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Abstract

Previous CCG supertaggers usually predict categories using
multi-class classification. Despite their simplicity, internal
structures of categories are usually ignored. The rich semantics
inside these structures may help us to better handle relations
among categories and bring more robustness into existing su-
pertaggers. In this work, we propose to generate categories
rather than classify them: each category is decomposed into
a sequence of smaller atomic tags, and the tagger aims to
generate the correct sequence. We show that with this finer
view on categories, annotations of different categories could
be shared and interactions with sentence contexts could be
enhanced. The proposed category generator is able to achieve
state-of-the-art tagging (95.5% accuracy) and parsing (89.8%
labeled F1) performances on the standard CCGBank. Further-
more, its performances on infrequent (even unseen) categories,
out-of-domain texts and low resource language give promising
results on introducing generation models to the general CCG
analyses.

Introduction
Supertagging is the first step of parsing natural language with
Combinatory Categorial Grammar (Steedman 2000) (Figure
1). The morpho-syntax enriched categories are of great in-
terest not only because they can help to build hierarchical
representations of sentences, but also because they provide
a compact and concise way to encode syntactic functions
behind words. As many other data-driven NLP models, ap-
plications of CCG analyses are constrained with the quality
of annotations and the pre-defined category set. Here, for
helping parsing texts in various domains, we aim to improve
the robustness of current taggers and extend their abilities on
discovering new unknown categories.

The primary model for CCG supertagging is sequence
labeling: a classifier autoregressively predicts categories of
sentence words. Internal structures of categories, however,
are often ignored in this classification-based methods. As a
key feature of CCG, these structures are actually quite infor-
mative for handling relations among categories. For example,
the two categories in Figure 2 are different, but the functions
they represent have the same combining strategy (first takes
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Figure 1: An example of CCG supertagging and parsing.
“United” and “Miami” are noun phrases (NP). The transition
verb “serves” has a category (supertag) “(SKNP)/NP” which
means it first combines a right NP, then combines a left NP,
and finally forms a sentence S.
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Figure 2: Two categories with similar internal structures. The
left represents a transitive verb, and the right represents a
preposition attached to a noun phrase.

an argument from left, then from right) and identical argu-
ment types (two NPs). For building data-driven taggers, this
fine-grained view on categories is able to expose more shared
information and thus helps to build a more robust model. For
instance, we may rely on internal structures to improve per-
formance of infrequent categories by transferring knowledge
from more frequent categories (which are learned more ro-
bustly). We can also use them to induce unknown categories
by building new structures or filling new arguments, which is
impossible for existing supertaggers.

Following Kogkalidis, Moortgat, and Deoskar (2019) work
on fine-grained type-logical category generation, in this pa-
per, we propose generation paradigms for CCG supertagging.
Instead of viewing categories as simple class labels, we de-
compose them into smaller atomic tags. Predicting a category
is now equal to generate the corresponding atomic tag se-
quence. For example, one decomposition of (NPKNP)/NP
could be [(, NP, K, NP, ), /, NP] which is identical to the same
decomposition of category (SKNP)/NP except the first NP
is replaced by S. Based on the tag sequences, the classifier
can know more about the shared and the private learning sig-
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nals of the two tags (e.g., by using new loss functions based
on internal structures). It also provides a simple method to
recognize new categories.

We introduce two types of category generator, the tag-wise
generator (like NMT) which predicts atomic tags at each gen-
eration step and the transition-based generator (like parsing)
which runs a transition system to get tag sequences in prov-
able correct form. We also study a spectrum of atomic tag
sets (from the smallest tokens to the original categories, from
deterministic to non-deterministic) to illustrate the potential
power of category generators: it is a flexible framework to
study how categories are formed and applied. Comparing
with vanilla sentence-level sequence to sequence generation
(Kogkalidis, Moortgat, and Deoskar 2019; Bhargava and
Penn 2020), the proposed generators consider hierarchical
structures of categories (transition-based) and issue multiple
decoders for sentence words (faster and suitable for capturing
the property of ‘localized’ syntax structure).

Experiments on the CCGBank show that supertagging with
generation can outperform a strong classification baseline.
With various decoding oracles and a simple reranker, the
tagger achieves the state-of-the-art supertagging accuracy
(95.5%, without using additional external resources, 96.1%
with BERT). Furthermore, on low frequency and unseen cat-
egories, the category generator is significantly better than the
traditional category classifier. On out-of-domain texts (Wiki
and biomedical texts) and an Italian dataset, the category
generator can also perform more robustly.

Category Classifier
In CCG analyses, supertagging is known as almost parsing
(Bangalore and Joshi 1999): most syntax ambiguities will
be solved if correct categories (supertags) are assigned to
each word in a text. Given a sentence x = x1, x2, ..., xn, a
supertagger predicts a tag sequence t = t1, t2, ..., tn where
xi is a word and ti is xi’s category taking from a category
set T .

In this section, we introduce a typical category classifi-
cation model (Lewis, Lee, and Zettlemoyer 2016). It basi-
cally first encodes sentence words into vectors, then per-
forms a multi-class category classification on them. Each
word xi is mapped to a vector (also denoted by xi) by
concatenating a randomly initialized vector, a pre-trained
word embedding, and a CNN-based character embedding.
A two-layer Bi-LSTM on x is then applied to obtain hid-

den states hi = [
→
hi;
←
hi],

→
hi = LSTM(xi,

→
hi−1,

→
θ ),

←
hi =

LSTM(xi,
←
hi−1,

←
θ ). After a softmax operator, we obtain the

probability of a category p(ti|x), and apply the loss function
L = −

∑
i log p(ti|x).

In this vanilla setting of sequence labeling, the relation
between two tags t′ and t′′ is discarded. As a consequence,
annotations of t′ give no suggestion on correctly tagging t′′.
For example, if t′, t′′ are not the true tag, they will suffer
a same loss even one of them has more overlapping with
the gold category (Figure 2). As we have discussed, internal
structures of categories can make the fine-grained sharing of
annotation possible. In the following section, we are going to
incorporate them in the process of CCG supertagging.

Category Generator
To explore the inner structures of categories, we first decom-
pose them into smaller atomic tags1. For example, a category
(NPKNP)/NP (prepositions attached to noun phrases) can be
seen as a sequence,

[(, NP, K, NP, ), /, NP].
One advantage of such decomposition is that now the tag has
a connection with a different category (SKNP)/NP. Specif-
ically, a model can recognize that both of the categories
require a left NP. Atomic tags make these connections ex-
plicit (rather than hidden in model parameters) and provide a
way for including them in taggers.

Atomic tags can also make recognizing unknown category
possible. For categories not shown in the pre-defined label
set, the classification model can never predict them correctly.
However, by decomposing into atomic tags, even if a category
is not presented in the label set, it is highly possible that
subsequences of the category have been seen in the training
set, which enables the model to generate correct unknown
categories.

Different from Kogkalidis, Moortgat, and Deoskar (2019),
we propose to deploy decoders for each individual word in-
stead of decoding a single sequence for all words. Our setting
may have following advantages, first of all, it is less sensi-
tive to error propagation among tags due to the decoupling
of the decoding sequence. Second, tags can be parallelized
in the same sentence . Third, the decoder can explicitly in-
clude knowledge of the current word which fits the idea of
assigning tags to words.

Formally, we define Ta to be an atomic tag set of the orig-
inal set T if for every category t in T , it can be expressed
with a sequence of atomic tags in Ta,2 t = a1, a2, ..., am

where aj ∈ Ta. For a sentence word xi, our tagger’s object
changes to generate the correct sequence of atomic tags. We
deploy two types of sequence decoders for the category gen-
eration task. The first type follows the tag-by-tag generation
paradigm. It is simple and fast, but the generated sequences
are not guaranteed to be well-formed. The second type runs
a transition system. The validity of its output is guaranteed
with the cost of additional computation steps and hard to
batch.

Tag-wise Generator
The tag-wise generator starts an LSTM at every xi. Let
gji be the j-th hidden state of the generator, gji =
LSTM(gj−1i , dji , θ), where dji = [hi; a

j−1
i ], hi is the hid-

den state vector of xi from the encoder (which keeps the
generator watching xi at each step), and aj−1i represents the
embedding of the output tag from the previous generation
step. The probability of an atomic tag is defined as,

p(aji = a|x) = Softmaxa∈Ta w
ᵀ
ag

j
i . (1)

1To avoid confusion, we always use atomic tag to refer to tokens
in a (arbitrary) decomposition of original categories, and following
the CCGBank’s user manual (Hockenmaier and Steedman 2005),
we use atomic category to refer categories without arguments (e.g.,
S, NP, N, PP, see the manual for a full definition), which is denoted
by A.

2An “EOS” is attached to every sequence as a stop sign.
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axiom: ε : 0
goal: ε : t (t 6= 0)

gen(a)
σ : t

σ = ε or top(σ) is an operator
σ|a : t+ 1

op(X)
σ|s0 : t

s0 is not an operator
σ|s0|X : t+ 1

reduce
σ|s1|X|s0 : t

σ|Xs1,s0 : t+ 1

stop
σ : t len(σ) = 1

ε : t+ 1

Table 1: The transition system of generating categories.

The loss function is L = −
∑

i

∑
j log p(a

j
i |x). Comparing

with the loss of classification model, the loss here is computed
on the finer atomic tags, which can assign credit for partially
correct category predictions.

Furthermore, the generator is able to handle relations be-
tween sentence contexts and categories in a better way. For
example, when generating the second NP in NP/NP, it might
be helpful to know whether words on the left form a noun
phrase. Due to the decomposition of categories, each atomic
tag is able to search related information from the sentence.
We apply attention layers to help such context-aware category
generation. Specifically, at step j of the category generator
on word i, we use hidden state gj−1i to query which sentence
words are more important for predicting the next atomic tag,
αj,l
i = Softmaxl∈[1,n](w

ᵀ tanh(W1g
j−1
i +W2hl)), where

w,W1,W2 are parameters. A soft aggregation of all encoder
vectors hl becomes a part of the generator’s input

dji = [hi; aj−1i ;
∑n

l=1 α
j,l
i hl]. (2)

In order to reduce computation costs, we could also compute
a single attention vector using hi as query and apply it in ev-
ery generation step, αl

i = Softmaxl∈[1,n](w
ᵀ tanh(W1hi +

W2hl))

dji = [hi; aj−1i ;
∑n

l=1 α
l
ihl]. (3)

Transition-based Generator
We can also explicitly explore tree structures of categories
during the generation. In fact, by seeing combination op-
erators (“/”, “K”) as non-terminals, atomic categories as
terminals, categories resemble (binarized) constituent trees.
We can therefore adopt parsing algorithms to obtain a well-
formed categories, which is generally not guaranteed in tag-
wise generators. Here, we investigate an in-order transition
system (Liu and Zhang 2017), which is a variant of the top-
down system (Dyer et al. 2016).

Table 1 illustrates the deduction rules of the transition-
based generator. Each transition state contains a stack σ and
the current timestep t. gen(a) generates an atomic category
a ∈ A1 and pushes a to the stack σ. op(X) generates a
combination operator X ∈ {/, K} and push X to σ. reduce
combines the top three elements of σ and concatenates them

T Stack Buffer Action
0 gen(S)
1 S S op(K)
2 S|K S gen(NP)
3 S|K|NP S|NP reduce
4 SKNP S|NP op(/)
5 SKNP|/ S|NP gen(NP)
6 SKNP|/|NP S|NP|NP reduce
7 (SKNP)/NP S|NP|NP stop

Figure 3: An example of category (SKNP)/NP for transition-
based generator.

to the output t. stop is the stopping rule. An example of
transition is shown in Figure 3.

At each step of the generation, a classifier predicts which
action to perform. Following Dyer et al. (2016), we use a
stack-LSTM to encode stack states. The detailed configura-
tion is in the supplementary due to the lack of space.

Discussions The transition-based generator produces cate-
gories with provably correct form, which is not guaranteed
in the tag-wise generator. On the other side, the tag-wise
generator is easier to batch and much faster. Empirically, we
find that the problem of illegal categories is not severe in the
tag-wise generation: all 1-best outputs of the generator are
legal and only 0.05% of 4-best outputs are wrong. In fact, like
recent practice of sequence-style parsing (Zhang, Cheng, and
Lapata 2017; Fernández-González and Gómez-Rodrı́guez
2019; Shen et al. 2018), it is possible to drop structure con-
straints with a well-learned sequence decoder. Categories
are usually short (average length is 4) and their number is
also limited (103). All these factors increase the chance of
obtaining well-formed categories directly from the tag-wise
generator. We thus focus on this simpler implementation.

We also note that it’s straightforward to apply advanced
encoder structures(in fact, we apply BERT(Devlin et al. 2019)
in our experiments). However, we would like to think the
main contribution here is to study CCG Supertagging from a
new perspective, rather than a new generation model.

Decoding Oracles
One key point in category generators is how to define the
atomic tag set Ta which determines the learning targets (or-
acles) of the decoder. For the transition-based generator, Ta
is simply the transition action set. In the following, we are
going to show different settings of Ta for the tag-wise gen-
erator. Following the semantics of CCG, we have a natural
choice of Ta,

Ta = A ∪ {(, ), K, /}, (AC)

where A contains atomic categories1 of the grammar.
It’s easy to see that each category t ∈ T corresponds

to a unique atomic tag sequence from AC, which forms a
deterministic oracle for the category generator.

We can enrich AC, for example, with some parentheses ex-
pressions (e.g., “NPKNP” in category “(NPKNP)/NP”) in the
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original category (which may help to handle some common
local syntactic functions),

Ta = AC ∪ Pk, (PA)

where P = {τ |(τ) is a substring of a t ∈ T }, Pk is the sub-
set of P with top-k frequent items.

Furthermore, we could also either completely ignore the se-
mantics of categories by adding their n-grams or completely
accept them by adding all items in T ,

Ta = AC ∪N n
k , (NG)

Ta = AC ∪ T , (OR)

whereNn = {τ |τ is a n-gram of a t ∈ T },Nn
k is the subset

of N with top-k frequent n-grams.
Unlike AC, when Ta is set to PA, NG and OR, a category

t may have more than one correct sequences. For example,
with PA, the tag (NP/NP)KNP may have two gold standard
atomic tag sequences, [(, NP/NP, ), K, NP] and [(, NP, /, NP,
), K, NP].

We can still pick a deterministic oracle by applying
some heuristic rules. Here, the deterministic oracles always
perform the longest forward matching (i.e., with a prefix
a1, a2, . . . , aj , aj+1 is set to a feasible atomic tag with the
longest length).3 On the other hand, we also investigate non-
deterministic oracles for training the tag-wise generator. In-
stead of using a fixed oracle during the entire training process,
we select oracles randomly for each category, and all oracles
will participate in the learning of the supertagger.

Re-ranker
To combine a category generator and the category classifier,
we further introduce a simple re-ranker. First, using beam
search, we can obtain k-best categories from the category
generator. For each category t = a1, a2, · · · , am, we assign
it a confidence score using probabilities of tags (Equation 1),
ut =

1
mν

∑m
j=1 log p(a

j |x) where ν ≤ 1 is a hyperparame-
ter using to penalize long tag sequences.

Next, we use the category classifier to obtain category t’s
probability log p(t|x) as its confidence score vt. The final
score of t is defined as the weighted sum of the two scores
λut+(1−λ)vt. The category with the highest score is taken
as the final output. We set ν = 0.15, λ = 0.9 by selecting
them on the development data.

Experiments
Datasets and Criteria We conduct experiments mainly on
CCGBank (Hockenmaier and Steedman 2007). We follow the
standard splits of CCGBank using section 02-21 for training
set, section 00 for development set, and section 23 for test set.
There are 1285 different categories in training set, following
the previous taggers, we only choose 425 of them which
appear no less than 10 times in the training set, and assign
UNK to the remaining tags.

For out-of-domain evaluation, we use the Wikipedia corpus
(Clark et al. 2009) and the Bioinfer corpus (Rimell and Clark

3We assume there is only one tag with the longest length.

Model Dev Test Size Speed
C&C 91.50 92.02 -
Lewis, Lee, and Zettlemoyer (2016) 94.10 94.30 48.88 -

+tri-training 94.90 94.70 - -
Vaswani et al. (2016) 94.24 94.50 - -
Wu, Zhang, and Zong (2017a) 94.50 94.71 99.16 -
Wu, Zhang, and Zong (2017b) 94.72 95.08 189.37 -
CC 94.89 95.21 77.11 466
CG 95.10 95.28 79.94 199
CGNG2 95.26∗ 95.44∗ 80.02 199
CT 94.06 94.09 77.97 21
rerank 95.27∗ 95.48∗ - 199

Pre-training
Clark et al. (2018) - 96.10 - -
Bhargava and Penn (2020) 96.27 96.00 - -

BERT+CC 96.01 95.93 78.62 231
BERT+CG 96.13 95.97 81.35 131
BERT+CGNG2 96.18 95.99 81.53 131
BERT+CT 95.28 94.91 79.48 17
BERT+rerank 96.24∗ 96.05∗ - 131

Table 2: Comparing with existing supertaggers. Model sizes
are the number of parameters (MB). Speeds are in sentence
per second. We use BERT-base without fine-tuning. All re-
sults of our models are averaged over 3 runs. * indicates
significantly better.

2009).4 We also test our models on the news corpus of the
Italian CCGBank(Johan, Bosco, and Mazzei 2009), We use
the token-POS-category tuples file from the Italian news
corpus.5

The main criterion for evaluation is tag accuracy. To mea-
sure statistical significance, we employ t-test (Dror et al.
2018) with p < 0.05.6 The settings of network hyperparame-
ters are in the supplementary. We compare several models,
• CC, the category classifier in Section .
• CG, the tag-wise generator with deterministic oracle AC.
• CGNG2, the tag-wise generator with deterministic NG

(k = 10, n = 2).
• CT, the transition-based system in Section .
• rerank, combining CG and CGNG2 with the ranker (beam

size is 4).

Main Results
Table 2 lists overall performances on CCGBank. C&C is
a non-neural-network-based CCG parser, (Lewis, Lee, and
Zettlemoyer 2016) is a LSTM-based supertagger similar to
our CC model (with less parameters). It also uses tri-training-
based semi-supervised learning (Weiss et al. 2015). Short-
cut LSTM (Wu, Zhang, and Zong 2017b) performs best in
previous works, which uses the shortcut block as a basic ar-
chitecture for constructing deep stacked models. Their final

4They include 1000 Wikipedia sentences and 1000 biomedical
(GENIA) sentences with noun compounds analysed.

5We use period to spilt the dataset and get 740 sentences as
train/dev/test(8:1:1). Dataset can be download from http://www.
di.unito.it/˜tutreeb/CCG-TUT/.

6https://github.com/rtmdrr/
testSignificanceNLP
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oracles Dev Test

CC - 94.89 95.21

D

AC 95.10 95.28
PA 95.12 95.31
NG(n = 2) 95.26 95.44
NG(n = 3) 95.13 95.37
NG(n = 4) 95.25 95.48

ND

PA 95.08 95.43
OR 95.00 95.24
NG(n = 2) 95.07 95.39
NG(n = 3) 95.23 95.38
NG(n = 4) 95.20 95.35

Table 3: Results of tag-wise generators combined with var-
ious oracles. D and ND represent deterministic and non-
deterministic oracles. For PA and NG, we set k = 10. Ex-
cept AC and OR, the improvements are significant (with
p < 0.05).

model uses 9-layer stacked shortcut block as encoder. And
a contemporaneous work (Bhargava and Penn 2020) which
use a single decoder for the whole sentence. From the results,
we find that,
• Our implementation of the category classifier (CC) out-

performs the best previous system (Shortcut LSTM) with
much less parameters.

• With the same encoder and a small increase of model size,
tag-wise generators could bring further performance gains
(CG and CGNG2). However, our current transition-based
generator underperforms the classification model. Regard-
ing the implementation of transition systems, we adopt
the standard stack-LSTM which doesn’t fully explore the
features of transition structures. It is possible that further
feature engineering and advanced encoders will improve
the performances. Finally, the reranker can reach a new
state-of-the-art in supertaggers using no external data.

• Regarding tagging speeds, since tag-wise generators need
additional decoding steps on sentence words, they speeds
are roughly two-fifths of the classification model. The
transition-based generator is much slower since it needs
to build features from the stack, the current output and
history actions using LSTMs at every decoding step.

• All of our models obtain an appreciable increase in per-
formance with the help of BERT (Devlin et al. 2019). The
results of NGCG2 (with rerank) are comparable to the
results of cross view training (Clark et al. 2018) which
uses unsupervised data and annotations from other tasks
and the contemporaneous work (Bhargava and Penn 2020)
which shares the same idea of generating categories.
• We also test our models on the Italian CCGBank, it shows

there is no significant difference between the results of
CC and CG models.And our CGNG2 model performs
best(64.10%). It proves that our tag-wise generators can
still perform well with few data. Detailed results are in the
supplementary.
Next, we show performances of the tag-wise generator

with different oracles (Table 3). In general, comparing with

Model Acc

CG4 94.30
+ attention(Equation 3) +0.63
+ attention(Equation 2) +0.65

CC 94.89
w/o cnn -0.19
w/o dropout -1.49

CG 95.10
w/o cnn -0.36
w/o dropout -1.30
w/o tag embedding -0.59

Table 4: Ablation studies. The last row means the model
without atomic tag embedding in the last decoding step.4
denotes a smaller model for running attention.

the category classifier, the sequence oracles could effectively
boost tagging accuracies. The following are some observa-
tions.

• It is interesting to see that n-gram oracles NG perform
better (on Dev) than other oracles both on deterministic and
non-deterministic settings. We guess that, besides existing
atomic categories in AC (and their simple combinations
in PA), which have clear definitions from linguistic prior,
there still exist some other latent linguistic structures which
might help CCG analyses. How to uncover them is our
important future work.

• Except NG (n = 3), the non-deterministic oracle is not
able to get better accuracies than deterministic oracles.
One reason might be that simply using random learning
targets may make the generator harder to learn, thus more
advanced fusion strategies are desired.

• We have tested oracle AC and NG with larger k (i.e., in-
cluding more items). The results are similar to those in
Table 3, which may suggest that the oracles are not quite
sensitive to items’ frequencies when choosing properly.

Third, we show the effectiveness of attention layers. Con-
strained by our hardware platform, instead of using the de-
fault setting, we evaluate a smaller model (the batch size
becomes 128, the dimensions of the encoder and the decoder
LSTM are decreased to 300 and 200). The results (Table 4)
show that, though attention layers require more computation
resources, they can help to achieve significantly better tag-
ging accuracies than the vanilla category generator. The two
different attention settings (Equation 2, 3) performs nearly
the same (thus we may prefer the faster one (Equation 3)).

Finally, we test the percentages of illegal categories gener-
ated from category generators, the results show that all 1-best
outputs of CC and NGCG2 are legal and only 0.05%, 0.04%
of 4-best outputs are wrong. It suggests that it is not hard
for tag-wise generators to build well-formed categories given
our moderate capacity decoding structures.

Robustness
By inspecting the CCGBank training set, we see that there
are about two-thirds of categories which appear less than 10
times (1− 425/1285), and more than half of the remaining
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10 ∼ 100 100 ∼ 400 400 ∼ 2000

CC 60.41 77.06 86.77
CT 41.86 63.81 79.73
CG 62.44 77.51 87.58∗

CGNG2 65.83∗ 78.95∗ 87.93∗

rerank 64.25∗ 79.84∗ 88.16∗
% in test 40.46% 17.70% 11.49%

Table 5: Accuracy of infrequent categories on the test set. We
group categories with their frequency in the training set. The
last row shows the proportion of categories in the test set. *
indicates significantly better than model CC.

2 4 8 12 16 20 28
Category length

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

CC

CG

CGNG2

rerank

Figure 4: Accuracy on categories of different lengths.

categories appear less than 100 times (253/425). We now
show how the category generator performs on these infre-
quent (or even unknown) categories, which can be a sign for
model robustness.

First, from Table 5, category generators exhibit signifi-
cantly better tagging accuracies on infrequent categories, and
as the annotation becomes less, the gap between generators
and the classifier becomes larger. Similarly, we compare sys-
tems with respect to the length of a category (empirically, a
longer length implies a small frequency). Figure 4 shows that
for categories with length less than 16, the models perform
almost identical, but for longer categories, the category gener-
ator give more robust tagging results (especially for CGNG2
which has fewer generation steps than CG).

Next, we show performances of category generators on
unknown categories. Recall that we only use 425 of 1285
categories in the training set (the remaining categories are
tagged with UNK, and we still test all categories on test set)7.
In order to avoid models considering UNK tag as a true tag, for
UNK tags in the training set, we exclude their loss during the
training (they are still fed into encoders in order to not break
the input sentence). On the test set, there are 104 words with
categories not included in the 425 training tags, and we show
the results on these tags in Table 6. We can observe that, given
the top-k candidates, the unseen tags can have a chance to be
included, thus the generator might be a reasonable method to
deal with unseen categories. We also find that CGNG2 now
has lower performances comparing with CG. One reason

7We actually do experiments on models training on the whole
tag set, the results are almost the same. Considering there are too
few (specifically, 22) unseen categories which are not shown in the
1285 tag set to test performances. Thus we finally choose to train
on the 425 categories.

p@1 p@2 p@4 p@8

CG 11.54 17.31 20.19 25.00
w/o feature 20.19 32.69 35.58 43.27

CGNG2 8.65 14.42 15.38 22.12
w/o feature 21.15 29.81 31.73 39.42

CT 0.96 4.81 5.77 7.69
w/o feature 6.73 14.42 25.96 31.73

Table 6: The results on unknown categories. “p@k” measures
whether the correct category appears in the top-k outputs of
category generators. “w/o feature” means when comparing
categories, we ignore their features (e.g., S[dcl] equals S).

Category Prediction

S[wq]/N S[wq]/(S[q]/NP)
(NP/NP)/N NP[nb]/N

conj/PP conj
(((S[pt]KNP)/PP)/PP)/NP ((S[pt]KNP)/PP)/NP

N/S[qem] N/S[dcl]
S[wq]/S[dcl] S[wq]/S[q]
(NKN)/(NKN) conj

Table 7: Some examples of prediction on categories not in
the training label set.

might be that when generating unseen categories, due to the
lack of prior knowledge, the semantic of original atomic
categories (established by linguists) are more important than
the implicit (raw) information hidden in n-gram tags.

Some failed examples of generating unknown category are
shown in Table 7. In the first and second lines, CG gives par-
tially correct results. In the third and fourth line, an argument
(PP) is missing. In the fifth and sixth lines, the prediction
is mostly right except for wrong features of S (a declarative
sentence is predicted as a yes-no question, since we have no
special treatment on features of categories, it could be further
improved). CG is completely wrong in the last row.

We also show overall performances when we reduce the
size of the training set in Figure 5 (which may not increase
the number of unknown tags, but provide an approximate
setting). The generation model consistently outperforms the
classification model with limited training data.

Then, we show the tagging results on out-of-domain data
(Table 8) using models trained on the CCGBank. We find
that CG performs significantly better than the baseline CC
model. Therefore, the robustness of category generator can
also extend to texts in different domains.

Parsing Results
To show the CCG parsing performances(Table 9), we feed
outputs of our supertaggers into the C&C parser (Clark and
Curran 2007). We compare our models with the C&C parser
with a RNN supertagger (Xu, Auli, and Clark 2015), the A*
parser with a feed-forward neural network supertagger (Lewis
and Steedman 2014b), the A* parser with a LSTM supertag-
ger (Lewis, Lee, and Zettlemoyer 2016), the A* parser with
a language model enhanced biLSTM supertagger (Vaswani
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Figure 5: Tagging accuracy on test set with different training
set sizes.

Method Bioinfer Wiki

CC 80.68 92.05
CG 80.68 92.24∗

CGNG2 80.99∗ 92.34∗

rerank 81.05∗ 92.42∗

Table 8: Results on out-of-domain data sets. ∗ denotes the dif-
ference between one model and the CC model is significant.

et al. 2016), the A* CCG parser with a factorized biLSTM
supertagger (Yoshikawa, Noji, and Matsumoto 2017), and
C&C parser with a category generator for the whole sentence
(Bhargava and Penn 2020).

In general, the parsing performances are consistent with
supertagging results in Table 2: the rerank model achieves the
best labeled and unlabeled parsing results. We also see that,
even tag-wise generators may output illegal outputs, their
parsing performances are better than the transition-based
generator. An explanation, in addition to better supertagging
results, is that CCG parsers are able to utilize k-best supertag-
ger sequences (which further reduce the influence of one
single illegal category) and ignore ill-formed categories eas-
ily (as the combination rules are always non-applicable to
them).

Related Work
Traditionally, CCG supertagging is seen as a sequential la-
belling task. Clark and Curran (2007) propose C&C tagger
which uses a log-linear model to build the supertagger. Re-
cent works have applied neural networks to supertagging
(Xu, Auli, and Clark 2015; Vaswani et al. 2016; Wu, Zhang,
and Zong 2017b). These works perform a multi-class classi-
fication on pre-defined category sets and they can’t capture
the inside connections between categories because categories
are independent of each other. Clark et al. (2018) propose
Cross-View Training to learn the representations of sentences,
which effectively leverages predictions on unlabeled data and
achieves the best result. However, their model needs a large
amount of unlabeled data. Vaswani et al. (2016) also want
to model the interactions between supertags, but unlike our
methods they use a language model to capture these connec-
tions. The difference is that we no longer treat every category
as a label but a sequence of atomic tags.

The work closest to ours is Bhargava and Penn (2020). We

Model F1 UF1 F1† UF1†

C&C 85.45 91.65 - -
Lewis and Steedman (2014a) 83.37 - - -
Xu, Auli, and Clark (2015) 87.04 - - -
Lewis, Lee, and Zettlemoyer (2016) 87.80 - - -
Vaswani et al. (2016) 88.32 - - -
Yoshikawa, Noji, and Matsumoto (2017) 88.80 94.00 - -

CC 89.52 94.05 90.69 94.71
CG 89.68 94.14 90.77 94.76
CGNG2 89.76 94.22 90.82 94.79
CT 88.37 93.36 89.70 94.17
rerank 89.80 94.22 90.87 94.83
Gold pos tag
Bhargava and Penn (2020) 90.2 - 90.90 -
rerank 90.24 94.52 91.15 95.01

Table 9: Parsing results on test set. † means using BERT. All
results of our models are averaged over 3 runs.

share the same idea of generating categories but there are
still some key differences. They decode a single sequence
for all words while we deploy decoders for each individ-
ual words which may solve some problems(see Section ).
Besides, Prange, Schneider, and Srikumar (2020) also inves-
tigate the internal structure of CCG supertag. They treat each
category as a single tree (just like our transition system) and
use TreeRNNs for tree-structured category prediction.

Seq2Seq model has been used in many NLP tasks, such
as machine translation (Sutskever, Vinyals, and Le 2014;
Bahdanau, Cho, and Bengio 2015), text summarization (Nal-
lapati et al. 2016; See, Liu, and Manning 2017), and espe-
cially on syntax parsing. More related, Vinyals et al. (2015)
and Ma et al. (2017) use Seq2Seq model to generate con-
stituency grammar, and Li et al. (2018), Zhang et al. (2017)
use Seq2Seq model to generate dependency grammar. In-
spired by their works, we apply Seq2Seq model to generate
CCG supertags. But the difference is our generation is token
level while theirs are sentence level. By splitting categories
into smaller units, we decrease the size of label set. And the
results show our category generating model performs well.

Techniques for classifying the unseen label have been in-
vestigated in many tasks, such as computer vision (Torralba,
Murphy, and Freeman 2007; Bart and Ullman 2005; Lampert,
Nickisch, and Harmeling 2014) and transfer learning (Yu
and Aloimonos 2010; Rohrbach, Stark, and Schiele 2011).
It would be an important future work to introduce advanced
algorithms for dealing with these unknown categories.

Conclusion
We proposed a category generator to improve supertagging
performance. It provides a new way to capture relations
among different categories and recognizing unseen categories.
We studied a Seq2Seq-based model, as well as a set of learn-
ing targets for the generator. Experiments on CCGBank, out-
of-domain datasets and an Italian dataset show the effective-
ness of our model. Future work will explore improving the
accuracy of non-deterministic oracle and different rerankers.
We will also study how to further improve tagging infrequent
categories.
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