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Abstract

Commonsense AI has long been seen as a near impossible
goal—until recently. Now, research interest has sharply in-
creased with an influx of new benchmarks and models.
We propose two new ways to evaluate commonsense models,
emphasizing their generality on new tasks and building on
diverse, recently introduced benchmarks. First, we propose a
new multitask benchmark, RAINBOW, to promote research on
commonsense models that generalize well over multiple tasks
and datasets. Second, we propose a novel evaluation, the cost
equivalent curve, that sheds new insight on how the choice
of source datasets, pretrained language models, and transfer
learning methods impacts performance and data efficiency.
We perform extensive experiments—over 200 experiments
encompassing 4800 models—and report multiple valuable
and sometimes surprising findings, e.g., that transfer almost
always leads to better or equivalent performance if follow-
ing a particular recipe, that QA-based commonsense datasets
transfer well with each other, while commonsense knowledge
graphs do not, and that perhaps counter-intuitively, larger
models benefit more from transfer than smaller ones.
Last but not least, we introduce a new universal com-
monsense reasoning model, UNICORN, that establishes new
state-of-the-art performance across 8 popular commonsense
benchmarks, αNLI (→87.3%), COSMOSQA (→91.8%),
HELLASWAG (→93.9%), PIQA (→90.1%), SOCIALIQA
(→83.2%), WINOGRANDE (→86.6%), CYCIC (→94.0%)
and COMMONSENSEQA (→79.3%).

1 Introduction
In AI’s early years, researchers sought to build machines
with common sense (McCarthy 1959); however, in the fol-
lowing decades, common sense came to be viewed as a near
impossible goal. It is only recently that we see a sudden in-
crease in research interest toward commonsense AI, with an
influx of new benchmarks and models (Mostafazadeh et al.
2016; Talmor et al. 2019; Sakaguchi et al. 2020).

This renewed interest in common sense is ironically en-
couraged by both the great empirical strengths and limita-
tions of large-scale pretrained neural language models. On
one hand, pretrained models have led to remarkable progress
across the board, often surpassing human performance on
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Figure 1: Cost equivalent curves comparing transfer learn-
ing from GLUE, SUPERGLUE, and RAINBOW onto COM-
MONSENSEQA. Each curve plots how much training data
the single-task baseline (the x-axis) needs compared to the
multitask method (the y-axis) to achieve the same perfor-
mance (shown on the top axis in accuracy). Curves below
the diagonal line (y = x) indicate that the multitask method
needs less training data from the target dataset than the
single-task baseline for the same performance. Thus, lower
curves mean more successful transfer learning.

leaderboards (Radford et al. 2018; Devlin et al. 2019; Liu
et al. 2019b; Raffel et al. 2019). On the other hand, pre-
trained language models continue to make surprisingly silly
and nonsensical mistakes, even the recently introduced GPT-
3.1 This motivates new, relatively under-explored research
avenues in commonsense knowledge and reasoning.

In pursuing commonsense AI, we can learn a great deal
from mainstream NLP research. In particular, the introduc-
tion of multitask benchmarks such as GLUE (Wang et al.
2019b) and SUPERGLUE (Wang et al. 2019a) has encour-
aged fundamental advances in the NLP community, acceler-
ating research into models that robustly solve many tasks
and datasets instead of overfitting to one in particular. In
contrast, commonsense benchmarks and models are rela-
tively nascent, thus there has been no organized effort, to

1https://www.technologyreview.com/2020/08/22/1007539/
gpt3-openai-language-generator-artificial-intelligence-ai-opinion/
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date, at administering a collection of diverse commonsense
benchmarks and investigating transfer learning across them.

We address exactly this need, proposing two new ways
to evaluate commonsense models with a distinct emphasis
on their generality across tasks and domains. First, we pro-
pose a new multi-task benchmark, RAINBOW, to facilitate
research into commonsense models that generalize well over
multiple different tasks and datasets. Second, we propose
a novel evaluation, the cost equivalent curve, that sheds
new insight on how different choices of source datasets, pre-
trained language models, and transfer learning methods af-
fect performance and data efficiency in the target dataset.

The primary motivation for cost equivalent curves is data
efficiency. The necessary condition for state-of-the-art neu-
ral models to maintain top performance on any dataset is
a sufficiently large amount of training data for fine-tuning.
Importantly, building a dataset for a new task or a domain
is an expensive feat, easily costing tens of thousands of dol-
lars (Zellers et al. 2018). Therefore, we want the models to
generalize systematically across multiple datasets, instead of
relying solely on the target dataset.

Shown in Figure 1, the cost equivalent curve aims to an-
swer the following intuitive question: how much data does
a transfer learning approach save over the baseline that
doesn’t benefit from transfer learning? We provide a more
detailed walk-through of this chart in §2. As will be seen,
cost equivalent curves have distinct advantages over sim-
ple evaluations at the full dataset size or classical learning
curves drawn for each method and dataset separately, as they
provide more accurate comparative insights into data effi-
ciency in the context of multitasking and transfer learning.

We leverage these new tools to reevaluate common
approaches for intermediate-task transfer (Pruksachatkun
et al. 2020). Through extensive experiments, we identify
multiple valuable and sometimes surprising findings, e.g.,
that intermediate-task transfer can always lead to better or
equivalent performance if following a particular recipe, that
QA-based commonsense datasets transfer well to each other,
while commonsense knowledge graphs do not, and that per-
haps counter-intuitively, larger models benefit much more
from transfer learning compared to smaller ones.

In addition to the empirical insights, we also intro-
duce a new universal commonsense reasoning model:
UNICORN, establishing new state-of-the-art performances
across 8 benchmarks: αNLI (87.3%) (Bhagavatula et al.
2020), COSMOSQA (91.8%) (Huang et al. 2019), HEL-
LASWAG (93.9%) (Zellers et al. 2019), PIQA (90.1%)
(Bisk et al. 2020), SOCIALIQA (83.2%) (Sap et al. 2019b),
WINOGRANDE (86.6%) (Sakaguchi et al. 2020), CY-
CIC (94.0%),2 as well as the popular COMMONSENSEQA
dataset (79.3%) (Talmor et al. 2019). Beyond setting records
with the full training sets, our ablations show UNICORN also
improves data efficiency for all training dataset sizes.

For reproducibility, we publicly release the UNICORN
model and code, all the experimental results, and the RAIN-
BOW leaderboard at https://github.com/allenai/rainbow.

2The CYCIC dataset and leaderboard are available at https://
leaderboard.allenai.org/cycic.

2 Cost Equivalent Curves
Cost equivalent curves show equivalent costs between the
single-task baseline and a new transfer-based approach. In
this work, we define cost as the number of training examples
in the target dataset. Intuitively, we want to measure how
many examples the new approach needs to match the single-
task baseline’s performance as the amount of data varies.

Figure 1 illustrates cost equivalent curves with COMMON-
SENSEQA as the target dataset. The x-axis shows the num-
ber of examples used by the single-task baseline, while the
y-axis shows the examples from the target dataset used by
the new multitask method. The curve is where they achieve
the same performance. The numbers on top of the figure
show the performance corresponding to the number of base-
line examples from the x-axis. For example, with 4.9k exam-
ples, the baseline achieves 70% accuracy. For any number of
examples the baseline might use, we can see how many ex-
amples the new approach would require to match it. In Fig-
ure 1, to match the baseline’s performance on ∼10k exam-
ples, multitasking with RAINBOW requires about 5k, while
multitasking with GLUE requires more than 10k. Thus,
lower is better, with curves below the diagonal (y = x) in-
dicating that the new method improves over the baseline.

The construction of cost equivalent curves makes one
technical assumption: the relationship between performance
and cost is continuous and strictly monotonic (i.e., increas-
ing or decreasing). This assumption holds empirically for
parameters, compute, and data (Kaplan et al. 2020). Thus,
we can safely estimate each learning curve with isotonic re-
gression (Barlow et al. 1972), then construct the cost equiv-
alent curve by mapping each dataset size to the baseline
performance, finding the matching performance on the new
method’s curve, and seeing how many examples are re-
quired.

Cost equivalent curves visualize how a new approach im-
pacts the cost-benefit trade-off, i.e. examples required for a
given performance. This reframes the goal from pushing up
performance on a fixed-size benchmark to most efficiently
solving the problem. While we focus on data efficiency in
this work, the idea of cost equivalent curves can be applied
to other definitions of cost as well (e.g., GPU compute).

3 RAINBOW
We define RAINBOW, a suite of commonsense benchmarks,
with the following datasets. To keep evaluation clean-cut,
we only chose multiple-choice question-answering datasets.
αNLI (Bhagavatula et al. 2020) tests abductive reasoning
in narratives. It asks models to identify the best explana-
tion among several connecting a beginning and ending.

COSMOSQA (Huang et al. 2019) asks commonsense read-
ing comprehension questions about everyday narratives.

HELLASWAG (Zellers et al. 2019) requires models to
choose the most plausible ending to a short context.

PIQA (Bisk et al. 2020) is a multiple-choice question an-
swering benchmark for physical commonsense reasoning.

SOCIALIQA (Sap et al. 2019b) evaluates commonsense
reasoning about social situations and interactions.
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Figure 2: A comparison of transfer methods on RAINBOW tasks with T5-LARGE. Each plot varies the data available for one
task while using all data from the other five to generate the cost equivalent curve. Performance is measured by dev set accuracy.

TRANSFER αNLI COSMOSQA HELLASWAG PIQA SOCIALIQA WINOGRANDE

multitask 78.4 81.1 81.3 80.7 74.8 72.1
fine-tune 79.2 82.6 83.1 82.2 75.2 78.2
sequential 79.5 83.2 83.0 82.2 75.5 78.7
none 77.8 81.9 82.8 80.2 73.8 77.0

Table 1: A comparison of transfer methods’ dev accuracy (%) on the RAINBOW tasks, using the T5-LARGE model.

WINOGRANDE (Sakaguchi et al. 2020) is a large-scale
collection of Winograd schema-inspired problems requir-
ing reasoning about both social and physical interactions.

4 Empirical Insights
We present results from our large-scale empirical study,
using pretrained T5-LARGE to transfer between datasets.
We’ve grouped our findings and their relevant figures around
the four following thematic questions.

4.1 What’s the Best Approach for Transfer?
We compare three recipes for intermediate-task transfer:

(1) multitask training (Caruana 1995): training on multi-
ple datasets (including the target dataset) all at once,

(2) sequential training (Pratt, Mostow, and Kamm 1991):
first training on multiple datasets (excluding the target

dataset) through multitask training, and then continuing
to train on the target dataset alone,

(3) multitask fine-tuning (Liu et al. 2019a): first training
on all datasets (including the target dataset) through mul-
titask training, and then continuing to fine-tune on the tar-
get dataset alone.

Figure 2 compares these three methods on each of the six
RAINBOW tasks, using the other five datasets for transfer.

Finding 1: Sequential training almost always matches or
beats other approaches. Generally, sequential and mul-
titask fine-tune training use fewer examples to achieve the
same performance as multitask training or the single task
baseline. For some tasks (αNLI and SOCIALIQA), all three
methods perform similarly; however, on the rest, sequential
and multitask fine-tune training greatly improve data effi-
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Figure 3: A comparison of multisets’ transfer to RAINBOW tasks using sequential training with T5-LARGE. Performance is
measured by dev set accuracy. For transfer from RAINBOW, we hold out the end task from the first round of fine-tuning.

MULTISET αNLI COSMOSQA HELLASWAG PIQA SOCIALIQA WINOGRANDE

GLUE 78.5 81.4 82.3 80.8 74.3 77.7
SUPERGLUE 79.1 82.2 82.5 80.7 74.6 77.6
RAINBOW 79.5 83.2 83.0 82.2 75.5 78.7
single task 77.8 81.9 82.8 80.2 73.8 77.0

Table 2: A comparison of dev accuracy for multisets’ transfer to RAINBOW via sequential training with T5-LARGE.

ciency. While sequential and multitask fine-tune training are
often comparable, sequential training appears to be slightly
more data efficient, both from comparing cost equivalent
curves in Figure 2 and full dataset performance in Table 1.

Finding 2: Sequential training rarely hurts performance.
While multitask training doesn’t always beat the single task
baseline, sequential and multitask fine-tune training uni-
formly outperform it—for all RAINBOW tasks and dataset
sizes (including full datasets). This pattern mostly holds with
other source and target tasks, especially for sequential train-
ing which rarely significantly harms performance.

Finding 3: Multitask training helps most often in the low-
data regime. One mystery researchers currently face is
the inconsistent effect of multitask learning: sometimes it

helps, sometimes it hurts, sometimes it has no effect. Cost
equivalent curves reveal one potential explanation: multi-
task learning tends to help when data is scarce, but may
hurt performance if data is plentiful. In Figure 2, all cost
equivalent curves initially require fewer examples than the
single-task baseline (the y = x line), while on some tasks
(HELLASWAG and WINOGRANDE) multitasking even-
tually needs more data than the baseline. Table 1 rein-
forces this story, where multitask learning hurts performance
on three of the six tasks (COSMOSQA, HELLASWAG,
and WINOGRANDE), with WINOGRANDE dropping from
77.0% to 72.1% accuracy. The fact that such trends depend
on things like data size shows the importance of examining
a range of scenarios: changing the context can even reverse
one’s conclusions.
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Figure 4: Cost equivalent curves comparing the effect of transfer across differently sized models on COMMONSENSEQA.

4.2 What Transfers Best for Common Sense?

Understanding when datasets transfer well is still an open
and active area of research (Vu et al. 2020; Pruksachatkun
et al. 2020). At present, modelers usually pick datasets that
seem similar to the target, whether due to format, domain,
or something else. To investigate common sense transfer,
we compare how the RAINBOW tasks transfer to each other
against two other popular dataset collections: GLUE and
SUPERGLUE. Following the insights from Section 4.1, we
use the strongest transfer method, sequential training, for the
comparison. Figure 3 presents cost equivalent curves and Ta-
ble 2 provides full dataset numbers.

Finding 4: RAINBOW transfers best for common sense.
Across all six RAINBOW tasks and all training set sizes, the
RAINBOW tasks transfer better to each other than GLUE
and SUPERGLUE do to them. The same result also holds
for the popular benchmark COMMONSENSEQA when mul-
titask training (Figure 1); though, when multitasking with
JOCI (Zhang et al. 2017), an ordinal commonsense variant
of natural language inference, RAINBOW appears either not
to help or to slightly hurt data efficiency—potentially more
so than GLUE and SUPERGLUE.3

Finding 5: Only RAINBOW uniformly beats the baseline.
With sequential training and T5-BASE or larger, RAINBOW
improves data efficiency and performance for every task
considered. Importantly, this pattern breaks down when mul-
titask training, for which no multiset uniformly improved
performance. Thus, sequential training can unlock useful
transfer even in contexts where multitask training cannot.
Likewise, smaller models demonstrated less transfer, as dis-
cussed further in Section 4.3. Consequently, T5-SMALL (the
smallest model) did not always benefit. In contrast to RAIN-
BOW, GLUE and SUPERGLUE often had little effect or
slightly decreased data efficiency.

3For these additional experiments, see the extended experimen-
tal results at https://github.com/allenai/rainbow.

Caveats about GLUE, SUPERGLUE, and T5. There’s
an important caveat to note about T5, the model used in
our experiments, and its relationship to GLUE and SUPER-
GLUE. The off-the-shelf T5’s weights come from multitask
pretraining, where many tasks are mixed with a language
modeling objective to learn a powerful initialization for the
weights. In fact, both GLUE and SUPERGLUE were mixed
into the pretraining (Raffel et al. 2019). So, while RAINBOW
clearly improves data efficiency and performance, our exper-
iments do not determine whether some of the benefit comes
from the novelty of RAINBOW’s knowledge to T5, as op-
posed to containing more general information than GLUE
and SUPERGLUE.

4.3 Does Model Size Affect Transfer?
Most of our exhaustive experiments use T5-LARGE (770M
parameters), but in practice, we might prefer to use smaller
models due to computational limitations. Thus, we inves-
tigate the impact of model size on intermediate-task trans-
fer using the T5-BASE (220M parameters) and T5-SMALL
(60M parameters) models. Figure 4 presents the results for
transferring with different model sizes from RAINBOW to
COMMONSENSEQA.

Finding 6: Larger models benefit more from transfer.
Since larger pretrained models achieve substantially higher
performance, it’s difficult to compare transfer’s effect across
model size. The baselines start from very different places.
Cost equivalent curves place everything in comparable units,
equivalent baseline cost (e.g., number of training examples).
Capitalizing on this fact, Figure 4 compares transfer from
RAINBOW to COMMONSENSEQA across model size. The
cost equivalent curves reveal a trend: larger models seem to
benefit more from transfer, saving more examples over the
relevant baselines. Since smaller models require more gradi-
ent updates to converge (Kaplan et al. 2020), it’s important
to note that we held the number of gradient updates fixed for
comparison. Exploring whether this trend holds in different
contexts, as well as theoretical explanations, are promising
directions for future work.
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Figure 5: Cost equivalent curves comparing transfer from generative training on different common sense knowledge graphs
using multitask training with T5-LARGE, across different RAINBOW tasks. Performance is measured by dev set accuracy.

KNOWLEDGE GRAPH αNLI COSMOSQA HELLASWAG PIQA SOCIALIQA WINOGRANDE

ATOMIC 78.3 81.8 82.8 79.9 75.0 78.2
CONCEPTNET 78.0 81.8 82.5 80.5 74.3 76.3
BOTH 78.0 81.8 82.7 81.1 74.8 76.6

single task 77.8 81.9 82.8 80.2 73.8 77.0

Table 3: A comparison of dev accuracy when generatively training on knowledge graphs in a multitask setup using T5-LARGE.

Finding 7: Sequential training wins across model sizes.
Figure 4 expands Finding 1, that sequential training gener-
ally matches or beats the other transfer approaches, by sup-
porting it across model sizes. In all three plots, sequential
training appears in line with or better than the other transfer
methods.

4.4 Can Models Transfer from Knowledge
Graphs to QA Datasets?

Due to reporting bias (Gordon and Van Durme 2013), com-
mon sense rarely appears explicitly in text, though it does
appear implicitly. While language models learn much of the
common sense implicit in natural language (Trinh and Le
2018), crowdsourced and expert curated knowledge might
provide complementary information. To investigate, we ex-
plored multitask transfer from two popular common sense
knowledge graphs, CONCEPTNET (Speer, Chin, and Havasi
2017) and ATOMIC (Sap et al. 2019a). Using the knowl-
edge graphs, we created subject-relation-object triples and

had the model generate either the subject or object from the
other two components (Bosselut et al. 2019). Each triple’s
parts were wrapped in XML-like tags and concatenated be-
fore being fed into the model. The results are summarized in
Figure 5 and Table 3.

Finding 8: Knowledge graph multitasking shows lit-
tle impact. The results are generally negative. Only SO-
CIALIQA benefits, which might come from the use of
ATOMIC during its construction. We offer two possible
explanations: the serialized language from the knowledge
graphs is not in a QA format, and the knowledge graph com-
pletion task is generative while all other tasks are discrimi-
native. These discrepancies may present too large an obsta-
cle for effective transfer. Our findings encourage future re-
search to better close the gap between knowledge graphs and
datasets. Given sequential training’s strength, as exemplified
in Findings 1, 2, and 7, it may lead to different results than
the multitask transfer we explore here.
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5 UNICORN
Finally, we present our universal commonsense reasoning
model, UNICORN. Motivated by Finding 1, our primary goal
with UNICORN is to provide a pretrained commonsense rea-
soning model ready to be fine-tuned on other downstream
commonsense tasks. This is analogous to how off-the-shelf
T5 models are multitasked on NLP benchmarks such as
GLUE and SUPERGLUE as part of their pretraining.

In order to see the limit of the best performance achiev-
able, we start by multitasking T5-11B on RAINBOW. We
then trained UNICORN on each task individually, except for
WINOGRANDE which required separate handling since it
evaluates models via a learning curve. For WINOGRANDE,
we multitasked the other five RAINBOW datasets and then
trained on WINOGRANDE.4 In each case, we used the same
hyper-parameters as UNICORN did during its initial multi-
task training, extending each of the 8 combinations tried at
that stage. The best checkpoints were chosen using accuracy
on dev.

SOTA on RAINBOW. We establish new SOTA on all
RAINBOW datasets: αNLI (87.3%), COSMOSQA (91.8%),
HELLASWAG (93.9%), PIQA (90.1%), SOCIALIQA
(83.2%), and WINOGRANDE (86.6%).5

SOTA on datasets beyond RAINBOW. While SOTA re-
sults on RAINBOW are encouraging, we still need to check
if UNICORN’s strong performance is confined to RAINBOW
or generalizes beyond it. Thus, we evaluated on two ad-
ditional commonsense benchmarks: CYCIC (94.0%) and
COMMONSENSEQA (79.3%). Again, UNICORN achieved
SOTA on both.

6 Related Work
Scaling Laws In contemporary machine learning, simple
methods that scale often outperform complex ones (Sutton
2019). Accordingly, recent years have seen a sharp rise in
compute used by state-of-the-art methods (Amodei and Her-
nandez 2018). Performance gains from increasing data, pa-
rameters, and training are not only reliable, but empirically
predictable (Hestness et al. 2017; Sun et al. 2017; Rosen-
feld et al. 2020; Kaplan et al. 2020). For example, Sun et al.
(2017) found that models need exponential data for improve-
ments in accuracy.6 These observations, that scaling is reli-
able, predictable, and critical to the current successes, moti-
vate our focus on evaluation based on cost-benefit trade-offs,
i.e. the cost equivalent curve.

Commonsense Benchmarks Rapid progress in modeling
has led to a major challenge for NLP: the creation of suit-
able benchmarks. Neural models often cue off statistical bi-
ases and annotation artifacts to solve datasets without un-

4While sequential training for the RAINBOW tasks would likely
yield the best results, it would have required much more compute.

5All tasks use accuracy for evaluation except WINOGRANDE
which uses area under the dataset size–accuracy learning curve.

6Eventually, models saturate and need super-exponential data.

derstanding tasks (Gururangan et al. 2018). To address this
issue, recent commonsense benchmarks often use adversar-
ial filtering (Zellers et al. 2018; Le Bras et al. 2020): a
family of techniques that remove easily predicted examples
from datasets. Besides COSMOSQA, all RAINBOW tasks use
this technique. Many more common sense benchmarks ex-
ist beyond what we could explore here (Roemmele, Bejan,
and Gordon 2011; Levesque, Davis, and Morgenstern 2011;
Mostafazadeh et al. 2016).

Transfer Learning Semi-supervised and transfer learning
have grown into cornerstones of NLP. Early work learned
unsupervised representations of words (Brown et al. 1992;
Mikolov et al. 2013), while more recent work employs
contextualized representations from neural language mod-
els (Peters et al. 2018). Radford et al. (2018) demonstrated
that language models could be fine-tuned directly to solve
a wide-variety of tasks by providing the inputs encoded as
text, while Devlin et al. (2019) and others improved upon
the technique (Yang et al. 2019; Liu et al. 2019b; Lan et al.
2019). Most relevant to this work, Raffel et al. (2019) in-
troduced T5 which built off previous work to reframe any
NLP task as text-to-text, dispensing with the need for task-
specific model adaptations.

Data Efficiency & Evaluation Other researchers have
noted the importance of cost-benefit trade-offs in evalua-
tion (Schwartz et al. 2019). Dodge et al. (2019) advocate re-
porting the compute-performance trade-off caused by hyper-
parameter tuning for new models, and provide an estimator
for expected validation performance as a function of hyper-
parameter evaluations. In an older work, Clark and Matwin
(1993) evaluated the use of qualitative knowledge in terms
of saved training examples, similarly to our cost equivalent
curves. In contrast to our work, they fitted a linear trend to
the learning curve and counted examples saved rather than
plotting the numbers of examples that achieve equivalent
performance.

7 Conclusion
Motivated by the fact that increased scale reliably im-
proves performance for neural networks, we reevaluated ex-
isting techniques based on their data efficiency. To enable
such comparisons, we introduced a new evaluation, the cost
equivalent curve, which improves over traditional learning
curves by facilitating comparisons across otherwise hard-
to-compare contexts. Our large-scale empirical study ana-
lyzed state-of-the-art techniques for transfer on pretrained
language models, focusing on learning general, common-
sense knowledge and evaluating on common sense tasks.
In particular, we introduced a new collection of common
sense datasets, RAINBOW, and using the lessons from our
empirical study trained a new model, UNICORN, improving
state-of-the-art results across 8 benchmarks. We hope oth-
ers find our empirical study, new evaluation, RAINBOW, and
UNICORN useful in their future work.
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