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Abstract

Chinese short text matching is a fundamental task in natu-
ral language processing. Existing approaches usually take
Chinese characters or words as input tokens. They have two
limitations: 1) Some Chinese words are polysemous, and se-
mantic information is not fully utilized. 2) Some models suffer
potential issues caused by word segmentation. Here we intro-
duce HowNet as an external knowledge base and propose a
Linguistic knowledge Enhanced graph Transformer (LET) to
deal with word ambiguity. Additionally, we adopt the word
lattice graph as input to maintain multi-granularity informa-
tion. Our model is also complementary to pre-trained language
models. Experimental results on two Chinese datasets show
that our models outperform various typical text matching ap-
proaches. Ablation study also indicates that both semantic
information and multi-granularity information are important
for text matching modeling.

1 Introduction
Short text matching (STM) is generally regarded as a task
of paraphrase identification or sentence semantic matching.
Given a pair of sentences, the goal of matching models is to
predict their semantic similarity. It is widely used in question
answer systems (Liu, Rong, and Xiong 2018) and dialogue
systems (Gao et al. 2019; Yu et al. 2014).

Recent years have seen great progress in deep learning
methods for text matching (Mueller and Thyagarajan 2016;
Chen et al. 2017; Gong, Luo, and Zhang 2018; Lan and Xu
2018). However, almost all of these models are initially pro-
posed for English text matching. For Chinese language tasks,
early work utilizes Chinese characters as input to the model,
or first segment each sentence into words, and then take these
words as input tokens. Although character-based models can
overcome the problem of data sparsity to some degree (Li
et al. 2019), the main drawback is that explicit word informa-
tion is not fully utilized, which has been demonstrated to be
useful for semantic matching (Li et al. 2020b).

However, a large number of Chinese words are polyse-
mous, which brings great difficulties to semantic understand-
ing (Xu et al. 2016). Word polysemy in short text is more an
issue than that in long text because short text usually has less
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Figure 1: An example of word segmentation and the potential
word ambiguity.

contextual information, so it is extremely hard for models to
capture the correct meaning. As shown in Fig. 1, the word
in red in sentence-1 actually has two meanings: one is to
describe bragging (exaggeration) and another is moisture. In-
tuitively, if other words in the context have similar or related
meanings, the probability of them will increase. To integrate
semantic information of words, we introduce HowNet (Dong
and Dong 2003) as an external knowledge base. In the view
of HowNet, words may have multiple senses/meanings and
each sense has several sememes to represent it. For instance,
the first sense exaggeration indicates some boast information
in his words. Therefore, it has sememes information and
boast. Similarly, we can also find the sememe boast de-
scribing the sense brag which belongs to the word “ChuiNiu
(bragging)” in sentence-2. In this way, model can better de-
termine the sense of words and perceive that two sentences
probably have the same meaning.

Furthermore, word-based models often encounter some
potential issues caused by word segmentation. If the word seg-
mentation fails to output “ChuiNiu (bragging)” in sentence-2,
we will lose useful sense information. In Chinese, “Chui
(blowing)” “Niu (cattle)” is a bad segmentation, which de-
viates the correct meaning of “ChuiNiu (bragging)”. To
tackle this problem, many researchers propose word lattice
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graphs (Lai et al. 2019; Li et al. 2020a; Chen et al. 2020b),
where they retain words existing in the word bank so that
various segmentation paths are kept. It has been shown that
multi-granularity information is important for text matching.

In this paper, we propose a Linguistic knowledge Enhanced
graph Transformer (LET) to consider both semantic informa-
tion and multi-granularity information. LET takes a pair of
word lattice graphs as input. Since keeping all possible words
will introduce a lot of noise, we use several segmentation
paths to form our lattice graph and construct a set of senses
according to the word. Based on HowNet, each sense has
several sememes to represent it. In the input module, starting
from the pre-trained sememe embeddings provided by Open-
HowNet (Qi et al. 2019), we obtain the initial sense represen-
tation using a multi-dimensional graph attention transformer
(MD-GAT, see Sec. 3.1). Also, we get the initial word rep-
resentation by aggregating features from the character-level
transformer encoder using an Att-Pooling (see Sec. 4.1). Then
it is followed by SaGT layers (see Sec. 4.2), which fuse the
information between words and semantics. In each layer, we
first update the nodes’ sense representation and then updates
word representation using MD-GAT. As for the sentence
matching layer (see Sec. 4.3), we convert word representa-
tion to character level and share the message between texts.
Moreover, LET can be combined with pre-trained language
models, e.g. BERT (Devlin et al. 2019). It can be regarded
as a method to integrate word and sense information into
pre-trained language models during the fine-tuning phase.

Contributions in this work are summarized as: a) We pro-
pose a novel enhanced graph transformer using linguistic
knowledge to moderate word ambiguity. b) Empirical study
on two Chinese datasets shows that our model outperforms
not only typical text matching models but also the pre-trained
model BERT as well as some variants of BERT. c) We demon-
strate that both semantic information and multi-granularity
information are important for text matching modeling, espe-
cially on shorter texts.

2 Related Work
Deep Text Matching Models based on deep learning have
been widely adopted for short text matching. They can
fall into two categories: representation-based methods (He
et al. 2016; Lai et al. 2019) and interaction-based meth-
ods (Wang, Hamza, and Florian 2017; Chen et al. 2017).
Most representation-based methods are based on Siamese ar-
chitecture, which has two symmetrical networks (e.g. LSTMs
and CNNs) to extract high-level features from two sentences.
Then, these features are compared to predict text similarity.
Interaction-based models incorporate interactions features
between all word pairs in two sentences. They generally per-
form better than representation-based methods. Our proposed
method belongs to interaction-based methods.

Pre-trained Language Models, e.g. BERT, have shown
its powerful performance on various natural language pro-
cessing (NLP) tasks including text matching. For Chinese text
matching, BERT takes a pair of sentences as input and each
Chinese character is a separated input token. It has ignored
word information. To tackle this problem, some Chinese

variants of original BERT have been proposed, e.g. BERT-
wwm (Cui et al. 2019) and ERNIE (Sun et al. 2019). They
take the word information into consideration based on the
whole word masking mechanism during pre-training. How-
ever, the pre-training process of a word-considered BERT
requires a lot of time and resources. Thus, Our model takes
pre-trained language model as initialization and utilizes word
information to fine-tune the model.

3 Background
In this section, we introduce graph attention networks (GATs)
and HowNet, which are the basis of our proposed models in
the next section.

3.1 Graph Attention Networks
Graph neural networks (GNNs) (Scarselli et al. 2008) are
widely applied in various NLP tasks, such as text classifca-
tion (Yao, Mao, and Luo 2019), text generation (Zhao et al.
2020), dialogue policy optimization (Chen et al. 2018c,b,
2019, 2020c) and dialogue state tracking (Chen et al. 2020a;
Zhu et al. 2020), etc. GAT is a special type of GNN that
operates on graph-structured data with attention mechanisms.
Given a graph G = (V, E), where V and E are the set of
nodes xi and the set of edges, respectively.N+(xi) is the set
including the node xi itself and the nodes which are directly
connected by xi.

Each node xi in the graph has an initial feature vector
h0
i ∈ Rd, where d is the feature dimension. The representa-

tion of each node is iteratively updated by the graph attention
operation. At the l-th step, each node xi aggregates context
information by attending over its neighbors and itself. The up-
dated representation hl

i is calculated by the weighted average
of the connected nodes,

hl
i = σ

 ∑
xj∈N+(xi)

αl
ij ·
(
Wlhl−1

j

) , (1)

where Wl ∈ Rd×d is a learnable parameter, and σ(·) is
a nonlinear activation function, e.g. ReLU. The attention
coefficient αl

ij is the normalized similarity of the embedding
between the two nodes xi and xj in a unified space, i.e.

αl
ij = softmaxj f lsim

(
hl−1
i , hl−1

j

)
= softmaxj

(
Wl

qh
l−1
i

)T (
Wl

kh
l−1
j

)
,

(2)

where Wl
q and Wl

k ∈ Rd×d are learnable parameters for
projections.

Note that, in Eq. (2), αl
ij is a scalar, which means that all

dimensions in hl−1
j are treated equally. This may limit the

capacity to model complex dependencies. Following Shen
et al. (2018), we replace the vanilla attention with multi-
dimensional attention. Instead of computing a single scalar
score, for each embedding hl−1

j , it first computes a feature-
wise score vector, and then normalizes it with feature-wised
multi-dimensional softmax (MD-softmax),

αl
ij =MD-softmaxj

(
α̂l
ij + f lm

(
hl−1
j

))
, (3)
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where α̂l
ij is a scalar calculated by the similarity function

f lsim(·) in Eq. (2), and f lm(·) is a vector. The addition in
above equation means the scalar will be added to every el-
ement of the vector. α̂l

ij is utilized to model the pair-wised
dependency of two nodes, while f lm(·) is used to estimate the
contribution of each feature dimension of hl−1

j ,

f lm(hl−1
j ) = Wl

2σ
(
Wl

1h
l−1
j + bl

1

)
+ bl

2, (4)

where Wl
1, Wl

2, bl
1 and bl

2 are learnable parameters. With
the score vector αl

ij , Eq. (1) will be accordingly revised as

hl
i = σ

 ∑
xj∈N+(xi)

αl
ij �

(
Wlhl−1

j

) , (5)

where � represents element-wise product of two vectors. For
brevity, we use MD-GAT(·) to denote the updating process
using multi-dimensional attention mechanism, and rewrite
Eq. (5) as follows,

hl
i = MD-GAT

(
hl−1
i ,

{
hl−1
j |xj ∈ N

+(xi)
})
. (6)

After L steps of updating, each node will finally have a
context-aware representation hL

i . In order to achieve a stable
training process, we also employ a residual connection fol-
lowed by a layer normalization between two graph attention
layers.

3.2 HowNet
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Figure 2: An example of the HowNet structure.

HowNet (Dong and Dong 2003) is an external knowledge
base that manually annotates each Chinese word sense with
one or more relevant sememes. The philosophy of HowNet
regards sememe as an atomic semantic unit. Different from
WordNet (Miller 1995), it emphasizes that the parts and at-
tributes of a concept can be well represented by sememes.
HowNet has been widely utilized in many NLP tasks such
as word similarity computation (Liu 2002), sentiment analy-
sis (Fu et al. 2013), word representation learning (Niu et al.
2017) and language modeling (Gu et al. 2018).

An example is illustrated in Fig. 2. The word “Apple”
has two senses including Apple Brand and Apple. The
sense Apple Brand has five sememes including computer,
PatternValue, able, bring and SpecificBrand,
which describe the exact meaning of sense.

4 Proposed Approach
First, we define the Chinese short text matching task
in a formal way. Given two Chinese sentences Ca =
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[SEP]
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Figure 3: The framework of our proposed LET model.

{ca1 , ca2 , · · · , caTa
} and Cb = {cb1, cb2, · · · , cbTb

}, the goal of
a text matching model f(Ca, Cb) is to predict whether the
semantic meaning of Ca and Cb is equal. Here, cat and cbt′ rep-
resent the t-th and t′-th Chinese character in two sentences
respectively, and Ta and Tb denote the number of characters
in the sentences.

In this paper, we propose a linguistic knowledge enhanced
matching model. Instead of segmenting each sentence into
a word sequence, we use three segmentation tools and keep
these segmentation paths to form a word lattice graph G =
(V, E) (see Fig. 4 (a)). V is the set of nodes and E is the set
of edges. Each node xi ∈ V corresponds to a word wi which
is a character subsequence starting from the t1-th character
to the t2-th character in the sentence. As introduced in Sec.
1, we can obtain all senses of a word wi by retrieving the
HowNet.

For two nodes xi ∈ V and xj ∈ V , if xi is adjacent to xj
in the original sentence, then there is an edge between them.
N+

fw(xi) is the set including xi itself and all its reachable
nodes in its forward direction, while N+

bw(xi) is the set in-
cluding xi itself and all its reachable nodes in its backward
direction.

Thus for each sample, we have two graphs Ga = (Va, Ea)
and Gb = (Vb, Eb), and our graph matching model is to
predict their similarity. As shown in Fig. 3, LET consists
of four components: input module, semantic-aware graph
transformer (SaGT), sentence matching layer and relation
classifier. The input module outputs the initial contextual
representation for each word wi and the initial semantic rep-
resentation for each sense. The semantic-aware graph trans-
former iteratively updates the word representation and sense
representation, and fuses useful information from each other.
The sentence matching layer first incorporates word repre-
sentation into character level, and then matches two charac-
ter sequences with the bilateral multi-perspective matching
mechanism. The relation classifier takes the sentence vectors
as input and predicts the relation of two sentences.
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4.1 Input Module
Contextual Word Embedding For each node xi
in graphs, the initial representation of word wi is
the attentive pooling of contextual character repre-
sentations. Concretely, we first concat the original
character-level sentences to form a new sequence
C = {[CLS], ca1 , · · · , caTa

, [SEP], cb1, · · · , cbTb
, [SEP]}, and

then feed them to the BERT model to obtain the contextual
representations for each character {cCLS, ca1 , · · · , caTa

, cSEP,
cb1, · · · , cbTb

, cSEP}. Assuming that the word wi consists of
some consecutive character tokens {ct1 , ct1+1, · · · , ct2}1,
a feature-wised score vector is calculated with a feed
forward network (FFN) with two layers for each character
ck (t1 ≤ k ≤ t2), and then normalized with a feature-wised
multi-dimensional softmax (MD-softmax),

uk = MD-softmaxk (FFN(ck)) , (7)
The corresponding character embedding ck is weighted with
the normalized scores uk to obtain the contextual word em-
bedding,

vi =

t2∑
k=t1

uk � ck, (8)

For brevity, we use Att-Pooling(·) to rewrite Eq. (7) and Eq.
(8) for short, i.e.

vi = Att-Pooling ({ck|t1 ≤ k ≤ t2}) . (9)
Sense Embedding The word embedding vi described in
Sec. 4.1 contains only contextual character information,
which may suffer from the issue of polysemy in Chinese.
In this paper, we incorporate HowNet as an external knowl-
edge base to express the semantic information of words.

For each word wi, we denote the set of senses as
S(wi) = {si,1, si,2, · · · , si,K}. si,k is the k-th sense of wi

and we denote its corresponding sememes as O(si,k) =
{o1i,k, o2i,k, · · · , oMi,k}. In order to get the embedding si,k for
each sense si,k, we first obtain the representation om

i,k for
each sememe omi,k with multi-dimensional attention function,

om
i,k = MD-GAT

(
emi,k,

{
em

′

i,k |om
′

i,k ∈ O(si,k)
})

, (10)

where emi,k is the embedding vector for sememe omi,k produced
through the Sememe Attention over Target model (SAT) (Niu
et al. 2017). Then, for each sense si,k, its embedding si,k
is obtained with attentive pooling of all sememe representa-
tions,

si,k = Att-Pooling
({

om
i,k|omi,k ∈ O(si,k)

})
. (11)

4.2 Semantic-aware Graph Transformer
For each node xi in the graph, the word embedding vi only
contains the contextual information while the sense embed-
ding si,k only contains linguistic knowledge. In order to
harvest useful information from each other, we propose a
semantic-aware graph transformer (SaGT). It first takes vi

and si,k as initial word representation h0
i for word wi and

initial sense representation g0
i,k for sense si,k respectively,

and then iteratively updates them with two sub-steps.
1For brevity, the superscript of ck (t1 ≤ k ≤ t2) is omitted.
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Figure 4: (a) is an example of lattice graph. (b) shows the
process of sense updating. fw2 and bw2 refer to the words in
forward and backward directions of w2 respectively. uw2 is
the words that w2 cannot reach. (c) is word updating; we will
not update the corresponding word representation if the word
is not in HowNet.

Updating Sense Representation At l-th iteration, the first
sub-step is to update sense representation from gl−1

i,k to gl
i,k.

For a word with multiple senses, which sense should be
used is usually determined by the context in the sentence.
Therefore, when updating the representation, each sense will
first aggregate useful information from words in forward and
backward directions of xi,

ml,fw
i,k = MD-GAT

(
gl−1
i,k ,

{
hl−1
j |xj ∈ N

+
fw(xi)

})
,

ml,bw
i,k = MD-GAT

(
gl−1
i,k ,

{
hl−1
j |xj ∈ N

+
bw(xi)

})
,

(12)

where two multi-dimensional attention functions
MD-GAT(·) have different parameters. Based on
ml

i,k = [ml,fw
i,k ,ml,bw

i,k ] 2, each sense updates its rep-
resentation with a gate recurrent unit (GRU) (Cho et al.
2014),

gl
i,k = GRU

(
gl−1
i,k , m

l
i,k

)
. (13)

It is notable that we don’t directly use ml
i,k as the new

representation gl
i,k of sense si,k. The reason is that ml

i,k only
contains contextual information, and we need to utilize a gate,
e.g. GRU, to control the fusion of contextual information and
semantic information.

Updating Word Representation The second sub-step is
to update the word representation from hl−1

i to hl
i based on

the updated sense representations gl
i,k (1 ≤ k ≤ K). The

word wi first obtains semantic information from its sense
representations with the multi-dimensional attention,

ql
i = MD-GAT

(
hl−1
i ,

{
gl
i,k|si,k ∈ S(wi)

})
, (14)

2[·, ·] denotes the concatenation of vectors.
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and then updates its representation with a GRU:

hl
i = GRU

(
hl−1
i , ql

i

)
. (15)

The above GRU function and the GRU function in Eq. (13)
have different parameters.

After multiple iterations, the final word representation hL
i

contains not only contextual word information but also se-
mantic knowledge. For each sentence, we use ha

i and hb
i to

denote the final word representation respectively.

4.3 Sentence Matching Layer
After obtaining the semantic knowledge enhanced word rep-
resentation ha

i and hb
i for each sentence, we incorporate this

word information into characters. Without loss of generality,
we will use characters in sentence Ca to introduce the process.
For each character cat , we obtain ĉat by pooling the useful
word information,

ĉat = Att-Pooling
({

ha
i |wa

i ∈ W(cat )
})

, (16)

where W(cat ) is a set including words which contain the
character cat . The semantic knowledge enhanced character
representation yt is therefore obtained by

ya
t = LayerNorm (cat + ĉat ) , (17)

where LayerNorm(·) denotes layer normalization, and cat is
the contextual character representation obtained using BERT
described in Sec. 4.1.

For each character cat , it aggregates information from sen-
tence Ca and Cb respectively using multi-dimensional atten-
tion,

mself
t = MD-GAT (ya

t , {ya
t′ |cat′ ∈ Ca}) ,

mcross
t = MD-GAT (ya

t , {yb
t′ |cbt′ ∈ Cb}) .

(18)

The above multi-dimensional attention functions MD-GAT(·)
share same parameters. With this sharing mechanism, the
model has a nice property that, when the two sentences are
perfectly matched, we have mself

t ≈mcross
t .

We utilize the multi-perspective cosine distance (Wang,
Hamza, and Florian 2017) to compare mself

t and mcross
t ,

dk = cosine
(
wcos

k �mself
t ,wcos

k �mcross
t

)
, (19)

where k ∈ {1, 2, · · · , P} (P is number of perspectives).
wcos

k is a parameter vector, which assigns different weights
to different dimensions of messages. With P distances
d1, d2, · · · , dP , we can obtain the final character representa-
tion,

ŷa
t = FFN

([
mself

t ,dt

])
, (20)

where dt , [d1, d2, · · · , dP ], and FFN(·) is a feed forward
network with two layers.

Similarly, we can obtain the final character representa-
tion ŷb

t for each character cbt in sentence Cb. Note that the
final character representation contains three kinds of infor-
mation: contextual information, word and sense knowledge,
and character-level similarity. For each sentence Ca or Cb,
the sentence representation vector ra or rb is obtained using
the attentive pooling of all final character representations for
the sentence.

4.4 Relation Classifier
With two sentence vectors ra, rb, and the vector cCLS ob-
tained with BERT, our model will predict the similarity of
two sentences,

p = FFN
([
cCLS, ra, rb, ra � rb, |ra − rb|

])
, (21)

where FFN(·) is a feed forward network with two hidden
layers and a sigmoid activation after output layer.

With N training samples {Cai , Cbi , yi}Ni=1, the training ob-
ject is to minimize the binary cross-entropy loss,

L = −
N∑
i=1

(yilog (pi) + (1− yi) log (1− pi)) , (22)

where yi ∈ {0, 1} is the label of the i-th training sample and
pi ∈ [0, 1] is the prediction of our model taking the sentence
pair {Cai , Cbi } as input.

5 Experiments
5.1 Experimental Setup
Dataset We conduct experiments on two Chinese short text
matching datasets: LCQMC (Liu et al. 2018) and BQ (Chen
et al. 2018a).

LCQMC is a question matching corpus with large-scale
open domain. It consists of 260068 Chinese sentence pairs
including 238766 training samples, 8802 development sam-
ples and 12500 test samples. Each pair is associated with a
binary label indicating whether two sentences have the same
meaning or share the same intention. Positive samples are
30% more than negative samples.

BQ is a domain-specific large-scale corpus for bank ques-
tion matching. It consists of 120000 Chinese sentence pairs
including 100000 training samples, 10000 development sam-
ples and 10000 test samples. Each pair is also associated
with a binary label indicating whether two sentences have the
same meaning. The number of positive and negative samples
are the same.

Evaluation metrics For each dataset, the accuracy (ACC.)
and F1 score are used as the evaluation metrics. ACC. is
the percentage of correctly classified examples. F1 score of
matching is the harmonic mean of the precision and recall.

Hyper-parameters The input word lattice graphs are pro-
duced by the combination of three segmentation tools:
jieba (Sun 2012), pkuseg (Luo et al. 2019) and thulac (Li
and Sun 2009). We use the pre-trained sememe embedding
provided by OpenHowNet (Qi et al. 2019) with 200 dimen-
sions. The number of graph updating steps/layers L is 2 on
both datasets, and the number of perspectives P is 20. The
dimensions of both word and sense representation are 128.
The hidden size is also 128. The dropout rate for all hidden
layers is 0.2. The model is trained by RMSProp with an ini-
tial learning rate of 0.0005 and a warmup rate of 0.1. The
learning rate of BERT layer is multiplied by an additional
factor of 0.1. As for batch size, we use 32 for LCQMC and
64 for BQ. 3

3Our code is available at https://github.com/lbe0613/LET.
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Models Pre-Training Interaction BQ LCQMC
ACC. F1 ACC. F1

Text-CNN(He et al. 2016) × × 68.52 69.17 72.80 75.70
BiLSTM(Mueller and Thyagarajan 2016) × × 73.51 72.68 76.10 78.90
Lattice-CNN (Lai et al. 2019) × × 78.20 78.30 82.14 82.41
BiMPM (Wang, Hamza, and Florian 2017) ×

√
81.85 81.73 83.30 84.90

ESIM (Chen et al. 2017) ×
√

81.93 81.87 82.58 84.49
LET (Ours) ×

√
83.22 83.03 84.81 86.08

BERT-wwm (Cui et al. 2019)
√ √

84.89 84.29 86.80 87.78
BERT-wwm-ext (Cui et al. 2019)

√ √
84.71 83.94 86.68 87.71

ERNIE (Sun et al. 2019)
√ √

84.67 84.20 87.04 88.06
BERT(Devlin et al. 2019)

√ √
84.50 84.00 85.73 86.86

LET-BERT (Ours)
√ √

85.30 84.98 88.38 88.85

Table 1: Performance of various models on LCQMC and BQ test datasets. The results are average scores using 5 different seeds.
All the improvements over baselines are statistically significant (p < 0.05).

5.2 Main Results

We compare our models with three types of baselines:
representation-based models, interaction-based models and
BERT-based models. The results are summarized in Table 1.
All the experiments in Table 1 and Table 2 are running five
times using different seeds and we report the average scores
to ensure the reliability of results. For the baselines, we run
them ourselves using the parameters mentioned in Cui et al.
(2019).

Representation-based models include three baselines
Text-CNN, BiLSTM and Lattice-CNN. Text-CNN (He et al.
2016) is one type of Siamese architecture with Convolutional
Neural Networks (CNNs) used for encoding each sentence.
BiLSTM (Mueller and Thyagarajan 2016) is another type of
Siamese architecture with Bi-directional Long Short Term
Memory (BiLSTM) used for encoding each sentence. Lattice-
CNN (Lai et al. 2019) is also proposed to deal with the
potential issue of Chinese word segmentation. It takes word
lattice as input and pooling mechanisms are utilized to merge
the feature vectors produced by multiple CNN kernels over
different n-gram contexts of each node in the lattice graph.

Interaction-based models include two baselines: BiMPM
and ESIM. BiMPM (Wang, Hamza, and Florian 2017) is a
bilateral multi-perspective matching model. It encodes each
sentence with BiLSTM, and matches two sentences from
multi-perspectives. BiMPM performs very well on some nat-
ural language inference (NLI) tasks. There are two BiLSTMs
in ESIM (Chen et al. 2017). The first one is to encode sen-
tences, and the other is to fuse the word alignment informa-
tion between two sentences. ESIM achieves state-of-the-art
results on various matching tasks. In order to be compara-
ble with the above models, we also employ a model where
BERT in Fig. 3 is replaced by a traditional character-level
transformer encoder, which is denoted as LET.

The results of the above models are shown in the first part
of Table 1. We can find that our model LET outperforms all
baselines on both datasets. More specifically, the performance
of LET is better than that of Lattice-CNN. Although they

both utilize word lattices, Lattice-CNN only focuses on local
information while our model can utilize global information.
Besides, our model incorporates semantic messages between
sentences, which significantly improves model performance.
As for interaction-based models, although they both use the
multi-perspective matching mechanism, LET outperforms
BiMPM and ESIM. It shows the utilization of word lattice
with our graph neural networks is powerful.

BERT-based models include four baselines: BERT,
BERT-wwm, BERT-wwm-ext and ERNIE. We compare them
with our presented model LET-BERT. BERT is the official
Chinese BERT model released by Google. BERT-wwm is a
Chinese BERT with whole word masking mechanism used
during pre-training. BERT-wwm-ext is a variant of BERT-
wwm with more training data and training steps. ERNIE is
designed to learn language representation enhanced by knowl-
edge masking strategies, which include entity-level masking
and phrase-level masking. LET-BERT is our proposed LET
model where BERT is used as a character level encoder.

The results are shown in the second part of Table 1. We
can find that the three variants of BERT (BERT-wwm, BERT-
wwn-ext, ERNIE) all surpass the original BERT, which sug-
gests using word level information during pre-training is
important for Chinese matching tasks. Our model LET-BERT
performs better than all these BERT-based models. Compared
with the baseline BERT which has the same initialization pa-
rameters, the ACC. of LET-BERT on BQ and LCQMC is
increased by 0.8% and 2.65%, respectively. It shows that
utilizing sense information during fine-tuning phrases with
LET is an effective way to boost the performance of BERT
for Chinese semantic matching.

We also compare results with K-BERT (Liu et al. 2020),
which regards information in HowNet as triples {word, con-
tain, sememes} to enhance BERT, introducing soft position
and visible matrix during the fine-tuning and inferring phases.
The reported ACC. for the LCQMC test set of K-BERT is
86.9%. Our LET-BERT is 1.48% better than that. Differ-
ent from K-BERT, we focus on fusing useful information
between word and sense.
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Seg. Sense ACC. F1
jieba

√
87.84 88.47

pkuseg
√

87.72 88.40
thulac

√
87.50 88.27

lattice
√

88.38 88.85
lattice × 87.68 88.40

Table 2: Performance of using different segmentation on
LCQMC test dataset.

5.3 Analysis
In our view, both multi-granularity information and semantic
information are important for LET. If the segmentation does
not contain the correct word, our semantic information will
not exert the most significant advantage.

Firstly, to explore the impact of using different segmenta-
tion inputs, we carry out experiments using LET-BERT on
LCQMC test set. As shown in Table 2, when incorporating
sense information, improvement can be observed between
lattice-based model (the fourth row) and word-based mod-
els: jieba, pkuseg and thulac. The improvements of lattice
with sense over other models in Table 2 are all statistically
significant (p < 0.05). The possible reason is that lattice-
based models can reduce word segmentation errors to make
predictions more accurate.

Secondly, we design an experiment to demonstrate the
effectiveness of incorporating HowNet to express the seman-
tic information of words. In the comparative model without
HowNet knowledge, the sense updating module in SaGT is
removed, and we update word representation only by a multi-
dimensional self-attention. The last two rows in Table 2 list
the results of combined segmentation (lattice) with and with-
out sense information. The performance of integrating sense
information is better than using only word representation.
More specifically, the average absolute improvement in ACC.
and F1 scores are 0.7% and 0.45%, respectively, which indi-
cates that LET has the ability to obtain semantic information
from HowNet to improve the model’s performance. Besides,
compared with using a single word segmentation tool, se-
mantic information performs better on lattice-based model.
The probable reason is lattice-based model incorporates more
possible words so that it can perceive more meanings.

We also study the role of GRU in SaGT. The ACC. of
removing GRU in lattice-based model is 87.82% on aver-
age, demonstrating that GRU can control historical messages
and combine them with current information. Through experi-
ments, we find that the model with 2 layers of SaGT achieves
the best. It indicates multiple information fusion will refine
the message and make the model more robust.

Influences of text length on performance As listed in Ta-
ble 3, we can observe that text length also has great impacts
on text matching prediction. The experimental results show
that the shorter the text length, the more obvious the im-
provement effect of utilizing sense information. The reason
is, on the one hand, concise texts usually have rare contex-
tual information, which is difficult for model to understand.

text length number of
samples

ACC. RER(%)w/o sense sense
< 16 2793 88.99 90.05 9.63

16− 18 3035 88.49 89.25 6.60
19− 22 3667 88.58 89.04 4.03
> 22 3005 84.53 85.13 3.88

Table 3: Influences of text length on LCQMC test dataset. Rel-
ative error reduction (RER) is calculated by sense−w/o sense

100−w/o sense ×
100%.

However, HowNet brings a lot of useful external informa-
tion to these weak-context short texts. Therefore, it is easier
to perceive the similarity between texts and gain great im-
provement. On the other hand, longer texts may contain more
wrong words caused by insufficient segmentation, leading to
incorrect sense information. Too much incorrect sense infor-
mation may confuse the model and make it unable to obtain
the original semantics.

Case study We compare LET-BERT between the model
with and without sense information (see Fig. 5). The model
without sense fails to judge the relationship between sen-
tences which actually have the same intention, but LET-BERT
performs well. We observe that both sentences contain the
word “yuba”, which has only one sense described by se-
meme food. Also, the sense of “cook” has a similar sememe
edible narrowing the distance between texts. Moreover,
the third sense of “fry” shares the same sememe cook with
the word “cook”. It provides a powerful message that makes
“fry” attend more to the third sense.

A: 腐竹和什么煮好吃？
What is delicious to 
cook with yuba?

B: 腐竹和什么炒好吃
Fried yuba and what 
is delicious

Text Sememe (part)

腐竹(yuba)

煮(cook)

炒(fry)

Sense1：食品(food)

Sense1：冒险(venture) 供(provide) 
商业(commerce) 资金(fund)

赚(earn) 多(many)

Sense2：开除(discharge) 

Sense3：烹调(cook)

Sense1：食物(edible) 烹调(cook) 

Label: 1 (match) Prediction: w/o sense: 0 (mismatch) sense: 1 (match)

Figure 5: An example of using sense information to get the
correct answer.

6 Conclusion
In this work, we proposed a novel linguistic knowledge en-
hanced graph transformer for Chinese short text matching.
Our model takes two word lattice graphs as input and inte-
grates sense information from HowNet to moderate word
ambiguity. The proposed method is evaluated on two Chinese
benchmark datasets and obtains the best performance. The
ablation studies also demonstrate that both semantic informa-
tion and multi-granularity information are important for text
matching modeling.
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2019. AgentGraph: Toward universal dialogue management
with structured deep reinforcement learning. IEEE/ACM
Transactions on Audio, Speech, and Language Processing
27(9): 1378–1391.

Chen, L.; Lyu, B.; Wang, C.; Zhu, S.; Tan, B.; and Yu, K.
2020a. Schema-Guided Multi-Domain Dialogue State Track-
ing with Graph Attention Neural Networks. In AAAI, 7521–
7528.

Chen, L.; Tan, B.; Long, S.; and Yu, K. 2018c. Structured
Dialogue Policy with Graph Neural Networks. In Proceed-
ings of the 27th International Conference on Computational
Linguistics (COLING), 1257–1268.

Chen, L.; Zhao, Y.; Lyu, B.; Jin, L.; Chen, Z.; Zhu, S.; and
Yu, K. 2020b. Neural Graph Matching Networks for Chinese
Short Text Matching. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics,
6152–6158.

Chen, Q.; Zhu, X.; Ling, Z.-H.; Wei, S.; Jiang, H.; and Inkpen,
D. 2017. Enhanced LSTM for Natural Language Inference.
In Proceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers),
1657–1668.

Chen, Z.; Chen, L.; Liu, X.; and Yu, K. 2020c. Distributed
Structured Actor-Critic Reinforcement Learning for Univer-
sal Dialogue Management. IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing 28: 2400–2411.
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