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Abstract

Neural machine translation often adopts the fine-tuning ap-
proach to adapt to specific domains. However, nonrestricted
fine-tuning can easily degrade on the general domain and
over-fit to the target domain. To mitigate the issue, we pro-
pose PRUNE-TUNE, a novel domain adaptation method via
gradual pruning. It learns tiny domain-specific sub-networks
during fine-tuning on new domains. PRUNE-TUNE alleviates
the over-fitting and the degradation problem without model
modification. Furthermore, PRUNE-TUNE is able to sequen-
tially learn a single network with multiple disjoint domain-
specific sub-networks for multiple domains. Empirical exper-
iment results show that PRUNE-TUNE outperforms several
strong competitors in the target domain test set without sac-
rificing the quality on the general domain in both single and
multi-domain settings. The source code and data are available
at https://github.com/ohlionel/Prune-Tune.

Introduction
Neural Machine Translation (NMT) yields state-of-the-art
translation performance when a large number of parallel
sentences are available (Kalchbrenner and Blunsom 2013;
Sutskever, Vinyals, and Le 2014; Bahdanau, Cho, and Ben-
gio 2015; Vaswani et al. 2017). However, there are many
language pairs lacking parallel corpora. It is also observed
that NMT does not perform well in specific domains where
the domain-specific corpora are limited, such as medical do-
main (Koehn and Schroeder 2007; Axelrod, He, and Gao
2011; Freitag and Al-Onaizan 2016; Chu and Wang 2018).
There is huge need to produce high-quality domain-specific
machine translation systems whereas general purpose MT
has limited performance.

Domain adaptation for NMT has been studied extensively.
These work can be grouped into two categories: data-centric
and model fine-tuning (Chu and Wang 2018). Data-centric
methods focus on selecting or generating target domain data
from general domain corpora, which is effective and well
explored (Axelrod, He, and Gao 2011; Chinea-Rı́os, Peris,
and Casacuberta 2017; Zeng et al. 2019). In this paper,
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we focus on the second thread: model fine-tuning. Fine-
tuning is very common in domain adaptation, which first
trains a base model on the general domain data and then
fine-tunes it on each target domain (Luong and Manning
2015; Chen et al. 2017; Gu, Feng, and Liu 2019; Saunders
et al. 2019). However, non-restricted fine-tuning requires
very careful hyper-parameter tuning, and is prone to over-
fitting on the target domain as well as forgetting on the gen-
eral domain. To tackle these issues, researchers have pro-
posed several constructive approaches, with the view to lim-
iting the size or plasticity of parameters in the fine-tuning
stage, which can be roughly divided into two categories: reg-
ularization and partial-tuning strategy. Regularization meth-
ods often integrate extra training objectives to prevent pa-
rameters from large deviations, such as model output regu-
larization (Khayrallah et al. 2018), elastic weight consolida-
tion (EWC) (Thompson et al. 2019). Regularization meth-
ods, which impose arbitrary global constraints on parameter
updates, may further restrict the adaptive process of the net-
work, especially when domain-specific corpora are scarce.
Partial-tuning methods either freeze several sub-layers of the
network and fine-tune the others (Thompson et al. 2018), or
integrate domain-specific adapters into the network (Bapna
and Firat 2019; Vilar 2018). By only fine-tuning the domain-
specific part of the model, they can alleviate the over-fitting
and forgetting problem in fine-tuning. However, the struc-
ture designed to adapting is usually hand-crafted, which
relies on experienced experts and the adapter brings addi-
tional parameters. Therefore, a more adaptive, scalable, and
parameter-efficient approach for domain adaptation is very
valuable and worth well studying.

In this paper, we propose PRUNE-TUNE, a novel domain
adaptation method via adaptive structure pruning. Our mo-
tivation is inspired from Continual Learning (Parisi et al.
2019; Kirkpatrick et al. 2017; Mallya and Lazebnik 2018;
Mallya, Davis, and Lazebnik 2018; Hung et al. 2019; Lee,
Cho, and Kang 2020) and the lottery hypothesis that a
randomly-initialized, dense neural network contains a sub-
network which can match the test accuracy of the original
network after training for at most the same number of itera-
tions (Frankle and Carbin 2019). We therefore suppose that
multiple machine translation models for different domains
can share different sparse sub-networks within a single neu-
ral network. Specifically, we first apply a standard pruning
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Figure 1: Illustration of domain adaptation from the general domain to the target domain with PRUNE-TUNE. c)→ d) demon-
strates our proposed PRUNE-TUNE is capable of adapting to multiple domains.

technique to automatically uncover the sub-network from a
well-trained NMT model in the general domain. The sub-
network is capable of reducing the parameter without com-
promising accuracy. Therefore, it has the potential to keep as
much general information as possible. Then we freeze this
informative sparse network and leave the unnecessary pa-
rameters unfixed for the target domain, which enables our
approach to be parameter efficient, and eases the scalability
of the approach to more domains. The capacity of these non-
fixed parameters can be tuned to match the requirements of
the target domain, while keeping the parameters of the gen-
eral domain. Our method successfully circumvents catas-
trophic forgetting problem (Kirkpatrick et al. 2017) and re-
tains the quality on the general domain. As the benefits of
the flexible design, PRUNE-TUNE can be easily extended to
other transfer learning problems, such as multilingual ma-
chine translation.

We summarize our main contribution as follows:
• We propose PRUNE-TUNE, which enables generating

domain-specific sub-networks via gradual pruning and
potentially circumvents the notorious catastrophic forget-
ting problems in domain adaptation.
• We conduct extensive experiments to evaluate PRUNE-

TUNE and demonstrate that PRUNE-TUNE outperforms
the strong competitors both in the general and target do-
main with big margins. On domain adaptation bench-
marks for EN→DE, PRUNE-TUNE outperforms several
strong competitors including Fine-tuning, EWC, Model
Distillation, Layer Freeze and Adapter in target domain
test set without the loss of general domain performance.

• We extend PRUNE-TUNE to multi-domain experiments
on EN→DE and ZH→EN, which shows the possibilities
of training a single model to serve different domains with-
out performance degradation.

Background
Neural Machine Translation
Given an source sentence x = {x1, . . . , xn} and its trans-
lation y = {y1, . . . , ym}, Neural Machine Translation di-
rectly models the conditional probability of target sentence
over source sentence:

P (y|x; θ) =
m∏
i=1

P (yi|x, y<i; θ), (1)

where θ denotes the parameters of the model. For a parallel
training dataset D = {xj ,yj}Nj=1, θ is optimized to maxi-
mum the log-likelihood:

argmax
θ

N∑
j=1

logP (yj |xj ; θ). (2)

Fine-tuning for Domain Adaptation
Model fine-tuning on the target domain is the most natu-
ral approach for domain adaptation. Assume we have a well
trained NMT model F(·; θ) and a dataset DI = {xi,yi}

NI

i=1
of a new domain. We can simply apply fine-tuning to adapt
the model to the new domain, that is, we continue training
the model to optimize θ on DI :

argmax
θ

NI∑
i=1

logP (yi|xi; θ). (3)

As discussed in Introduction, fine-tuning on all model pa-
rameters θ often leads to over-fitting on the new domain as
well as forgetting on the general domain. So apart from reg-
ularization approaches, it is effective to introduce domain-
specific part of models to alleviate these problems. There
are two typical kinds of methods: layer freeze and adapter.

Layer freeze approaches regard the top layer, denoted as
θL, of model as the domain-specific parameters while the
rest parameters θl<L are kept fixed. The training object of
layer freeze is:

argmax
θL

NI∑
i=1

logP (yi|HL−1; θL), (4)

where HL−1 = F(xi; θl<L) indicates the output of the
(L− 1)-th layer of the model.

Adapter methods integrate an additional module θA
into the network. The additional module can be a fully-
connection layer, a self-attention layer or their combina-
tions. Finally we fine-tune only on the domain-specific part
θA and the training objective is as follow:

argmax
θA

NI∑
i=1

logP (yi|HL; θA), (5)

where HL = F(xi; θ).
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As shown in equation (4) and (5), domain-specific pa-
rameters only interact with the output of general model, i.e.
F(·; θ). We suppose interaction more with the general model
would achieve much better performance.

Approach
As many studies show, a great proportion of parameters in
the network are redundant (Frankle and Carbin 2019; Zhu
and Gupta 2018; Liu et al. 2019). Pruning such parameters
causes minor or even no degradation in the task. Zhu and
Gupta (2018) show that the dynamic and sparse sub-network
after pruning is expressive and outperforms the dense net-
work with the equivalent size of parameters. Therefore, it is
possible to make use of such redundancy for domain adap-
tation.

Given a well trained general model, our approach consists
of the following steps (see Figure 1):

1. Find and freeze the most informative parameters of the
general domain and leave unnecessary parameters for the
target domain

2. Uncover the lottery sub-networks from the free parame-
ters for a specific domain

3. Tune the lottery sub-networks for the specific domain

4. Repeat the 2-3 steps for multi-domain adaptation

Finding the Informative Parameters for General
Domain
Pruning has proven to be effective for keeping the informa-
tive parameters and eliminating unnecessary ones for neural
networks (LeCun, Denker, and Solla 1990; Li et al. 2017;
Han et al. 2015; Zhu and Gupta 2018). Without loss of gen-
erality, we employ a simple and effective Gradual Pruning
approach to find the most informative parameters for the
general domain (Zhu and Gupta 2018). The method gradu-
ally prunes the model to reach the target sparsity by reducing
low magnitude parameters every 100 training steps. Explic-
itly, we trim parameters to the target sparsity in each layer.
Between pruning steps, the model is trained on the gen-
eral dataset to recover its performance in the sub-network.
Though NMT is one of the most complicated tasks in deep
learning, our empirical study on pruning sparsity shows that
up to 50% parameters in a Transformer big model are not
necessary and can be pruned with a performance drop less
than 0.6 BLEU (see Figure 2). In this way, we can keep the
general NMT model intact as an informative sub-network of
the original model. To keep consistent generalization abil-
ity provided from the original sub-network, we freeze the
parameters of the informative sub-network during domain
adaptation process.

The left unnecessary weights throughout the network
provide the possibility of generating a sparse lottery sub-
network that can exactly match the test accuracy of the
domain-specific model. As the lottery sub-network keeps
most of the general domain information, fine-tuning the un-
necessary weights can potentially outperform the full fine-
tuning approach. Particularly, the sparsity rate is very flexi-
ble which can be changed to meet the requirements of var-
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Figure 2: BLEU scores of pruned Transformer models
with different sparsity (percentage of pruned parameters) on
WMT14 EN→DE. Notice that even with 50% of the orig-
inal parameters, the resulting model still achieves nearly
the same translation performance as the original full Trans-
former.

ious scenarios. In general, a low sparsity rate is suitable for
simple domain adaptation tasks, while high sparsity works
better for complicated domain or multiple domain adapta-
tion tasks.

Lottery Sub-network Generation for Specific
Domain
It is not necessarily needed to fine-tune all the free parame-
ters for a specific domain, especially for multi-domain adap-
tation tasks that require parameter efficient sub-networks for
different domains. As the extracted informative sub-network
already has a strong capacity, we suppose that a few ad-
ditional parameters may be enough for the target domain
adaptation. The most challenging problem is to automati-
cally uncover the best sparse structure for the specific do-
main within. And we call this sparse structure as lottery
sub-network. The challenge is essentially a network archi-
tecture search problem (NAS) to learn domain-specific sub-
network, which is very costly. For simplicity, we apply an
iterative pruning method again as an effective way to learn
the lottery sub-network.

Specifically, we fine-tune the free parameters on the tar-
get domain data for a few steps as warm-up training, then ap-
ply pruning to obtain the domain-specific structure. The gen-
erated structure is then fixed as the lottery domain-specific
sub-network for further fine-tuning.

Fine-tuning of Domain-Specific Sub-network
We introduce a mask matrix over all parameters in the net-
work which indicates the sub-network for each domain with
different domain identification. Each parameter of the net-
work belongs to only one specific domain, and can not be
updated by learning of other domains.

For single domain adaptation, we adapt the general do-
main to the target domain by training on the combined pa-
rameters of the general informative sub-network and the
domain-specific lottery sub-network. For multiple domain
adaptation, we iteratively repeat this process based on the
general model. It is rather flexible as we do not require data
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from all domains simultaneously. Particularly, with the par-
tition of parameters, we can adapt a new domain only from
helpful domains. Supposes that we have successfully trained
a multi-domain system supporting three different domains:
news, law, biology. While our goal is to adapt to a new med-
ical domain, it is capable of incorporating both the general
and biology domain as source domains for the medical do-
main.

PRUNE-TUNE shares different domain sub-network in a
single transform model with domain-specific masks. Given
the source sentence and the corresponding domain identifi-
cation, a binary domain mask will be applied to the unified
model to support decoding with only the learned sparse sub-
network. The mask matrix makes the system rather flexible
for practical application or extends to a new domain.

Experiment
We conducted experiments on both single domain adapta-
tion and multiple domain adaptation to show the effective-
ness and flexibility of PRUNE-TUNE.

Dataset
To evaluate our model in single domain adaptation, we
conducted experiments on English to German translation,
where the training corpora for the general domain were
from WMT14 news translation task. And we used new-
stest2013 and newstest2014 as our validation and test set re-
spectively. The general domain model trained on WMT14
EN→DE was then individually adapted to three distinct tar-
get domains: TED talks, biomedicine, and novel. For TED
talks, we used IWSLT14 as training corpus, dev2010, and
tst2014 as the validation and test set respectively. For the
biomedicine domain, we evaluated on EMEA News Crawl
dataset1. As there were no official validation and test set for
EMEA, we used Khresmoi Medical Summary Translation
Test Data 2.02. For novel domain, we used a book dataset
from OPUS3 (Tiedemann 2012). We randomly selected sev-
eral chapters from Jane Eyre as our validation set and The
Metamorphosis as the test set.

We extended PRUNE-TUNE to multi-domain adaptation
on English to German and Chinese to English translation.
For ZH→EN, we used the training corpora from WMT19
ZH→EN translation task as the general domain data. We
selected 6 target domain datasets from from UM-Corpus4

(Tian et al. 2014).
Table 1 lists the statistics of all datasets mentioned above.

Setup
For EN→DE data preprocessing, we tokenized data using
sentencepiece (Kudo and Richardson 2018), with a jointly
learned vocabulary of size 32,768. For ZH→EN, we applied

1https://ufal.mff.cuni.cz/ufal medical corpus
2https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-

2122
3http://opus.nlpl.eu/
4http://nlp2ct.cis.umac.mo/um-corpus

Direction Corpus Train Dev. Test

EN→DE

WMT14 3.9M 3000 3003
IWSLT14 170k 6750 1305

EMEA 587k 500 1000
Novel 50k 1015 1031

ZH→EN

WMT19 20M 3000 3981
Laws 220k 800 456
Thesis 300k 800 625

Subtitles 300k 800 598
Education 449K 800 791

News 449K 800 1500
Spoken 219k 800 456

Table 1: Datasets statistic for En→De and Zh→En tasks.

jieba and moses tokenizer to Chinese and English side re-
spectively. Then we encoded sentences using byte pair en-
coding (BPE) (Sennrich, Haddow, and Birch 2016b) with
32k merge operations separately. We implemented our mod-
els on recently the state-of-the-are translation model, Trans-
former (Vaswani et al. 2017) and we followed the big set-
ting, including 6 layers for both encoder and decoders. The
embedding dimension was 1,024 and the size of ffn hid-
den units was 4,096. The attention head was set to 16 for
both self-attention and cross-attention. We used Adam op-
timizer (Kingma and Ba 2015) with the same schedule al-
gorithm as Vaswani et al. (2017). All models were trained
with a global batch size of 32,768 on NVIDIA Tesla V100
GPUs. During inference, we used a beam width of 4 for both
EN→DE and ZH→EN and we set the length penalty to 0.6
for EN→DE, 1.0 for ZH→EN.

The evaluation metric for all our experiments is tokenized
BLEU (Papineni et al. 2002) using multi-bleu.perl5.

Domain Adaptation on Single Lottery Sub-network
We used a lottery sub-network with 10% sparsity and con-
ducted domain adaptation experiments on EN→DE. The
10% free parameters were tuned to fit each target domain.
During inference, our model can recover the capability of the
general domain by simply masking these domain-specific
parameters. We compared our model with several strong
baselines and effective models:

• General domain model: The model was trained using
only parallel data from the general domain.

• Target domain model: The model was trained using only
the target domain data.

• Mixed domain model: All general domain and target do-
main data were mixed to train the model.

• Fine-tuning (Luong and Manning 2015): We continued
to train the general domain model on target domain data
with the training step unchanged. The empirical study
shows it performs better than resetting the training step
to 0.

5https://github.com/moses-smt/mosesdecoder/blob/master/
scripts/generic/multi-bleu.perl
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Model IWSLT (190k) EMEA (587k) Novel (50k) #Tuning Params
general target general target general target

Target Domain Model 11.4 24.0 3.1 23.9 2.7 12.3 273M

Mixed Domain Model 27.9 31.3 27.9 32.0 27.9 21.2 273M

General Domain Model 28.7 28.5 28.7 28.4 28.7 14.5 273M
+ Fine-tuning (Luong and Manning 2015) 27.0 31.5 17.1 29.7 12.1 23.4 273M
+ EWC-regularized (Thompson et al. 2019) 28.0 31.5 27.1 30.5 23.5 23.1 273M
+ Model Distillation (Khayrallah et al. 2018) 26.3 31.5 16.3 30.0 11.6 23.1 273M
+ Layer Freeze (Thompson et al. 2018) 28.6 31.3 26.9 29.8 23.0 23.0 29M
+ Adapter (Bapna and Firat 2019) 27.0 31.6 26.7 30.1 19.8 24.3 13M

PRUNE-TUNE Model 28.8 31.9 28.9 30.6 28.8 24.3 27M

Table 2: BLEU scores of single domain adaptation on EN→DE. All models share the same Transformer-big setting. Notice
that PRUNE-TUNE improves the translation performance on the specific domains while maintaining the general domain perfor-
mance.

• EWC-regularized model (Thompson et al. 2019): EWC
(Kirkpatrick et al. 2017) is a popular algorithm in Con-
tinual Learning (Parisi et al. 2019), which applies elas-
tic consolidation to each parameter during gradient up-
dates. The EWC-regularized model prevents the parame-
ters from large deviations.

• Model Distillation (Khayrallah et al. 2018): We em-
ployed an auxiliary loss during fine-tuning to prevent the
target domain model’s output from differing too much
from the original general domain model’s output.

• Layer Freeze (Thompson et al. 2018): We froze all model
layers except for the top layers of both the encoder and de-
coder, then fine-tuned the top layers on the target domain
data.

• Adapter (Bapna and Firat 2019): We stacked adapters on
each transformer block of both encoder and decoder as
proposed by Bapna and Firat (2019), and fine-tuned the
adapters only.

Our proposed PRUNE-TUNE outperforms fine-tuning and
other baselines as shown in Table 2. In three distinct domains
with varying corpus size, our approach achieves competi-
tive performance with less training parameters. Moreover,
our model is able to serve both general or target domain ma-
chine translation without any performance compromise in a
unified model, simply via a domain mask. Figure 3 demon-
strates that our approach effectively alleviates the serious
over-fitting problem that fine-tuning often suffers from. To
conclude, PRUNE-TUNE enjoys the following advantages:

• PRUNE-TUNE is very effective for the target domain
adaptation. We attribute this to the adaptive pruning of
the lottery sub-network. With little modification of a sub-
network, PRUNE-TUNE significantly outperforms Layer
Freeze and adapter with pre-defined sub-network fine-
tuning, which shows the benefits of dynamic structure
finding.

• Clearly, PRUNE-TUNE is firmly capable of keeping the
translation performance in the general domain. After fine-
tuning on the novel domain, PRUNE-TUNE even sur-
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Figure 3: BLEU scores of fine-tuning and our proposed
PRUNE-TUNE with 10%, 30%, 50% sparsity when adapting
to IWSLT14 EN→DE. Notice the plain fine-tuning will de-
grade in the end on the target domain, while PRUNE-TUNE
steadily improves.

passes the second fine-tuning competitor by 5 BLEU
score in the general domain.

• PRUNE-TUNE is robust when compared to the fine-tuning
baseline, which suffers from the over-fitting challenges
and requires very careful checkpoints choices.

Sequential Domain Adaptation
We conducted multi-domain adaptation experiments on
EN→DE and ZH→EN to demonstrate the unique sequential
learning ability of our approach.

We first trained general models on EN→DE and ZH→EN,
and then gradually pruned them to reach 50% sparsity. We
find it empirically that 50% is a sparsity with no significant
performance drop and enough redundant parameters. Dif-
ferent from single domain adaptation, we fixed embedding
layers and layer normalization parameters to avoid sharing
parameters across multiple domains. In these experiments,
we adopt the general models to target domains sequentially.
For each target domain:
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Model Input domain #M WMT14 (W) IWSLT (I) EMEA (E) Novel (N)

Mixed Domain Model W, I, E, N 1 27.9 31.3 32.0 21.2

General Domain Model W 1 28.7 28.5 28.4 14.5
+ Fine-tuning I, E, N 3 N/A 31.5 29.7 23.4

Single PRUNE-TUNE Model W, I, E, N 3 N/A 31.9 30.6 24.3

Sequential PRUNE-TUNE Model

#1 W

1

28.4 N/A N/A N/A
#2 + I 28.4 31.9 N/A N/A
#3 + E 28.4 31.9 30.1 N/A
#4 + N 28.4 31.9 30.1 23.6

Table 3: BLEU scores of sequential domain adaptation on EN→DE. #M denotes the number of required models. W, I, E, N
refer to dataset WMT14, IWSLT, EMEA, Novel, respectively. In our sequential PRUNE-TUNE Model, general domain occupied
50% parameters, and each target domain occupied 10%. Notice that sequential PRUNE-TUNE obtains a single model with best
performance on all domains except EMEA.

Model #M Laws Thesis Subtitles Education News Spoken Avg.

Mixed Domain Model 1 47.4 15.6 17 31.4 21.2 16.7 24.9

General Domain Model 1 44.9 13.8 16.1 30.8 21.4 16.7 23.9
+ Fine-tuning 6 55.9 17.9 20.8 29.2 22.1 14.8 26.7

Sequential PRUNE-TUNE Model 1 50.3 16.2 17.2 31.2 21.3 14.6 25.1

Table 4: BLEU scores of sequential domain adaptation on ZH→EN. #M denotes the number of required models. In our Se-
quential PRUNE-TUNE Model, general domain occupied 50% parameters, and each target domain occupied 5%. Notice that
Sequential PRUNE-TUNE is the best performing single model for all domains.

1. Firstly, we applied warm-up training and Gradual Prun-
ing to generate a suitable lottery domain sub-network.

2. Secondly, We simply adapt the general domain learned
before to the current domain by including the general sub-
network as frozen parameters.

3. Finally, we fine-tune the lottery sub-network of the do-
main.

We adapted 3 target domains on EN→DE, and 6 target
domains on ZH→EN.

Result In Table 3, we report performance in EN→DE ex-
periment. Within a single model, our approach can learn
new domains in sequence and outperforms several baselines.
Specifically, it outperforms Mixed Domain Model which
requires all domain data simultaneously, and Fine-tuning
which requires multiple models. Moreover, PRUNE-TUNE
can learn the current target domain while retaining the per-
formance in previously learned domains, because lottery do-
main sub-networks are separate.

ZH→EN experiment result in Table 4 also demonstrates
that our approach is effective and flexible for more domains.

Analysis

In this section, we revisit our approach to reveal more details
and explain the effectiveness of the proposed PRUNE-TUNE.

Pruning Rate WMT IWSLT EMEA Novel

10% 28.7 32.3 30.6 24.3
30% 28.3 32.4 30.3 23.9
50% 28.1 32.2 29.5 23.6
70% 26.8 31.8 28.9 23.1

Table 5: BLEU scores of different pruning rate for PRUNE-
TUNE. Only 10% of parameters for fine-tuning is able to
achieve the best performance.

Robustness of PRUNE-TUNE
We are convinced that the over-fitting problem seriously af-
fects the robustness of fine-tuning. As shown in figure 3,
fine-tuning reaches the best performance at the early step,
and then starts to decline, while our method yields stable
performance. When the target data is scarce, domain adap-
tation by unrestricted fine-tuning will rapidly over-fit to the
target domain, forgetting the generalization ability from the
general model. Our proposed PRUNE-TUNE is a more robust
method as we integrate a frozen informative sub-network
within the model, which provides generalized information
consistently.

Less Pruning Improves Performance
Since we can prune the model to different sparsity, we eval-
uate the single domain adaptation performance on general
models with different sparsity. As shown in Table 5, do-
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Adaptation Order EMEA

1 30.3
2 30.1
3 30

Table 6: BLEU scores of different adaptation order for se-
quential domain adaptation.

Target Domain Params(%) IWSLT EMEA Novel

1% 31.7 29.4 22.3
5% 31.8 30.1 23

10% 31.9 30.1 23.6

Table 7: BLEU scores of different scale of target domain-
specific parameters for sequential domain adaptation.

main adaptation on low sparsity achieves better performance
mainly due to better knowledge preservation of the general
domain. It also indicates that a few parameters are enough
for single domain adaptation. As the pruning goes further,
the high sparsity model is doomed to degrade on the gen-
eral domain, which affects the subsequent domain adapta-
tion. However, the performance gap between low sparsity
PRUNE-TUNE models is relatively small.

PRUNE-TUNE is Very Effective for Low-resource
Domain Adaptation
To evaluate the performance of our approach on varying
amounts of target domain data, we experimented on the
EMEA dataset with different fractions of training data.
We extract 1%, 3%, 10%, 30% and 100% of the original
EMEA training set. We compare with full fine-tuning using
10% sparsity PRUNE-TUNE model on different fractions of
EMEA dataset. As the results are shown in Figure 4, our ap-
proach significantly outperforms fine-tuning for each frac-
tion. Especially for extremely small 1% fraction, which con-
sists of 5.7K sentences, our proposed approach improves the
performance over the general model by 0.7 BLEU, while
fine-tuning leads to a 3.3 BLEU drop. With fractions less
than 30%, fine-tuning can not improve the target bio domain,
but brings damage to the general model. In the contrast, our
approach does not harm the general domain ability, and can
make the most of the few training data to improve the target
domain. It indicates that our proposed approach is suitable
for low resource domain adaptation, which is common and
valuable in practice.

Sequential PRUNE-TUNE is Capable for Numerous
Domains
We conducted experiments to explore the limit of sequen-
tial multi-domain adaptation with PRUNE-TUNE. We first
evaluated the influence of the learning order of the EMEA
dataset. As shown in Table 6, there is only a minor gap of
BLEU score between different learning order. We also con-
ducted experiment on EN→DE with different scale of target

0% 1% 3% 10% 30% 100%
Fraction of EMEA training data

24

26

28

30

32

B
LE

U

General model
Fine-tune
Prune-tune 0.1

General model
Fine-tune
Prune-tune 0.1

Figure 4: Fine-tuning with different domain-specific cor-
pus. PRUNE-TUNE improves the baseline at different scales,
while full fine-tuning suffers from over-fitting.

domain-specific parameters. As shown in Table 7, 5% of pa-
rameters is sufficient for most domains, and even 1% of pa-
rameters yields comparable performance. Actually, PRUNE-
TUNE has the potential to adapt to dozens of domains.

Related Work

Domain Adaptation

Domain adaptation has been widely investigated in recent
years. In Machine Translation, the fine-tuning based ap-
proach is the most relevant to our work. Fine-tune is the
conventional way for domain adaptation (Luong and Man-
ning 2015; Sennrich, Haddow, and Birch 2016a; Freitag
and Al-Onaizan 2016; Chu, Dabre, and Kurohashi 2017).
Many studies try to address the shortcoming of Fine-tune.
Thompson et al. (2018) freeze selected modules of the
general network. Adapters is introduced for parameter ef-
ficiency (Bapna and Firat 2019; Vilar 2018). Khayrallah
et al. (2018) explore regularization techniques to avoid over-
fitting. Thompson et al. (2019) employ EWC (Kirkpatrick
et al. 2017) to alleviate the catastrophic forgetting problem
in domain adaptation. Zhang et al. (2020) re-initialize pa-
rameters from some layer for few-sample BERT fine-tuning.
Wuebker, Simianer, and DeNero (2018) introduce sparse
offset from the general model parameters for every domain,
sharing the similar idea of our proposed method. The key
difference is that PRUNE-TUNE provides a dynamic param-
eter adaptation method, which is parameter efficient and po-
tentially makes the most of general domain information for
the target domain.

Another research line for domain adaptation is data se-
lection and data mixing, both being concerned with how to
sample examples to train an MT model with a strong focus
on a specific domain (Axelrod, He, and Gao 2011; Chinea-
Rı́os, Peris, and Casacuberta 2017; Zeng et al. 2019; Wang
et al. 2020), while PRUNE-TUNE focused on the training
model which can complement with the data-driven methods
perfectly.
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Continual Learning
The main idea of our approach is originated from the Con-
tinual Learning community (Parisi et al. 2019; Kirkpatrick
et al. 2017; Mallya and Lazebnik 2018; Mallya, Davis, and
Lazebnik 2018; Hung et al. 2019; Lee, Cho, and Kang
2020), as they all try to alleviate the catastrophic forget-
ting problem. Mallya and Lazebnik (2018); Mallya, Davis,
and Lazebnik (2018); Hung et al. (2019) learn separate sub-
networks for multiple tasks in computer vision, which in-
spires us with PRUNE-TUNE for machine translation domain
adaptation.

Model Pruning
Our approach is also inspired by many studies of sparse net-
works (Frankle and Carbin 2019; Zhu and Gupta 2018; Liu
et al. 2019; Masana et al. 2017). Frankle and Carbin (2019);
Liu et al. (2019) reevaluate unstructured network pruning to
highlight the importance of sparse network structure. Zhu
and Gupta (2018) introduce advanced pruning technique to
compress the model. Sun et al. (2020) learn sparse sharing
architecture for multi-task learning. Hung et al. (2019) in-
troduce compact parameter sub-network for continual learn-
ing. Different from these work, PRUNE-TUNE aims at find-
ing the best sparse structure for a specific domain based on
an NMT model trained on large scale general domain data.
Model pruning is an effective method for our approach.

Conclusion and Future Work
In this work, we propose PRUNE-TUNE, an effective way for
adapting neural machine translation models which first gen-
erates an informative sub-network for the general domain
via gradual pruning and then fine-tunes the unnecessary pa-
rameters for the target domain. By doing so, PRUNE-TUNE
is able to retain as much general information as possible
and alleviate the catastrophic forgetting problems. Exper-
iments show that the proposed PRUNE-TUNE outperforms
fine-tuning and several strong baselines and it is shown to
be much more robust compared to fine-tuning due to the
complete retainment of the general information. Beyond
that, PRUNE-TUNE can be extended to adapting multiple
domains by iteratively pruning and tuning, which is natu-
rally suitable for multi-lingual scenario. We leave the multi-
lingual problem as our future work.
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