et al.
2019b; He et al. 2019; Chen and Qian 2020).

Compared with these information transformation meth-
ods, our proposed GBM can selectively reject useless infor-
mation from an auxiliary task, if the auxiliary task is not
supportive for the major task. For more details, please view
the sections of Comparison between Different Bridges and
Gated Bridging Mechanism Analysis.

Aspect-based Sentiment Analysis
Two types of methods were commonly employed in ABSA,
namely separate methods and unified methods. For separate
methods, previous works adopted a pipeline style (Hu et al.
2019), extracting aspect terms first (Wang et al. 2017; Xu
et al. 2018), then identifying sentiment polarities (Li et al.

2018; Chen and Qian 2019) for the aspect terms. Recently,
unified MTL models (Li et al. 2019a; Luo et al. 2019; He
et al. 2019) are more popular in ABSA, because a sentiment
classification task can benefit from learning the related sub-
tasks (Chen and Qian 2020), e.g., aspect extraction and opin-
ion extraction, yielding better results. He et al. (2019) pro-
cessed ABSA, document-level sentiment classification and
document-level domain classification tasks simultaneously
with MTL. They employed a fully-connected layer with
ReLU activation as the information transformation mech-
anism, passing the concatenated hidden states of subtasks
from a previous training iteration to the current iteration.
Chen and Qian (2020) proposed a unified ABSA model,
by modelling the relations between different subtasks with
an attention-based information transformation mechanism.
Their model achieved state-of-the-art (SOTA) performance
in ABSA. Conventional supervised learning-based ABSA
is domain-dependent, thus Li et al. (2019b); Zheng et al.
(2020) used transfer learning to address the challenge of
cross-domain ABSA.

Sequential Metaphor Identification
Identifying metaphors is a widely studied semantic task that
was modelled with different learning paradigms (Shutova,
Kiela, and Maillard 2016; Mao, Lin, and Guerin 2018; Le,
Thai, and Nguyen 2020; Su et al. 2020). SMI is a token
level sequence tagging learning task, thus single task learn-
ing was commonly used (Wu et al. 2018; Mao, Lin, and
Guerin 2019). Currently, there are more MTL models ap-
plied in SMI with different auxiliary tasks, outperforming
previous single task learning models. Le, Thai, and Nguyen
(2020) proposed a Graph Convolutional Neural Network
with dependency tree-based MTL. They introduced an aux-
iliary task of Word Sense Disambiguation to support the
main task prediction, where the main task and auxiliary
task were trained alternatively. Chen et al. (2020) employed
hard-parameter sharing method with BERT as the back-
bone, and fully-connected layers as task-specific towers,
where the auxiliary task is idiom prediction. Dankers et al.
(2019) employed MTL models with different emotional aux-
iliary tasks for SMI, e.g., predicting numerical scores of
valence, arousal and dominance. They examined different
soft-parameter sharing mechanisms, e.g., cross-stitch (Misra
et al. 2016) and vanilla gating (Liu, Qiu, and Huang 2016),
while their BERT and Bi-LSTM (Graves and Schmidhuber
2005) based hard-parameter sharing method with an auxil-
iary valence prediction yielded the best result.

Wu et al. (2018); Gong et al. (2020); Su et al. (2020)
demonstrated that learning Part-of-Speech (PoS) features
can boost SMI learning performance. Thus, we introduce
PoS tagging as an auxiliary task in our MTL model to dif-
ferentiate metaphorical and literal senses in different PoS.

Methodology
Task Definition
ABSA ABSA has three conventional subtasks, namely
aspect extraction (AE), opinion extraction (OE) and senti-
ment classification (SC). Each subtask is considered as a se-
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(a)

Input: Even though it’s good seafood , the prices are too high .
AE: O O O O B O O B O O O O
OE: O O O B O O O O O O B O
SC: neu neu neu neu pos neu neu neg neu neu neu neu

(b)
Input: I have already passed the two written exams .
SMI: lit lit lit met lit lit lit lit lit
PoS: PRON AUX ADV VERB DET NUM VERB NOUN PUNCT

Table 1: Example labels for (a) aspect-based sentiment analysis; (b) sequential metaphor identification.

quence tagging task, which is in line with Chen and Qian
(2020). Given an input sequence with a length of L tokens
(i.e. t1, t2, ..., tL), an MTL model aims to predict three la-
bel sequences which indicate aspect terms, opinion terms
and sentiment polarities of the aspect terms, respectively.
Following Chen and Qian (2020), we employ the BIO an-
notation paradigm for AE and OE learning, where BIO de-
fines the beginning, the inside or the outside of a target la-
bel. Given t1, ..., tL, the annotated labels of AE are Y AE =
yAE
1 , ..., yAE

L , and the labels of OE are Y OE = yOE
1 , ..., yOE

L ,
where yAE

k , yOE

k ∈ {B, I,O}. The associated SC labels are
Y SC = ySC

1 , ..., ySC

L , where ySC

k ∈ {pos, neg, neu}, indi-
cating positive, negative and neutral sentiment polarities, re-
spectively. An example of ABSA can be viewed in Table 1a.
SMI We aim to predict a sequence of labels that indicates
the metaphoricity of each token in SMI. Similarly, given
t1, ..., tL, Y SMI = ySMI

1 , ..., ySMI

L , where ySMI

k ∈ {met, lit}
with met and lit representing metaphoric and literal, respec-
tively. PoS labels of input texts are automatically generated
by spaCy toolkit (Honnibal and Montani 2017), following
the Universal Dependencies scheme1. An example of SMI
can be viewed in Table 1b.

Framework
Figure 1 shows the overall framework of our mode. First, an
input sequence (t1, ..., tL) is encoded with the backbone of
BERT, yielding the sharing hidden states (Hs) by

Hs = BERT (t1, ..., tL). (1)

Then, we use multiple Transformer layers as a task-
specific tower. In ABSA, there are three subtasks (τ1 =
AE, τ2 = OE, τ3 = SC). Thus three task-specific towers
are employed upon BERT. In SMI, there are two subtasks
(τ1 = SMI, τ2 = POS). Hence, two task-specific towers
are employed upon BERT. Following the first Transformer
layer, there is a stack of blocks in each tower. Each block,
e.g., Block i, where i ∈ {1, 2, ..., n} consists of a Gated
Bridging Mechanism layer (GBM) and a Transformer layer
(see Figure 1). The first Transformer layer in a task-specific
tower is defined as Block 0. We use Gτji to denote the out-
put of the GBM in Block i of the task τj tower. Noticeably,
a GBM in Block i uses the Transformer hidden states of its
previous block in each tower (Hτj

i−1) as input

G
τj
i = GBMφi,j

(Hτ1
i−1, ...,H

τj
i−1, ...), (2)

1We also tested Penn Treebank PoS annotation paradigm (Mar-
cus, Santorini, and Marcinkiewicz 1993), while it did not yield bet-
ter performance on our dataset.
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Figure 1: The framework of Multi-task learning with Gated
Bridging Mechanism. There are three subtasks (τ1, τ2, τ3) in
the model. Each subtask consists of n+ 1 blocks.

where φ denotes learnt parameters in GBM. The Trans-
former hidden states in each block are given by{

H
τj
0 = Transφ0,j (Hs),

H
τj
i = Transφi,j

(Gji ), 0 < i ≤ n. (3)

According to Peters et al. (2018b) and Liu et al. (2019a),
different Transformer layers in a Language Model have dif-
ferent utilities in semantic and syntactic down-stream tasks.
Our hypothesis is that a weighted sum pooling strategy will
ensure the best use of features from each Transformer layer
in a task-specific tower. Thus, the pooling features after the
last block in a tower are given by

H
τj
pool =

n∑
i=0

α
τj
i H

τj
i , (4)

where ατji ∈ R is a learnt parameter.
Finally, the output of Task τj Tower is given by a linear
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Figure 2: An illustration of the proposed Gated Bridging
Mechanism with three subtask examples, where i denotes
Block i. H is Transformer hidden states. {τj , τ1, τ2, ...} are
different subtasks, where τj is the focused task in a multi-
task learning tower;R is a reset gate;C is new current states;
Z is an update gate; F is the fusion of Hτj and C. ‘+’ is the
element-wise addition. G is the output of GBM.

projection:
Ŷ τj = W

τj
fcH

τj
pool + b

τj
fc, (5)

where W
τj
fc and b

τj
fc are learnt parameters. We employ a

cross-entropy loss function for each subtask, where the
cross-entropy criterion integrates the final softmax func-
tion in Figure 1. The MTL model loss (L) is given by the
weighted (ω) sum of subtask losses

L =
∑
τj

ωτjCrossEntropy(Ŷ τj , Y τj ), (6)

where ωτj is a hyper-parameter.

Gated Bridging Mechanism
GBMφi,j

(·) in E.q. 2 is the GBM operation in
Block i of task τj . It uses Transformer hidden states
(Hτ1

i−1, ...,H
τj
i−1, ...) from the previous blocks from all

subtasks as inputs and generates an output Gτji . We explain
GBMφi,j

(·) by employing relevant gating concepts from
Cho et al. (2014). Figure 2 shows the graphic depiction of
GBMφi,j

(·).
We use Hτj to denote that Transformer hidden states are

from the tower of a focused task τj . Hτm (m 6= j) denotes
the hidden states that are derived from one of the neighbour
towers of τj . First, we employ reset gates in τj to filter the
corresponding hidden states from neighbour towers. E.g., a
reset gate Rmi is given by

Rmi = σ(Wm
φR,i,j

Hτm
i−1 + bmφR,i,j

), (7)

where σ denotes the sigmoid activation function.
Then, we apply the reset gate Rmi to filter Hτm

i−1, hence,
generating new current states Cmi by

Cmi = tanh(Wm
φC,i,j

(Rmi �H
τm
i−1) + bmφC,i,j

), (8)

Dataset Data Train Valid Test

Laptop

# of seq. 2,439 609 800
# of tok. 38,675 9,670 11,007
% of ap. 7.3 7.3 9.8
% of op. 5.9 6.1 6.6
% of pos. 2.9 2.6 4.5
% of neg. 2.7 2.9 1.9
% of neu. 1.6 1.7 3.1

Restaurant

# of seq. 2,436 608 800
# of tok. 35,545 8,779 11,825
% of ap. 11.8 11.0 14.0
% of op. 8.2 8.4 9.2
% of pos. 7.2 6.8 9.2
% of neg. 2.3 2.2 2.1
% of neu. 2.1 1.7 2.6

VUA

# of seq. 6,323 1,550 2,694
# of tok. 116,622 38,628 50,175
% of met. 11.2 11.6 12.4
% of lit. 88.8 88.4 87.6

Table 2: Data statistics. # denotes the number; seq denotes
sequences; % denotes the percentage of tokens (tok) with
a specific label among all tokens; ap denotes aspect labels;
op denotes opinion labels; pos denotes positive aspects, neg
denotes negative aspects; neu denotes neutral aspects; met
denotes metaphors; lit denotes literals.

where� denotes element-wise product.Rm is functioned by
controlling the number of activated neurons. If large parts of
the neurons are close to 0, much of the information in Hτm

i−1
is filtered by Rmi . In Figure 2, e.g., R1

i controls whether
Hτ1
i−1 flows into the next fusion step. Besides, we employ

a non-linear projection function on the selected Hτm
i−1, be-

cause we believe that Hτm
i−1 and Hτj

i−1 are in different vec-
tor spaces. The non-linear operation can project the selected
Hτm
i−1 to the space of Hτj

i−1. Thus, Cmi and H
τj
i−1 can be

added in the following operation.
Next, we employ an update gate Zmi to control if Hτj

i−1
should fuse with Cmi . Zmi is given by

Zmi = σ(Wm
φZ,i,j

H
τj
i−1+bmφZ,i,j

+V mφZ,i,j
Cmi +dmφZ,i,j

), (9)

where V and d are learnt parameters. The fused features Fmi
are given by the trade-off between Hτj

i−1 and Cmi , where the
trade-off is controlled by Zmi

Fmi = Zmi �H
τj
i−1 + (1− Zmi )� Cmi . (10)

As seen in Figure 2, the more information F 1
i fuses from

H
τj
i−1, the more information from C1

i is filtered by Z1
i .

Finally, the output (Gτji ) of GBMφi,j
(·) is activated by

G
τj
i = σ(W

τj
φG,i,j

(
∑
m 6=j

Fmi ) + b
τj
φG,i,j

). (11)

Experiments
Datasets
We employ a laptop dataset and a restaurant dataset from
Pontiki et al. (2014) for ABSA, and the largest all word an-
notated metaphor dataset, VU Amsterdam Metaphor Cor-
pora (VUA) from Steen et al. (2010) for SMI. These are
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Model Laptop Restaurant
AE-F1 OE-F1 SC-F1 ABSA-F1 AE-F1 OE-F1 SC-F1 ABSA-F1

He et al. (2019)-GloVe 78.46 78.14 69.92 57.66 84.01 85.64 71.90 68.32
He et al. (2019)-BERT] 77.55 81.00 75.56 61.73 84.06 85.10 75.67 70.72
Hu et al. (2019)-BERT] 82.34 - 62.50 61.25 86.71 - 71.75 73.68
Chen and Qian (2020)-BERT 81.79 79.72 73.91 63.40 86.38 87.18 81.61 75.42
GBM-MTL-BERT-ours 83.34* 77.93 77.52* 65.61* 87.10* 87.16 82.24* 75.73*

Table 3: Model performance on aspect-based sentiment analysis. AE is aspect extraction. OE is opinion extraction. SC is
sentiment classification. ABSA-F1 is an overall measure for AE and SC. * denotes the improvement is statistically significant
based on a 2-tailed test (p < 0.05). Underline denotes the best baseline performance. ] was reported by Chen and Qian (2020).

widely applied benchmark datasets on both tasks (Hu et al.
2019; He et al. 2019; Chen and Qian 2020; Dankers et al.
2019; Mao, Lin, and Guerin 2019; Le, Thai, and Nguyen
2020). Since training and testing sets of the laptop and
restaurant datasets had fixed segmentation in SemEval-2014
Task 4: Aspect-based Sentiment Analysis (Pontiki et al.
2014), following Chen and Qian (2020), we use their ran-
domly selected 20% of samples from the training sets as val-
idation sets for fine-tuning hyper-parameters of our model.
The rest of 80% samples are used for training. For the VUA
dataset, we employ the training, validation and testing sets
that were firstly developed by Gao et al. (2018). Relevant
statistics can be viewed in Table 2.

Baselines
He et al. (2019) proposed a unified MTL model for learning
AE-OE, SC, document-level sentiment classification and do-
main classification, where the AE-OE prediction is a unified
subtask, based on GloVe (Pennington, Socher, and Manning
2014). For a fair comparison, we compare our model with
their BERT-based AE-OE and SC MTL model that was re-
ported by Chen and Qian (2020).
Hu et al. (2019) proposed a pipeline style ABSA method.
They modelled AE first. AE span representation in the AE
model is then fed to a SC classifier for enhancing senti-
ment polarity predictions. We benchmark the performance
that was reported by Chen and Qian (2020).
Chen and Qian (2020) proposed a unified model for AE,
OE and SC. They explicitly modelled relationships between
the subtasks with an attention mechanism, based on BERT.
Their method is the SOTA on ABSA to the best of our
knowledge.
Dankers et al. (2019) proposed a hard-parameter shar-
ing MTL model for modelling SMI and emotions from
the dimension of valence, arousal and dominance, where
the BERT-based valence and metaphor identification MTL
model yielded the best performance. We use this method as
a baseline for the SMI comparison. Dankers et al. (2019)
also reported a single task learning performance based on
BERT (STL-BERT).
Le, Thai, and Nguyen (2020) proposed a Graph Convolu-
tional Neural Network-based MTL model, learning SMI and
Word Sense Disambiguation. Their model is based on the
concatenate features of GloVe, ELMo (Peters et al. 2018a)
and index embeddings (GEI).

Model SMI-F1 Acc.
STL-BERT] 76.3 -
Dankers et al. (2019)-BERT 76.8 -
Le, Thai, and Nguyen (2020)-GEI 75.1 93.8
GBM-MTL-BERT-ours 77.6* 94.5*

Table 4: Model performance on sequential metaphor identi-
fication. ] was reported by Dankers et al. (2019)

Setups
4 Transformer layers (n = 3) with 16 heads and 1024 di-
mensions are employed upon BERT-large as a task-specific
tower. We do not change the shape of the output of GBM,
thus, the learnt parameters W and V in GBM are also 1024
dimensions. Learning parameters in the model are initialised
with PyTorch (Paszke et al. 2017) default setups. We use a
batch size of 4, Adam optimiser (Kingma and Ba 2014) with
an initial learning rate of 1e-5 and a Step Decay schedule.
For the loss weights in E.q. 6, ωAE , ωOE and ωSC are 0.5,
0.5 and 2, respectively2; ωSMI and ωPOS are 1 and 1, re-
spectively. The model is fine-tuned with 20 epochs on train-
ing sets. A test set result is given by a trained model that
has the best performance on the validation set in terms of
the main measure (F1) of each task. Because our tasks are
formalised as sequence tagging tasks, where the lengths of
input tokens should be equal to the lengths of labels, we take
the prediction of the first WordPiece (Wu et al. 2016) token
as the prediction of the original word. For ABSA, we use
ABSA-F1 score (Macro-F1) from Chen and Qian (2020) as
the main measure, where the sentiment prediction for an as-
pect term is correct in ABSA-F1, only if the predictions of
AE and SC of the same term are correct. For SMI, F1 is the
main measure, where metaphors are positive labels.

Results
In Table 3, our model achieves the best performance accord-
ing to the main measure of ABSA-F1 on both datasets, yield-
ing an average gain of 1.26% against the strongest baseline
(Chen and Qian 2020). For AE and SC, our model also out-
performs the strongest baselines of the subtasks, yielding
average gains of 0.70% and 1.29%, respectively. However,
our model does not outperform the strongest baselines on

2Since learning SC is harder than learning other subtasks, a
higher loss weight is assigned to SC.
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Model Lap. Res. VUA Avg.
TB MTL 60.21 66.37 75.73 67.44
TB MTL GBM 61.40 67.07 76.69 68.39
TB MTL WSP 60.88 66.79 76.22 67.96
TB MTL WSP GBM 61.54 67.17 76.87 68.53

Table 5: Ablation analysis, measured by ABSA-F1/F1 on
validation sets. TB MTL is a hard-parameter sharing model
with four Transformer layers upon BERT; GBM is Gated
Bridging Mechanism; WSP is weighted sum pooling.

OE. This is presumably because Chen and Qian (2020) as
well as He et al. (2019) introduced different methods to en-
sure that a target token cannot have both aspect and opinion
labels in ABSA, which improves their accuracy in the OE
tasks. Chen and Qian (2020), e.g., employed a different reg-
ularisation hinge loss for AE and OE. He et al. (2019), on
the other hand, considered AE-OE as a unified subtask with
a different annotation paradigm.

In Table 4, our model outperforms the SMI baselines by at
least 0.8% F1 score. There is a gain of 1.3% compared with
the BERT-based single task learning model (STL-BERT).

Ablation Analysis
To investigate the utilities of different components in our
model, we conduct an ablation analysis on the validation sets
of ABSA and SMI with the following setups: (1) TB MTL
(a hard-parameter sharing MTL model with a BERT sharing
encoder and four Transformer layers in each task-specific
tower); (2) TB MTL GBM (TB MTL with Gated Bridging
Mechanism); (3) TB MTL WSP (TB MTL with weighted
sum pooling); (4) TB MTL WSP GBM (our full model
containing all of above components). As seen in Table 5,
compared with TB MTL, the application of GBM improves
model performance by 0.95% on average. Besides, weighted
sum pooling (TB MTL WSP) also provides additional gains
(0.52%) on a hard-parameter sharing model. Finally, the full
model performs the best, yielding a gain of 1.09% against
the hard-parameter sharing model.

Next, we examine an average pooling strategy (Chen and
Qian 2020) based on TB MTL instead of using WSP. There
are drops of 0.20% and 0.16% in SMI and PoS tagging F1,
respectively. We also observe drops of 0.29% and 0.18%
in ABSA-F1 in laptop and restaurant datasets, respectively.
These drops show that the weighted sum pooling strategy
can dynamically learn from strong layers, hence yielding
better performance compared with the average pooling that
has fixed weights for different pooling layers.

Finally, we test the impact of different numbers of blocks
in our full model (TB MTL WSP GBM) based on the vali-
dation sets of ABSA and SMI. For a model that only has a
bloke (Block 0), we do not employ WSP or GBM. A task-
specific tower only consists of a Transformer layer and a lin-
ear layer. As seen in Table 6, the performance of the model
can be improved by increasing the number of blocks; how-
ever, the average improvement of the model with four blocks
is small (0.07%) compared to the model with three blocks.
Generally, it can be seen that GBM and WSP can provide

No. of blocks Lap. Res. VUA Avg.
1 60.17 66.28 75.52 67.32
2 60.78 67.01 76.60 68.13
3 61.43 67.10 76.85 68.46
4 61.54 67.17 76.87 68.53

Table 6: Model performance with different numbers of
blocks on validation sets, measured by ABSA-F1/F1.

better learning capabilities to the MTL model as a model
becomes deeper.

Comparison between Different Bridges
Previously, several information transformation mechanisms
were proposed for MTL on different tasks, e.g., cross-stitch
(Misra et al. 2016), attention (Chen and Qian 2020), and
vanilla gating mechanisms (Dankers et al. 2019). We com-
pare our GBM against these methods based on the same
backbone of BERT and Transformers. Hard-parameter shar-
ing is introduced as a baseline. We examine these methods
with the validation sets of laptop, restaurant and VUA.

Cross-stitch (Misra et al. 2016) is a linear information
transformation method. The fused features in a task-specific
tower are given by the weighted sum of information from
the private tower and neighbour towers, where the weights
are learnt parameters. Since the weight of a hidden state vec-
tor is a real number, the implicit hypothesis of cross-stitch is
that all elements of a hidden state from a neighbour tower are
equally significant for fusing with the hidden state in a pri-
vate tower. Attention is another widely applied information
transformation method (Liu, Johns, and Davison 2019; Liu
et al. 2019b; He et al. 2019; Chen and Qian 2020), where
the attention weights of a neighbour tower are given by a
linear scoring function and Softmax normalisation. The at-
tended hidden states are given by the weighted sum of hid-
den states from a neighbour tower. The implicit hypothesis
of an attention-based method is that at least one hidden state
vector from a neighbour tower is supportive for a private
tower, because the attention weights are normalised based
on the hidden states in the neighbour tower. Since there are
different modifications of attention for the fitting of different
tasks, we employ the method of Chen and Qian (2020) for
benchmark. The fused features are given by the concatena-
tion of the hidden states from a private tower and the at-
tended information from neighbour towers. We employ a
sigmoid-activated fully-connected layer to project the con-
catenated features to 1024 dimensions as the soft-parameter
sharing output. A vanilla gating mechanism from Dankers
et al. (2019) simply uses an update gate for fusing informa-
tion from private and neighbour towers, where the update
gate is controlled by the concatenation of hidden states from
a private tower and a neighbour tower. This method does
not have a reset gate and non-linear projection on the neigh-
bour tower hidden states. Thus, the implicit hypothesis is
that hidden states from a neighbour tower and hidden states
from a private tower are in the same vector space. We em-
ploy E.q. 11 to incorporate the fusion of multiple subtasks.

In contrast, we employ gating mechanisms and a non-

13539



Bridge Lap. Res. VUA Avg.
Hard-param. sharing 60.21 66.37 75.73 67.44
+ Cross-stitch 60.19 66.46 75.78 67.48
+ Attention 60.61 66.84 76.03 67.83
+ Vanilla Gating 60.38 66.52 76.27 67.72
+ GBM-ours 61.40 67.07 76.69 68.39

Table 7: Different information transformation mechanism
performance on validation sets, measured by ABSA-F1/F1.
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Figure 3: Gated Bridging Mechanism utility analysis.
∆simH,F

i = simH,F
i,fake − simH,F

i,real, where simH,F
i,fake and

simH,F
i,real are cosine similarities between pre-fused (H) and

post-fused (F ) features in Block i in the SMI task-specific
tower. The subscript fake indicates that the hidden states
from an auxiliary task are randomly generated; while the
subscript real indicates that the auxiliary hidden states are
from a real PoS tagging tower. (a) is based on VUA training
set; (b) is based on the validation set.

linear projection on the filtered hidden states from a neigh-
bour tower (see E.q. 8). The hypotheses of GBM are that (1)
hidden states that are from a neighbour tower are possibly
useless for specific private tower learning. The use of gating
mechanisms should filter out the useless hidden states. (2)
Hidden states in different towers are not in the same vector
space. The use of a non-linear projection layer can project
the vector space of a neighbour tower to the vector space of
a private tower.

As seen in Table 7, GBM outperforms other informa-
tion transformation mechanisms by at least 0.56% on av-
erage. The use of reset gate and non-linear projection on
the neighbour tower hidden states yields an average gain of
0.67% compared with vanilla gating. Generally, attention is
more effective than other baseline methods, although vanilla
gating shows a moderately improved performance on the
VUA dataset. Finally, all of these methods surpass the hard-
parameter sharing baseline.

Gated Bridging Mechanism Analysis
We introduce a probing task for SMI to examine if GBM can
reject useless information from randomly generated hidden
states and fuse useful information from the hidden states of

a real PoS tagging tower. Based on a hard-parameter sharing
model with two task specific towers (TB MTL in Table 5),
we employ GBM in the SMI tower. Thus, GBM can transfer
information from the PoS tagging tower to the SMI tower in
each block. For the baseline model, we use randomly gener-
ated hidden states instead of the hidden states that are learnt
from the PoS tagging task tower to indicate that the auxil-
iary task does not yield supportive hidden states for the SMI
task. We hypothesise that GBM can reject the random hid-
den states during the SMI learning.

The hypothesis is tested by comparing cosine similarity
between pre-fused Transformer hidden states (HSMI

i−1 ) and
post-fused features (F SMI

i , see E.q. 10) in the tower of SMI,
where i ∈ {1, 2, 3}. The cosine similarity for matrices is
given by simH,F

i = cosine(HSMI
i−1 , F

SMI
i ), averaged over

sequences in the VUA training and validation sets. A lower
simH,F

i indicates that F SMI
i has gained more information

from the PoS tagging tower, because F SMI
i is more distinct

from HSMI
i−1 after HSMI

i−1 and HPoS
i−1 are passed through GBM

in the SMI tower. On the other hand, a higher simH,F
i signi-

fies that GBM of the SMI tower has rejected more informa-
tion from the PoS tagging tower (HPoS

i−1 ) to fuse with HSMI
i−1 ,

because the post-fused F SMI
i and pre-fused HSMI

i−1 are more
similar. We use ∆simH,F

i to indicate the fused informa-
tion gap of SMI by learning from the PoS tagging auxil-
iary task and the random hidden states, where ∆simH,F

i =

simH,F
i,fake − sim

H,F
i,real.

As seen in Figure 3, ∆simH,F
i remains in positive inter-

vals on both VUA training and validation sets. It shows that
GBM has fused more information from the PoS tagging hid-
den states and rejecting more information from the randomly
generated hidden states across all blocks. Besides, according
to Liu et al. (2019a), high-level DNN layers encode task-
specific features, while low-level layers encode general fea-
tures. The observation that ∆simH,F

1 and ∆simH,F
3 are on

average larger than ∆simH,F
2 shows that a supportive auxil-

iary task provides more useful general and task-specific fea-
tures for the main task in MTL.

Conclusion
We propose a novel Gated Bridging Mechanism (GBM) for
soft-parameter sharing between multi-task learning (MTL)
towers. Based on a Transformer backbone and GBM, our
MTL model outperforms previous baselines on aspect-based
sentiment analysis and sequential metaphor identification
tasks. GBM also yields better performance than previous
soft-parameter sharing methods, e.g., cross-stitch, attention
and vanilla gating based on the same backbone. We pro-
vide insight into hidden states of MTL task-specific towers,
showing that the proposed GBM can functionally gain use-
ful knowledge from the hidden states of a supportive auxil-
iary task, and rejecting useless hidden states. Finally, apply-
ing the weighted sum pooling strategy further improves our
model performance, because it dynamically learns features
from effective layers in an MTL model for each subtask.
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