
Generating Natural Language Attacks in a Hard Label Black Box Setting

Rishabh Maheshwary, Saket Maheshwary and Vikram Pudi
Data Sciences and Analytics Center, Kohli Center on Intelligent Systems

International Institute of Information Technology, Hyderabad, India
{rishabh.maheshwary, saket.maheshwary}@research.iiit.ac.in, vikram@iiit.ac.in

Abstract

We study an important and challenging task of attacking
natural language processing models in a hard label black
box setting. We propose a decision-based attack strategy that
crafts high quality adversarial examples on text classification
and entailment tasks. Our proposed attack strategy leverages
population-based optimization algorithm to craft plausible
and semantically similar adversarial examples by observing
only the top label predicted by the target model. At each it-
eration, the optimization procedure allow word replacements
that maximizes the overall semantic similarity between the
original and the adversarial text. Further, our approach does
not rely on using substitute models or any kind of training
data. We demonstrate the efficacy of our proposed approach
through extensive experimentation and ablation studies on
five state-of-the-art target models across seven benchmark
datasets. In comparison to attacks proposed in prior literature,
we are able to achieve a higher success rate with lower word
perturbation percentage that too in a highly restricted setting.

Introduction
The significance of deep neural networks (DNNs) has
been well established through its success in a variety of
tasks (Kim 2014; Maheshwary, Ganguly, and Pudi 2017;
Abdel-Hamid et al. 2014; Maheshwary and Pudi 2016;
Young et al. 2018; Maheshwary and Misra 2018). However,
recent studies (Szegedy et al. 2013; Papernot et al. 2017)
have shown that DNNs are vulnerable to adversarial exam-
ples — inputs crafted by adding small perturbations to the
original sample. Such perturbations are almost impercepti-
ble to humans but deceive DNNs thus raising major concerns
about their utility in real world applications. While recent
works related to vision and speech have a variety of meth-
ods for generating adversarial attacks, it is still a challenging
task to craft attacks for NLP because of its (1) discrete na-
ture — replacing a single word in a text can completely alter
its semantics and (2) grammatical correctness and fluency.
Adversarial attacks are broadly categorized as white box and
black box attacks. White box attacks require access to the
target model’s architecture, parameters and gradients to craft
adversarial examples. Such attacks are expensive to apply
and requires access to internal details of the target model
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which are rarely available in real world applications. Black
box attacks are further classified into score-based, transfer-
based and decision-based attacks. Score-based attacks gen-
erate adversarial examples using the class probabilities or
confidence score of the target models. Although score-based
attacks do not require detailed model knowledge, the as-
sumption of availability of confidence scores is not realis-
tic. Transfer-based attacks rely on training substitute models
with synthetic training data, which is inefficient and compu-
tationally expensive. Decision-based attacks generate adver-
sarial examples by observing the top label predicted by the
target model and are very realistic.
In this work, we focus on the hard-label black box1 setting in
which the adversary crafts adversarial inputs using only the
top label predicted by the target model. Compared to attacks
in prior literature, hard-label black box attacks (1) requires
no information about the target model’s architecture, gradi-
ents or even class probability scores, (2) requires no access
to training data or substitute models and (3) are more prac-
tical in real-world setting. Due to these constraints, gener-
ating adversarial examples under this setting is highly chal-
lenging. Besides, none of the attacks proposed in previous
works will work in this setting. We tackle this challenging
and highly realistic setting by utilizing a population-based
optimization procedure that optimizes the objective function
by querying the target model and observing the hard-label
outputs only. We verify the grammatical correctness and flu-
ency of generated examples through automatic and human
evaluation. Our main contributions are as follows:

1. We propose a novel decision-based attack setting and gen-
erate plausible and semantically similar adversarial exam-
ples for text classification and entailment tasks.

2. Our mechanism successfully generates adversarial exam-
ples in a hard-label setting without relying on any sort of
training data knowledge or substitute models.

3. Our proposed attack makes use of population-based opti-
mization procedure which maximizes the overall semantic
similarity between the original and the adversarial text.

4. In comparison to previous attack strategies, our attack
achieves a higher success rate and lower perturbation rate
that too in a highly restricted setting.

1Code: github.com/RishabhMaheshwary/hard-label-attack
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The hard label black box setting has been explored recently
in computer vision (Brendel, Rauber, and Bethge 2018;
Cheng et al. 2018) but to the best of our knowledge we are
first to explore it for NLP domain.

Related Work
White-box attacks: Most existing attack strategies rely on
the gradient information of the loss with respect to input to
generate an attack. HotFlip (Ebrahimi et al. 2017) flips a
character in the input which maximizes the loss of the target
model. Following this, (Liang et al. 2017) used gradient in-
formation to find important positions and introduced charac-
ter level perturbations (insertion, deletion and replacement)
on those positions to generate attacks. Inspired by this, (Wal-
lace et al. 2019) does a gradient-guided search over words to
find short trigger sequences. These triggers when concate-
nated with the input, forces the model to generate incorrect
predictions. On similar lines, (Li et al. 2018) computed the
gradient of loss function with respect to each word to find
important words and replaced those with similar words. All
the above attacks require access to the detailed model infor-
mation, which is not realistic.
Score-based attacks: This category requires access to the
target models confidence scores or class probabilities to craft
adversarial inputs. Most score-based attacks generate ad-
versarial examples by first finding important words which
highly impact the confidence score of target model and then
replaces those words with similar words. The replacements
are done till the model mis-classifies the input. At first, (Gao
et al. 2018) introduced DeepwordBug which generates char-
acter level perturbations on the important words in the input.
Later, (Zhang et al. 2019) used Markov chain Monte Carlo
sampling approach to generate adversarial inputs. Then (Ren
et al. 2019) used saliency based word ranking to find impor-
tant words and replaced those with synonyms from Word-
Net (Miller 1995). On similar lines, (Jin et al. 2019) pro-
posed TextFooler which substitutes important word with
synonyms. Recently (Maheshwary, Maheshwary, and Pudi
2020) used a masked language model to substitute impor-
tant words in the input text. Unlike the above strategies, the
work in (Alzantot et al. 2018; Zang et al. 2020) use other op-
timization procedures to craft adversarial inputs. The target
label prediction probability is used as an optimization crite-
ria at each iteration of the optimization algorithm.
Transfer-based attacks: Transfer-based attacks rely on in-
formation about the training data on which the target mod-
els are trained. Prior attacks (Vijayaraghavan and Roy 2019)
train a substitute model to mimic the decision bound-
ary of target classifier. Adversarial attacks are generated
against this substitute model and transferred to target model.
Transfer-based attacks are expensive to apply as they require
training a substitute model. It also relies on the assump-
tion that adversarial examples successfully transfer between
models of different architectures.
Decision-based attacks: Decision-based attacks only de-
pends on the top predicted label of the target classifier. Com-
pared to all the above attack strategies, generating adversar-
ial examples in this strategy is most challenging. The only
relevant prior decision-based attack (Zhao, Dua, and Singh

2017) uses Generative Adversarial Network (GANs) which
are very hard to train and require access to training data.

Problem Formulation
Let F : X → Y , be a target model that classifies an input
text sequence X to a set of class labels Y . Our aim is to
craft an adversarial text sequence X ∗ that is misclassified
by the target model i.e. F(X ) 6= F(X ∗) and is semantically
similar to the original input X . We obtain X ∗ by solving the
following constrained-optimization problem:

max
X∗
S(X ,X ∗) s.t. C(F(X ∗)) = 1 (1)

where the function S computes the semantic similarity be-
tween X and X ∗. C is an adversarial criteria that equals to
1 if X ∗ is out of the target model’s decision boundary and 0
otherwise. The above equation can be reformulated as:

max
X∗
S(X ,X ∗) + δ(C(F(X ∗)) = 1) (2)

where δ(x) = 0 if x is true, otherwise δ(x) = −∞. We can
obtain an adversarial sample X ∗ with minimal perturbation
by optimizing the objective function in the equation 2. Note
that C is a discontinuous function as the model outputs hard-
labels only. This also makes the objective function in equa-
tion 2 discontinuous and difficult to optimize.

Proposed Attack
In a hard label black-box setting, the attacker has no access
to model’s gradients, parameters or the confidence scores of
the target model. Further, the attacker does not have access
to the training data on which the target models are trained.
To generate a successful attack, we formulate this setting as
a constrained optimization problem as shown in equation 2.
The equation 2 optimizes the semantic similarity by query-
ing and observing the final decisions of the target model.
Moreover, the outputs of the target model are insensitive to
small perturbations as the model returns hard labels only
thus posing an ever bigger challenge. We propose a three
step strategy to solve this problem. (A) Initialisation —
Initialize X ∗ outside the target model’s decision boundary,
(B) Search Space Reduction — Moves X ∗ close to the
decision boundary and (C) Population-based optimization
— Maximizes semantic similarity between X and X ∗ until
X ∗ is on the target model’s decision boundary (Figure 1).

Initialisation
In order to generate an adversarial example X ∗, which is
semantically similar to original input X , we restrict the re-
placement of each word with its top 50 synonyms from
the counter-fitted embedding space (Mrkšić et al. 2016).
Synonyms with part-of-speech (POS) tag different from the
original word are filtered out. This ensures that the synonym
fits within the context and the sentence is grammatically cor-
rect. To optimize the objective function in equation 2, X ∗
must satisfy the adversarial criteria C. Therefore, X ∗ is ini-
tialised with a sample that is already out of the target model’s
decision boundary. This is done by substituting a word in X
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Figure 1: Overview of proposed strategy. (A) Adversarial
example obtained after initialisation (B) Adversarial sample
after search space reduction (C) Optimization steps

with a synonym, sampled randomly from its synonym set
Syn(xi). The above step is repeated for other words in X
until X moves out of target’s model decision boundary or
30% of the words in X has been substituted (Algorithm 1,
lines 3-7). Note that we do not replace a word by a random
word or Out of Vocabulary (OOV) token as such a replace-
ment can highly alter the semantics of the text.

Search Space Reduction
Though population-based optimization algorithms are pow-
erful combinatorial optimization techniques, they still slow
down and converge to local optima if the size of the search
space is large. As shown in Figure 2, substituting more
synonyms in X ∗ increases the search space exponentially.
Therefore, in this step we reduce the substitution count in
X ∗ by replacing some of the synonyms back with their re-
spective original words. Following steps are used to reduce
the substitution count in X ∗:

1. Given the initial sample X ∗ = {x1, x2..wi..xn} where
wi denotes the synonym of xi substituted during initiali-
sation. Each synonymwi is replaced back with its original
counterpart xi (Algorithm 1, line 8-10).

2. The text samples which do not satisfy the adversarial cri-
terion are filtered out. From the remaining text samples,
each replacement (wi with xi) is scored based on the se-
mantic similarity betweenXi andX . All the replacements
are sorted in descending order based on this score (Algo-
rithm 1, line 11-13)

3. Synonyms in X ∗ are replaced back with their original
counterpart in the order decided in step 2 until X ∗ sat-
isfies the adversarial criteria (Algorithm 1, line 14-17).

This can be viewed as moving the initial sample X ∗ close
to the decision boundary of the target model. This process is
highly effective as it not only speeds up the optimization al-
gorithm but also prevents it from converging to local optima.

Population Based Optimization
In this section we provide a brief overview of the Genetic
Algorithm (GA) and explain the working of our proposed
optimization procedure in detail.

Algorithm 1 Initialisation and Search Space Reduction
Input: Test sample X , n word count in X
Output: Adversarial sample X ∗

1: indices← Randomly select 30% positions
2: X ∗ ← X
3: for i in indices do
4: w ← random(Syn(xi)) // Sample a synonym
5: X ∗ ← Replace xi with w in X ∗
6: if C(F(X ∗)) = 1 then
7: break
8: for i in indices do
9: Xi ← Replace wi with xi in X ∗

10: scri ← Sim(X ,Xi)
11: if C(F(Xi)) = 1 then
12: Scores.insert(scri, xi)

13: Sort Scores by scri
14: for xi in Scores do
15: Xt ← Replace wi with xi in X ∗
16: if C(F(Xt)) = 0 then
17: break
18: X ∗ ← Xt

19: return X ∗ // After search space reduction

Overview
Genetic Algorithm (GA) is a search based optimization tech-
nique that is inspired by the process of natural selection —
the process that drives biological evolution. GA starts with
an initial population of candidate solutions and iteratively
evolves them towards better solutions. At each iteration, GA
uses a fitness function to evaluate the quality of each can-
didate. High quality candidates are likely to be selected for
generating the next set of candidates through the process of
crossover and mutation. GA has the following four steps:

1. Initialisation: GA starts with an initial set of candidates.

2. Selection: Each candidate is evaluated using a fitness-
function. Two candidates (parents) are selected based
upon their fitness values.

3. Crossover: The selected parents undergoes crossover to
produce the next set of candidates.

4. Mutation: The new candidates are mutated to ensures di-
versity and better exploration of search space. Steps 2-4
are repeated for a specific number of iterations.

We choose GA as an optimization procedure because it’s
directly applicable to discrete input space. Besides, GA is
more intuitive and easy to apply in comparison to other
population-based optimization methods. The method pro-
posed in (Alzantot et al. 2018) uses the probability scores
of the target label for optimizing GA in each iteration of the
optimization step. However, in a hard label black box setting
such an optimization strategy will fail due to unavailability
of probability scores. In this work, GA is used with a com-
pletely different motive — we maximize the semantic simi-
larity between two text sequences. This improves the overall
attack success rate and lowers the perturbation percentage
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that too in a hard label setting where none of the attacks pro-
posed in previous works will work.

Optimization Procedure
Given that the adversarial criteria C is satisfied for X ∗, we
now maximize the semantic similarity betweenX andX ∗ by
optimizing equation 2. This optimization is achieved by re-
placing each substituted synonym in X ∗ back with the orig-
inal word or by a better synonym (of the original word) that
results in higher overall semantic similarity. We now define
three operations mutation, selection and crossover that con-
stitutes one iteration of the optimization step.

Mutation Given input X ∗ = {x1, w2, w3, x4, x5...xn}
and idx ∈ [0, n], the position where mutation needs to
be applied, xi is the original word and widx is the syn-
onym substituted in Algorithm 1. This step aims to find
a better replacement for the substituted synonym widx in
X ∗ such that (1) semantic similarity between X and X ∗
improves and (2) X ∗ satisfies the adversarial criteria. To
achieve this, first the substituted synonym widx in X ∗
is replaced back with the original word xidx. If the new
text sequence satisfies the adversarial criteria, than xidx is
selected as the final replacement for widx. Otherwise, the
substituted synonym widx is replaced with each synonym
from the synonym set Syn(xidx). This results in a set
T = {X ∗1 ,X ∗2 ...X ∗l } where l in the number of synonyms of
xidx and X ∗j = {x1, w2, sidx, x4, x5...xn} where j ∈ [1, l]
is the text sample obtained after replacing widx with a
synonym sidx from the set Syn(xidx). The generated
samples which do not satisfy the adversarial criteria are
filtered out from T . From the remaining samples, all the
samples which improves the overall semantic similarity
score (equation 3) with the original input X is selected.

Sim(X ,X ∗j ) >= Sim(X ,X ∗) for X ∗j ∈ T (3)

If there are multiple samples in T which improves the se-
mantic similarity than the sample with the highest semantic
similarity score is selected as the final mutated sample.

candidate = argmax
X∗

j ∈T
Sim(X ,X ∗j ) (4)

Note that for point 6 in optimization steps, the input to mu-
tation will be a candidate from population set Pi.

Selection Given a population set Pi = {ci0, ci1, ci2...ciK}
where K represents the population size. This step samples
two candidates cip, ciq where p, q ∈ [0,K] based upon the
value assigned by the fitness function. As we optimize the
semantic similarity of an adversarial sequence with the orig-
inal input we take the semantic similarity between the ad-
versarial and the original text as our fitness function.

zy = Sim(X , ciy) where ciy ∈ Pi; y ∈ [0,K] (5)
This will allow candidates with higher semantic similarity
scores to be selected as parents for the crossover step. cip, ciq
are sampled from Pi with probability proportional to φ(z).

φ(z) =
exp(z)∑K

y=0 exp(zy)
(6)

Figure 2: Search space of an adversarial sample X ∗. Dotted
lines shows all possible combinations. Bold lines shows the
selected combination which has the highest semantic simi-
larity with X and satisfies the adversarial criteria C.

Crossover Given cip, ciq this step generates a new
candidate text sequence which satisfies the adversarial
criteria. It randomly selects a word for each position of
candidate from cip and ciq . Crossover is repeated multiple
times to ensure exploration of various combinations in the
search space.

cip = {u10, u11...u1n} (7)

ciq = {u20, u21...u2n} (8)

candidate = {rand(u10, u20)...rand(u1n, u2n)} (9)

where u10, u20 represents the first word in cip and ciq respec-
tively and rand(u10, u

2
0) randomly selects a word.

Optimization Steps For an adversarial text X ∗ generated
from Algorithm 1, GA based optimization executes the fol-
lowing steps.

1. Initally, all the indices of the substituted synonyms in X ∗
is maintained in a set pos.

2. For an index idx in pos, X ∗ is mutated to generate an ad-
versarial sample candidate (equation 4). When executed
for all idx in pos, we get a candidate corresponding to
each idx which constitutes an initial population P0 as
shown in equations 10 and 11. K is population size.

c0m =Mutation(X ∗, idx); idx ∈ pos; m ∈ [0,K]
(10)

P0 = {c00, c01, c02....c0K} (11)

3. A candidate Xfinal with the highest semantic similarity
with X is selected from population Pi.

Xfinal = argmax
cim ∈ Pi

Sim(X , cim) (12)

4. A candidate pair (parents) is sampled independently from
Pi with probability proportional to φ(z).

cip, c
i
q = Selection(Pi) (13)
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5. The two candidates cip, ciq undergoes crossoverK−1 times
to generate the next set of candidates.

ci+1
m = Crossover(cip, c

i
q) (14)

where ci+1
m represents the mth candidate in i+ 1 th step.

Candidates which does not satisfy the adversarial criteria
C and also have less semantic similarity score than Xfinal

are filtered out.

6. For each candidate ci+1
m obtained from step 5, an index

idx is randomly sampled from pos. If the word at index
idx in ci+1

m has not yet been replaced back by the original
word than ci+1

m is mutated at index idx. Otherwise ci+1
m is

passed as such to the next population set Pi+1.

ci+1
m =Mutation(ci+1

m , idx); m ∈ [0,K] (15)

Pi+1 = {Xfinal, c
i+1
0 , ci+1

1 , ci+1
2 ...ci+1

K } (16)

The steps 3 to 6 are than repeated for the next population set
Pi+1. The maximum number of iterations T for the steps
3-6 are set to 100. Further, each index of the substituted syn-
onym is allowed to be mutated at most λ = 25 times as it
avoids the GA to converge to local optimum.

Experiments
We perform experiments across seven benchmark datasets
on five target models and compare our proposed attack strat-
egy with seven state-of-the-art baselines.

Datasets

(1) AG News is a multiclass news classification dataset. The
description and title of each article is concatenated follow-
ing (Zhang, Zhao, and LeCun 2015). (2) Yahoo Answers is
a document level topic classification dataset. The question
and top answer are concatenated following (Zhang, Zhao,
and LeCun 2015). (3) MR is a sentence level binary classifi-
cation of movie reviews (Pang and Lee 2005). (4) IMDB is
a document level binary classification dataset of movie re-
views (Maas et al. 2011). (5) Yelp Reviews is a sentiment
classification dataset (Zhang, Zhao, and LeCun 2015). Re-
views with rating 1 and 2 are labeled negative and 4 and
5 positive as in (Jin et al. 2019). (6) SNLI is a dataset
consisting of hypothesis and premise sentence pairs. (Bow-
man et al. 2015). (7) MultiNLI is a multi-genre NLI cor-
pus (Williams, Nangia, and Bowman 2017).

Dataset Train Test Classes Avg. Len
AG News 120K 7.6K 4 43
Yahoo 12K 4K 10 150
MR 9K 1K 2 20
IMDB 12K 12K 2 215
Yelp 560K 18K 2 152
SNLI 120K 7.6K 3 8
MultiNLI 12K 4K 3 10

Table 1: Statistics of all datasets

Target Models
We attacked WordCNN (Kim 2014), WordLSTM (Hochre-
iter and Schmidhuber 1997) and BERT base-uncased (De-
vlin et al. 2018) for text classification. For WordLSTM, a
single layer bi-direction LSTM with 150 hidden units was
used. In WordCNN windows of sizes 3, 4 and 5 each having
150 filters was used. For both WordCNN and WordLSTM
a dropout rate of 0.3 and 200 dimensional Glove word em-
bedding were used. For textual entailment task, we attacked
ESIM (Chen et al. 2016), InferSent (Conneau et al. 2017)
and BERT base-uncased. The original accuracies of all the
models are shown in Table 2.

Baselines
(1) PSO is a score-based attack that uses sememe-based
substitution and particle swarm optimization (Zang et al.
2020). (2) TextFooler uses target model confidence scores
to rank words and replaces those with synonyms (Jin et al.
2019). (3) PWWS ranks word based on model confidence
scores and finds substitutes using WordNet (Ren et al. 2019).
(4) TextBugger finds important sentences using the confi-
dence scores of the target model and replaces words in
those sentences with synonyms (Li et al. 2018). (5) Genetic
Attack is a score-based attack which crafts attacks using
a population-based optimization algorithm (Alzantot et al.
2018). (6) GANs is a decision-based attacking strategy that
generates adversarial examples using GANs on textual en-
tailment task (Zhao, Dua, and Singh 2017). (7) DeepRL re-
lies on substitute models and reinforcement learning to gen-
erate attacks (Vijayaraghavan and Roy 2019)

Evaluation Metrics We use after attack accuracy to eval-
uate the performance of our proposed attack. It refers to the
accuracy of the target model obtained on the generated ad-
versarial examples. High difference between the original and
after attack accuracy represents a more successful attack.
We use perturbation rate and grammatical correctness to
evaluate the quality of generated adversarial examples. Per-
turbation rate refers to the number of words substituted in
the input to generate an adversarial example. A higher per-
turbation rate degrades the quality of generated adversarial
example. For grammatical correctness we record the gram-
matical error rate increase between the original and the fi-
nal adversarial example. We used Language-Tool1 to calcu-
late the grammatical error rate of each generated adversarial
text. The adversarial examples with very high perturbation
rate (> 25%) are filtered out. For all the evaluation metrics,
we report the average score across all the generated adver-
sarial examples on each dataset. We also conducted human
evaluation to verify the quality of adversarial examples.

Experimental Settings We use Universal Sequence En-
coder (USE) (Cer et al. 2018) to compute the semantic simi-
larity between the original and adversarial example. We filter
out stop words using NLTK and use Spacy for POS tagging.
The target models are attacked on a set of 1000 examples,
sampled from the test set of each dataset. To ensure fair com-
parison these are the same set of examples used in (Alzantot

1https://www.languagetool.org/
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Dataset Attack BERT WordLSTM WordCNN
Orig.% Acc.% Pert.% I% Orig.% Acc.% Pert.% I% Orig.% Acc.% Pert.% I%

MR TF
Ours 86.00 11.5

7.4
16.7
10.7

1.26
1.04 80.7 3.1

2.8
14.90
12.2

1.04
0.93 78.00 2.8

2.5
14.3
11.9

1.27
1.30

IMDB TF
Ours 90.00 13.6

1.1
6.10
3.13

0.5
0.36 89.8 0.3

0.2
5.1
2.9

0.53
0.27 89.20 0.0

0.0
3.50
2.8

0.40
0.37

Yelp TF
Ours 96.50 6.6

5.2
13.9
6.37

1.01
0.62 95.00 2.1

3.2
10.76
6.7

1.07
0.62 93.80 1.1

1.1
8.30
6.44

0.84
0.78

AG TF
Ours 94.20 12.5

5.8
22.0
12.2

1.58
0.74 91.30 3.8

4.1
18.6
12.9

1.35
0.83 91.5 1.5

1.0
15.0
10.2

0.91
0.90

Yahoo TF
Ours 79.10 18.2

8.0
17.7
4.5

1.72
0.44 73.7 16.6

4.2
18.41
6.3

0.94
0.67 71.1 9.2

2.4
15.0
6.1

0.80
0.65

Dataset Attack BERT InferSent ESIM
Orig.% Acc.% Pert.% I% Orig.% Acc.% Pert.% I% Orig.% Acc.% Pert.% I%

SNLI TF
Ours 89.1 4.0

5.2
18.5
16.7

9.7
3.70 84.0 3.5

4.1
18.0
18.2

7.7
3.70 86.0 5.1

4.1
18.1
17.2

8.6
3.62

MNLI TF
Ours 85.1 9.6

5.2
15.4
13.5

7.7
2.79 70.9 6.7

5.1
14.0
13.2

4.7
2.98 77.9 7.7

5.9
14.5
13.1

1.6
2.76

MNLIm TF
Ours 82.1 8.3

4.1
14.6

12.71
7.3

2.56 69.6 6.9
4.5

14.6
12.8

3.6
3.1 75.8 7.3

4.0
14.6
12.6

2.6
2.4

Table 2: Comparison with TextFooler (TF). Orig.% is the original accuracy, Acc.% is the after attack accuracy, Pert.% is the
average perturbation rate and I% is the average grammatical error increase rate. Mnlim is the mis-matched version of MNLI.

Dataset Model Attack Succ.% Pert.%

IMDB

WordLSTM
TextBugger 86.7 6.9

Genetic 97.0 14.7
PSO 100.0 3.71
Ours 99.8 2.9

WordCNN
PWWS 95.5 3.8
DeepRL 79.4 -

Ours 100.0 2.8
BERT PSO 98.7 3.69

Ours 98.9 3.13

SNLI
Infersent

PSO 73.4 11.7
Genetic 70.0 23.0
GANs 69.6 -
Ours 96.6 17.7

BERT PSO 78.9 11.7
Ours 94.8 16.7

AG WordCNN PWWS 43.3 16.7
Ours 99.0 10.2

Yahoo WordCNN PWWS 42.3 25.4
Ours 97.6 6.1

Table 3: Comparison with other baselines. Succ.% is attack
success rate and Pert.% is average word perturbation rate.

et al. 2018; Jin et al. 2019). The parameters of GA, K and λ
were set to 30 and 25 respectively. The maximum iterations
T is set to 100. From each dataset, we held-out 10% data for
validation set, for tuning the hyper-parameters.

Attack Performance Table 2-3 shows that our attack
achieves more than 90% success rate on classification and
entailment tasks. In comparison to TextFooler, our attack re-
duces both the perturbation rate and after attack accuracy
by atleast 33% and 32% respectively across all datasets and
target models. Further, it reduces the grammatical error rate
by 27%. When compared to PSO, on IMDB and SNLI, our
attack achieves 10% more success rate with lesser perturba-
tion rate that too in a highly restricted setting. Table 3 shows
that our attack outperforms other baselines in terms of suc-
cess rate and perturbation rate. Table 4 shows the adversarial
examples generated effectively on BERT.

Ablation Study
Importance of Search Space Reduction: To study the sig-
nificance of search space reduction we executed GA directly
after the initialisation step. Table 5 shows the results ob-
tained on BERT. On an average the perturbation rate in-
creased by 1.2% and the semantic similarity dropped by 0.1.
This is because GA based optimization converges to a local
optimum in most of the cases when search space is large.
Further on an average, GA optimization procedure slows
down by atleast five times due to large search space.
Importance of Genetic Algorithm: To study the impor-
tance of GA, we compare perturbation rate and semantic
similarity both with and without GA based optimization. Ta-
ble 5 demonstrates the results obtained on BERT. By using
GA, the perturbation rate is reduced by 4.4% and the se-
mantic similarity improves by 0.16. Table 5 also shows the
perturbation rate and semantic similarity after initialisation
step. On an average, the perturbation is 20% higher and and
semantic similarity is 0.25 lower. This highlights the com-
bined effect of both GA and search space reduction step to
find optimal adversarial examples. We obtained similar re-
sults across all datasets and target models.

Analysis
Importance of Synonym based Initialisation: During ini-
tialisation, we replace each word in X randomly with it’s
synonym, sampled from top 50 synonyms in the counter-
fitted space. To verify its effectiveness, we remove this con-
straint and allow the word to be replaced with a random word
from the vocabulary. Results achieved on BERT are shown
in Table 6. On an average, the semantic similarity decreases
by 0.1 and the perturbation rate increases by 2.4%.
Transferability: An adversarial example is called transfer-
able if it’s generated against a particular target model but
successfully attacks other target models as well. We evaluate
the transferability of adversarial attacks generated on IMDB
and SNLI datasets. The results are shown in Table 7. A lower
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Examples Prediction
Highly [Exceedingly] watchable stuff. Positive −→ Negative
It’s weird, wonderful, and not necessarily [definitely] for kids. Negative −→ Positive.
Could i use both Avast and Avg to protect my computer [machinery]? I recommend
the free version of Avg antivirus for home users. Technology −→Music.

Premise: Larger ski resorts are 90 minutes away. Entailment −→ Neutral.Hypothesis: If we travel for 90 minutes, we could arrive at larger ski [skating] resorts.
Premise: A portion of the nation’s income is saved by allowing for capital investment. Entailment −→ Neutral.Hypothesis: The nation’s income is divided into portions [fractions].

Table 4: Adversarial samples generated on BERT. The actual word is bold and substituted word are bold and in square brackets.

Ablation Study Metric IMDB Yelp SNLI

no SSR and GA Pert% 20.1 24.3 34.6
Sim 0.6 0.57 0.22

only GA Pert% 4.2 7.2 18.0
Sim 0.81 0.74 0.37

only SSR Pert% 6.0 9.7 21.0
Sim 0.80 0.74 0.26

both SSR and GA Pert% 3.1 6.7 16.7
Sim 0.89 0.80 0.45

Table 5: Importance of the search space reduction (SSR) and
GA step. Pert.% is the average perturbation rate and Sim is
the average semantic similarity.

Dataset Pert.% Sim
with ran w/o ran with ran w/o ran

IMDB 3.7 3.1 0.81 0.89
Yelp 15.3 6.7 0.72 0.80
MR 18.0 10.7 0.53 0.67

Table 6: Effect of random initialisation (ran). Pert.% is aver-
age perturbation and Sim is the average semantic similarity

accuracy of a target model demonstrates high transferability.
Adversarial examples generated by our attacks show better
transferability when compared to prior attacks.
Adversarial Training: We generated adversarial examples
using the 10% samples from the training set of IMDB
and SNLI datasets. We augmented the generated adversar-
ial examples with the original training set of the respective
datasets and re-trained BERT. We than again attacked BERT
with our attack strategy. The results are shown in Figure 3.
The after attack accuracy and perturbation rate increases by
15% and 10% respectively. This shows that by augmenting
adversarial samples to the training data, the target models
becomes more robust to attacks.
Human Evaluation: To validate and access the quality of
adversarial samples, we randomly sampled 25% of the ad-
versarial examples from IMDB and SNLI datasets. The true
class labels of these samples were kept hidden and the evalu-
ators were asked to classify them. We found 96% adversarial
examples in IMDB and 92% in SNLI having the same clas-
sification label as that of their original samples. The evalua-
tors were asked to score each adversarial example on gram-
matical correctness and semantic similarity with the original
example. They were asked to score each example from 1 to
5 based on grammatical correctness and assign a score of 0,
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Figure 3: Demonstrates increase in after attack accuracy and
perturbation as more adversarial samples are augmented.

0.5 and 1 for semantic similarity. Table 8 shows the evalua-
tion results of attacks generated against BERT.

Model BERT W-CNN W-LSTM
BERT - 85.0 86.9

W-CNN 84.6 - 79.1
W-LSTM 80.8 73.6 -

Model BERT ESIM Infersent
BERT - 53.0 38.5
ESIM 54.9 - 38.5

Infersent 67.4 69.5 -

Table 7: Transferability on IMDB (upper half) and SNLI
(lower half) datasets. Row i is the model used to generate
attacks and column j is the model which was attacked.

Evaluation criteria IMDB SNLI
Grammatical Correctness 4.44 4.130

Semantic Similarity 0.93 0.896

Table 8: Demonstrates scores given by evaluators

Conclusion
In this work, we propose a novel decision-based attack that
utilizes population-based optimization algorithm to craft
plausible and semantically similar adversarial examples by
observing only the topmost predicted label. In a hard label
setting, most of the attacks proposed in previous works will
not work as well. Extensive experimentation across multi-
ple target models and benchmark datasets on several state-
of-the-art baselines demonstrate the efficacy and the effec-
tiveness of our proposed attack. In comparison to prior at-
tack strategies, our attack achieves a higher success rate and
lower perturbation rate that too in a highly restricted setting.
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