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Abstract

Scenario-based question answering (SQA) has attracted an
increasing research interest. Compared with the well-studied
machine reading comprehension (MRC), SQA is a more chal-
lenging task: a scenario may contain not only a textual pas-
sage to read but also structured data like tables, i.e., tabu-
lar scenario based question answering (TSQA). AI applica-
tions of TSQA such as answering multiple-choice questions
in high-school exams require synthesizing data in multiple
cells and combining tables with texts and domain knowledge
to infer answers. To support the study of this task, we con-
struct GeoTSQA. This dataset contains 1k real questions con-
textualized by tabular scenarios in the geography domain. To
solve the task, we extend state-of-the-art MRC methods with
TTGen, a novel table-to-text generator. It generates sentences
from variously synthesized tabular data and feeds the down-
stream MRC method with the most useful sentences. Its sen-
tence ranking model fuses the information in the scenario,
question, and domain knowledge. Our approach outperforms
a variety of strong baseline methods on GeoTSQA.

1 Introduction
Scenario-based question answering (SQA) is to answer
questions contextualized by scenarios (Lally et al. 2017).
Compared with the well-studied task of machine reading
comprehension (MRC) which requires reading a passage to
extract or infer an answer (Rajpurkar et al. 2016; Lai et al.
2017), a SQA task requires reading a scenario which com-
monly contains both a textual passage and a set of structured
data. One such prominent AI application of SQA is answer-
ing multiple-choice questions in high-school geography ex-
ams (Ding et al. 2018; Huang et al. 2019). Those questions
are contextualized by scenarios containing tables and dia-
grams, where the rich information cannot be captured by
current MRC methods but have to be manually interpreted
using natural language. Thus, one natural research question
arises: can we solve SQA in a fully automated manner?

Task and Challenges. Specifically, we focus on questions
contextualized by a scenario consisting of a textual pas-
sage and a set of tables. We refer to this branch of SQA as
TSQA, short for Tabular Scenario based Question Answer-
ing. To support the study of this task, we construct a dataset
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named GeoTSQA. It contains 1k real questions contextu-
alized by tabular scenarios in the geography domain, col-
lected from China’s high-school exams. Compared with ex-
isting datasets for table-based question answering like Wik-
iTableQuestions (Pasupat and Liang 2015), GeoTSQA re-
quires fundamentally different reading and reasoning skills,
and poses new research challenges.

For instance, Figure 1 shows a question in GeoTSQA. To
answer it, tabular data needs to be synthesized via a complex
operation: identifying a monotonic increase in ELP over
the interval 2000–2003. Focusing on this particular interval
rather than many other intervals is implicitly suggested in
the question: after year 2000. Moreover, the passage in the
scenario helps to link ELP with educational level, and the
retrieved domain knowledge bridges the gap between edu-
cational level and rural labor which is the correct answer.
To conclude, TSQA methods need to properly manipulate
tabular data, and comprehend fused textual information.

Our Approach. To meet the challenges, considering that
text reading has been extensively studied in MRC research,
we propose to extend state-of-the-art MRC methods with a
novel table-to-text generator named TTGen to specifically
handle tabular data. The basic idea is straightforward: feed-
ing a MRC model with sentences generated from tables us-
ing templates that encapsulate many and various predefined
operations for manipulating tabular data. However, the po-
tentially large number (e.g., hundreds) of generated sen-
tences may easily exceed the capacity of typical MRC mod-
els, and produce much noise information influencing the ac-
curacy of reading comprehension. To address this problem,
TTGen incorporates a sentence ranking model that fuses the
information in the scenario, question, and domain knowl-
edge to effectively select sentences that are most useful for
answering the question. It outperforms a variety of strong
baseline methods in extensive experiments on GeoTSQA.

We summarize our contributions in the paper as follows.

• We construct and publish GeoTSQA, the first dataset ded-
icated to TSQA. It requires reading and reasoning with
tables, texts, and domain knowledge at high school level.

• We extend MRC methods with TTGen to solve TSQA.
TTGen performs question and knowledge aware ranking
of sentences generated from synthesized tabular data.
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a(Scenario) The educational level on products (ELP)
refers to the average educational level of workers that
produce products. To compute it, educational stages
are quantified as follows: 1 for lower secondary or
below, 3 for higher secondary, 5 for junior college, 7
for undergraduate, and 9 for graduate or above. The
following table shows the development of ELP in China.
Please read the table and answer the question.

Year … 1998 1999 2000 2001 2002 2003

ELP … 2.465 2.476 2.504 2.490 2.482 2.473

(Question) The main reason for the change of ELP
after year 2000 is
(A) improvement in the quality of education
(B) industrial upgrading
(C) rural labor migration
(D) counterurbanization

ELP decreases
between Year
2000 and 2003.

Entity Fact Sentence

Rural 
Labor

In China, the level of education in
rural areas is generally lower
than that in urban areas.

Domain Knowledge

The educational level on
products (ELP) refers to the
average educational level of
workers that produce products.

Table-to-Text Generation (TTGen)

Passage

Retrieval

Machine 
Reading 

Comprehension 
(K-BERT)

Score of Option

The main reason for the change
of ELP after year 2000 is

a

Question

rural labor migrationOption

Figure 1: Left: an example question contextualized by a tabular scenario in GeoTSQA. Right: an overview of our approach.

Outline. The remainder of the paper is organized as fol-
lows. We discuss and compare with related work in Sec-
tion 2. We formally define the TSQA task and describe the
construction of the GeoTSQA dataset in Section 3. We in-
troduce our approach in Section 4. We present experiment
settings in Section 5 and report experiment results in Sec-
tion 6. Finally we conclude the paper in Section 7.

Our code and data are available on GitHub.1

2 Related Work
2.1 SQA
SQA is an emerging AI task and has found application in
many domains. The pioneering WatsonPaths system pro-
vides recommendations for diagnosis and treatment based
on a medical scenario about a patient (Lally et al. 2017). In
the legal domain, SQA supports judgment prediction based
on the fact description of a legal case (Ye et al. 2018; Zhong
et al. 2018; Yang et al. 2019b).

We focus on TSQA where a scenario contains both tex-
tual and tabular data. Such questions are common in, for
example, China’s high-school geography and history exams
where a scenario describes a concrete fact or event to con-
textualize a set of questions. Previous efforts in this domain
either ignore tables (Cheng et al. 2016; Zhang et al. 2018)
or manually transform tables into triple-structured knowl-
edge (Ding et al. 2018) or natural language descriptions for
machine reading (Huang et al. 2019). In contrast, we aim
at solving TSQA in a fully automated manner by generating
texts from tables.

2.2 Table-to-Text Generation
Table-to-text generation has been studied for decades. Early
methods rely on handcrafted rules to generate texts for

1https://github.com/nju-websoft/TSQA

specific domains such as stock market summaries (Kukich
1983) and weather forecasts (Goldberg, Driedger, and Kit-
tredge 1994). They typically implement a pipeline of mod-
ules including content planning, sentence planning, and sur-
face realization. Today, it is feasible to train neural genera-
tion models in an end-to-end fashion, thanks to the availabil-
ity of effective pre-trained language models (Devlin et al.
2019; Radford et al. 2019) and large datasets (Lebret, Grang-
ier, and Auli 2016; Wiseman, Shieber, and Rush 2017;
Dusek, Novikova, and Rieser 2019). Current models often
adopt an encoder-decoder architecture with a copy mecha-
nism (Wiseman, Shieber, and Rush 2017; Puduppully, Dong,
and Lapata 2019a). Moreover, they can be enhanced with en-
tity representations (Puduppully, Dong, and Lapata 2019b)
and external background knowledge (Chen et al. 2019).

The above methods are targeted on surface-level descrip-
tion of tabular data, which is insufficient for our task where
data in multiple cells needs to be synthesized using vari-
ous operations (e.g., extremum, monotonicity, trend). Gen-
erating such natural language statements that are logically
entailed from tabular data, rather than superficial restate-
ments, has recently attracted research attention (Chen et al.
2020a,d). However, they are primarily focused on high-
fidelity generation, i.e., the generated text should be faith-
ful to the tabular data. Fidelity is necessary but insufficient
for our task where the generated text also needs to be use-
ful for answering the question. It is thus essential to select
the proper operation and data from a potentially very large
space. To this end, our proposed generator TTGen features
a sentence ranking model that fuses the information in the
scenario, question, and domain knowledge.

2.3 Table-Based Question Answering
Similar to TSQA, there has been a line of research of an-
swering questions over tabular data (Pasupat and Liang
2015; Jauhar, Turney, and Hovy 2016; Yin et al. 2016; Yu

13298



et al. 2020). Like our constructed dataset GeoTSQA, these
datasets also require performing various operations over
multiple cells. Differently, their questions can be answered
solely on the basis of tabular data, whereas the questions in
GeoTSQA are more naturally contextualized by a scenario
containing both a set of tables and a textual passage which
are equally important and are dependent on each other.

From this angle, the most similar dataset to GeoTSQA
is HybridQA (Chen et al. 2020c), where table cells are
linked with Wikipedia pages. However, GeoTSQA has its
unique challenges due to the source of questions—high-
school geography exams. For example, table cells mainly
contain non-linkable numeric values; more complex opera-
tions (e.g., monotonicity) are needed; it would be helpful to
incorporate domain knowledge into question answering.

3 Task and Dataset
We firstly define the task of TSQA, and then we construct
the GeoTSQA dataset to support the study of TSQA.

3.1 Task Definition
A TSQA task consists of a scenario 〈P, T 〉, a question Q,
and a set of options O as candidate answers of which only
one is correct. The scenario contains a passage P and a set of
tables T . Each table in T has a header row, a header column,
and a set of content cells. The goal is to select an option
from O as the answer to Q contextualized by 〈P, T 〉.

3.2 Dataset Construction
We constructed GeoTSQA. To the best of our knowledge, it
is the first dataset dedicated to the TSQA task.

Collecting Questions. We collected multiple-choice ques-
tions contextualized by tabular scenarios in the geography
domain from China’s high-school exams. A related dataset
is GeoSQA (Huang et al. 2019). We not only collected all
the questions from GeoSQA but also reused the code for
constructing GeoSQA to crawl much more questions from
the Web to expand our dataset.

However, many collected scenarios are not tabular. In-
deed, each scenario is associated with a set of image files.
Each image file depicts either a table or another kind of di-
agram such as a map or a histogram. Therefore, we need to
identify images depicting tables or table-like diagrams.

Identifying Tables. We looked for tables, or charts that
can be straightforwardly converted to tables (e.g., his-
tograms, line charts). We manually identified 200 such im-
age files as positive examples and another 200 image files as
negative examples. We used them to train an image classi-
fier (Szegedy et al. 2016) to classify all the remaining image
files. Finally, for all the image files that were classified as
positive, we manually checked them for classification errors.

Extracting Tables. We recruited 15 undergraduate stu-
dents from a university in China as annotators. For image
files depicting tables, we used Baidu’s OCR tool to extract
tabular data. OCR errors were manually corrected by anno-
tators. For image files depicting charts, annotators manually
extracted tabular data, assisted with a tool we developed.

Scenarios 556
Chinese characters per passage 52.42 ±32.99
Tables per scenario 1.58 ±0.93
Cells per table 26.98 ±17.51
Questions 1,012
Chinese characters per question 44.02 ±15.89

Table 1: Statistics about GeoTSQA.

The annotator used that tool to easily click key points in the
image, e.g., the origin, coordinate axes, data points. The tool
then automatically converted data points to data tables.

Annotators manually checked each extracted table and fil-
tered out irregular tables (e.g., with multi-level headers).

Filtering Questions. Last but not least, annotators filtered
out questions that can be answered without using any table.
Therefore, every question in GeoTSQA is contextualized by
a tabular scenario, and it is essential to employ the informa-
tion in the given tables to answer the question.

3.3 Dataset Statistics
GeoTSQA contains 556 scenarios and 1,012 multiple-
choice questions. Each question has four options. More
statistics about the dataset are shown in Table 1.

Out of the 878 tables in GeoTSQA, 96% only contain
numeric content cells. It differs from HybridQA (Chen
et al. 2020c) where content cells are often entities linked
with Wikipedia pages, thereby providing extra background
knowledge for answering questions. For GeoTSQA, to ob-
tain information that is not explicitly given in the scenario
but critical for answering questions, it is essential to entail
from tabular data via operations over multiple cells.

4 Approach
We propose a two-step approach to solve TSQA. As illus-
trated in Figure 1, the first step (Section 4.2) is a table-
to-text generator named TTGen. From the tables T in a
scenario 〈P, T 〉, TTGen generates top-k sentences S that
are most useful for answering the question Q. The second
step (Section 4.1) is a MRC method based on K-BERT (Liu
et al. 2020), a state-of-the-art knowledge-enabled language
model. It fuses the information in the passage P , generated
sentences S, question Q, and domain knowledge K to rank
the options in O.

4.1 MRC with Domain Knowledge
Our MRC method is based on K-BERT (Liu et al. 2020).
This state-of-the-art language model extends BERT (Devlin
et al. 2019) with the capability to utilize external knowledge
such as domain knowledge.

MRC with K-BERT. For each option oi ∈ O, we con-
catenate the passage P , top-k sentences S = {s1, . . . , sk}
generated from the tables T , questionQ, and oi in a standard
way, starting with a [CLS] token and separating with [SEP]:

IMRC
i = [CLS] P s1 · · · sk Q [SEP] oi [SEP] NUMSi [SEP] ,

(1)
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where NUMSi is a concatenation of all the numeric tokens
in P , S, Q, and oi. Each numeric token in the original posi-
tion is replaced by a special token [NUM].

We use K-BERT to obtain a vector representation for each
token in IMRC

i to capture its semantic features:

〈hMRC
i1 ,hMRC

i2 , . . .〉 = K-BERT(IMRC
i , K) , (2)

whereK is an external knowledge base we will explain later.
The vector representation for the [CLS] token, i.e., hMRC

i1 ,
is used as an aggregate representation for IMRC

i . It is fed into
two dense layers followed by a softmax layer to obtain a
correctness score ω̂i for each option oi ∈ O:

ωi = wᵀ
2 tanh(W1h

MRC
i1 + b1) + b2 ,

Ω = [ω̂1; ω̂2; . . .] = softmax([ω1;ω2; . . .]) ,
(3)

where W1 is a trainable matrix, w2 and b1 are trainable
vectors, and b2 is a trainable parameter.

In the training phase, we minimize the negative log-
likelihood loss which measures the difference between Ω
and the binary correctness label on each option (we will de-
tail in Section 5.1). In the test phase, we choose the option
in O with the highest correctness score ω̂ as the answer.

K-BERT extends BERT with an external knowledge
base K. It helps to fuse the information in P , S, Q, O,
and K. We refer the reader to Liu et al. (2020) for a detailed
description of K-BERT. Briefly, each entry in K is a pair
〈entity, fact sentence〉, or a triple 〈entity, property, value〉
which can be converted into a pair by concatenating the
property and the value into a fact sentence. K-BERT em-
ploys K to expand the input sequence into a tree of tokens:
fact sentences about an entity are retrieved from K and in-
serted as branches after each mention of the entity in the
input sequence. In our implementation, for each entity, we
retrieve top-ε fact sentences that are most relevant to the in-
put sequence. The relevance of a fact sentence to the input
sequence is measured by the cosine similarity between their
average pre-trained BERT embedding vectors.

Domain Knowledge. For the external knowledge base K,
for our experiments we use domain knowledge since all the
questions in GeoTSQA are in the geography domain. We
obtain domain knowledge from two sources.

First, we import all the triples in Clinga (Hu et al. 2016),
a large Chinese geographical knowledge base.

Second, we reuse the corpus in (Huang et al. 2019). The
corpus contains a geography textbook providing a set of en-
tity descriptions. We pair each entity with each sentence in
its description as a fact sentence. The corpus also contains a
subset of Chinese Wikipedia. We treat the title of each page
as an entity and pair it with each sentence in the page as a
fact sentence.

4.2 Table-to-Text Generation (TTGen)
Below we describe the generation of sentences from tables
to be fed into our MRC method. We rely on templates that
encapsulate predefined operations for manipulating tabular
data. It enables us to perform complex operations that are

needed for answering hard questions such as those in GeoT-
SQA. We generate sentences from tables using all the appli-
cable templates. However, it is infeasible for a MRC model
like K-BERT to jointly encode a large number (e.g., hun-
dreds) of sentences. Therefore, we rank the generated sen-
tences and select k top-ranked sentences that are most use-
ful for answering the question. By filtering the generated
sentences, we can also reduce noise information that may
influence the accuracy of reading comprehension.

Sentence Generation. By significantly extending the op-
erations considered in Chen et al. (2020a,b), we define six
table-to-text templates that encapsulate different powerful
operations for synthesizing numeric tabular data. As we will
show in the experiments, these templates have covered most
needs about tables in GeoTSQA. One can easily add new
templates to accommodate other applications.
• Extremum. This template reports the maximum or min-

imum value of a row or column. An example sentence
generated from the table in Figure 1 is: ELP reaches a
maximum of 2.504 at Year 2000.

• Special values. This template reports or compares with
a special value (e.g., under a column header that is men-
tioned in the question), e.g., ELP at Year 2000 is 2.504.

• Comparison with average. This template reports a max-
imal sequence of cells where all the values are above or
below the average of the entire row or column, e.g., ELP
is relatively large between Year 2000 and 2002.

• Monotonicity. This template reports a monotonic in-
crease or decrease over a maximal sequence of cells,
e.g., ELP decreases between Year 2000 and 2003.
• Trend. This template reports the overall trend of a row or

column, e.g., ELP generally increases and then decreases.
• Range comparison. This template reports a comparison

between two maximal corresponding sequences of cells
from different rows or columns.
For non-numeric tabular data, we simply concatenate each

row header, each column header, and the corresponding con-
tent cell into a sentence.

Sentence Ranking. Let Ŝ be the set of sentences gener-
ated from the tables T using all the applicable templates. We
compute a usefulness score for each sentence sj ∈ Ŝ, and
choose k top-ranked sentences S ⊆ Ŝ. To select sentences
that are most useful for answering the question, our ranking
model employs K-BERT to fuse the information in the pas-
sage P , question Q, and domain knowledge K to perform
question and knowledge aware ranking. Figure 2 presents
an overview of the model. It integrates two complementary
rankers: sentence-level ranking directly assesses the useful-
ness of each individual sentence; template-level ranking in-
fers useful templates purely from the passage and question.

For sentence-level ranking, we concatenate the passageP ,
question Q, and sentence sj in a standard way:

ISR
j = [CLS] P Q [SEP] sj [SEP] NUMSj [SEP] , (4)

where NUMSj is a concatenation of all the numeric tokens
in P , Q, and sj . Each numeric token in the original position
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Passage Generated SentenceQuestion Passage Question

K-BERT Domain
Knowledge

K-BERT

Output Layer Output Layer

Ranking Score of 
Generated Sentence

Sentence-Level Ranking Template-Level Ranking

Figure 2: Sentence ranking model in TTGen.

is replaced by a special token [NUM]. We use K-BERT to
obtain a vector representation for each token in ISR

j :

〈hSR
j1 ,h

SR
j2 , . . .〉 = K-BERT(ISR

j , K) . (5)

The vector representation for the [CLS] token, i.e., hSR
j1 , is

fed into two dense layers followed by a softmax layer to
obtain a usefulness score φ̂j for each sentence sj ∈ Ŝ:

φj = wᵀ
4 tanh(W3h

SR
j1 + b3) + b4 ,

Φ = [φ̂1; φ̂2; . . .] = softmax([φ1;φ2; . . .]) ,
(6)

where W3 is a trainable matrix, w4 and b3 are trainable vec-
tors, and b4 is a trainable parameter. In the training phase, we
minimize the negative log-likelihood loss which measures
the difference between Φ and the binary usefulness label on
each generated sentence (we will detail in Section 5.1).

For template-level ranking, we concatenate the passage P
and question Q in a standard way:

ITR = [CLS] P Q [SEP] . (7)
We use K-BERT to obtain a vector representation for each
token in ITR:

〈hTR
1 ,hTR

2 , . . .〉 = K-BERT(ITR, K) . (8)
The vector representation for the [CLS] token, i.e., hTR

1 , is
fed into two dense layers followed by a sigmoid layer to
obtain a usefulness score ψ̂ for each of the six templates:

[ψ1; . . . ;ψ6] = W6 tanh(W5h
TR
1 + b5) + b6 ,

Ψ = [ψ̂1; . . . ; ψ̂6] = sigmoid([ψ1; . . . ;ψ6]) ,
(9)

where W5 and W6 are trainable matrices, b5 and b6 are
trainable vectors. Let sentence sj be generated by the τj-th
template. We derive usefulness labels on templates for train-
ing from usefulness labels on generated sentences: a tem-
plate is labeled useful if and only if at least one sentence
it generates is labeled useful. Multiple sentences and hence
multiple templates may be labeled useful for answering a
question. Therefore, in the training phase, we formulate a
multi-label binary classification task, and we minimize the
binary cross-entropy loss which measures the difference be-
tween Ψ and the binary usefulness label on each template.

Finally, in the test phase, we compute:

usefulness score of sj = φ̂j · ψ̂τj . (10)

Output of linearization for the table in Figure 1:

... ELP at Year 1998 is 2.465. ELP at Year 1999 is 2.476.
ELP at Year 2000 is 2.504. ELP at Year 2001 is 2.490. ELP
at Year 2002 is 2.482. ELP at Year 2003 is 2.473.

Table 2: Example output of Linearization.

5 Experiment Setup
We compared our approach with a variety of strong baseline
methods for TSQA. We also evaluated our sentence ranking
model, which is the core component of our approach.

5.1 Labeled Data
Correctness Labels on Options. For each question, from
its known correct answer, we derived a label for each of
the four options indicating whether it is the correct answer.
These binary correctness labels were used to train and eval-
uate TSQA methods.

Usefulness Labels on Generated Sentences. The number
of all the sentences Ŝ generated by our templates for a ques-
tion is in the range of 2–176, with a mean of 41.58 and a
median of 38. For each question, we asked an annotator (re-
cruited in Section 3.2) to read Ŝ and assign a label to each
sentence indicating whether it is useful for answering the
question. These binary usefulness labels were used to train
and evaluate sentence ranking models.

Gold-Standard Sentences. Furthermore, the annotator
manually summarized the tables in one sentence describ-
ing necessary information for answering the question. This
gold-standard sentence was used for comparison.

We randomly sampled 100 questions from GeoTSQA. For
92 questions, Ŝ fully covers the information in the gold-
standard sentence. For 6 questions, Ŝ partially covers that
information. Therefore, our six templates show good cover-
age of the various operations required by GeoTSQA.

5.2 Baselines
Our approach extends MRC methods. It is not our focus to
compare existing MRC methods. Instead, table-to-text gen-
eration is our major technical contribution. Therefore, in the
experiments we consistently used the MRC method based on
K-BERT described in Section 4.1, but fed it with sentences
generated from tables by the following different methods.

Supervised Methods. Firstly, we compared with three
table-to-text generators that achieved state-of-the-art results
on the recent LogicNLG dataset (Chen et al. 2020a) which,
similar to our GeoTSQA, requires synthesizing data in mul-
tiple cells. These generators are open source. Field-Infusing
employs LSTM to encode each table into a sequence of vec-
tors and then applies Transformer to generate text. GPT-
Linearization linearizes each table as a paragraph by hor-
izontally scanning the table and concatenating each content
cell with its row header and column header into a sentence.
Table 2 illustrates such a paragraph. The resulting paragraph
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Output of templation for the table in Figure 1:

... ELP at Year 2000 is 2.504. ... ELP decreases between
Year 2000 and 2003. ... ELP generally increases and then
decreases. ... ELP reaches a maximum of 2.504 at Year 2000.
... ELP is relatively large between Year 2000 and 2002. ...

Table 3: Example output of Templation.

is then fed into GPT-2 to generate a new text. Coarse-to-
Fine is an enhanced version of GPT-Linearization. It adopts
a two-step text generation process: generating a template and
then filling it.

Furthermore, we implemented an enhanced version of
GPT-Linearization and Coarse-to-Fine, referred to as GPT-
Linearization+ and Coarse-to-Fine+, respectively. At the
beginning of the paragraph fed into GPT-2, we inserted the
scenario passage and question to enable GPT-2 to perform
question-aware text generation.

All the above supervised table-to-text generators were
trained based on sentences with positive usefulness labels.

Unsupervised Methods. We also compared with two
naive table-to-text generators.

Recall that GPT-Linearization generates a paragraph from
tables and then feeds it into GPT-2 to generate a new text.
We implemented Linearization. It directly outputs the gen-
erated paragraph without feeding it into GPT-2.

Besides, we implemented Templation. It generates a
paragraph consisting of all the sentences Ŝ generated by our
templates. Sentences are sorted in ascending order of length
so that if the paragraph has to be truncated by the maximum
sequence length of K-BERT, the largest number of sentences
can be retained. Table 3 illustrates such a paragraph.

Gold-Standard Sentence. Last but not least, we used
manually annotated gold-standard sentence as a reference.

5.3 Implementation Details
We performed 5-fold cross-validation. For each fold, we
split GeoTSQA into 80% for training and 20% for test. For
model selection, we relied on an inner holdout 80%/20%
training/development split. We ran all the experiments on
TITAN RTX GPUs.

For K-BERT, we used BERT-wwm-ext (Cui et al. 2019),
a pre-trained Chinese language model as the underlying lan-
guage model. We set maximum sequence length = 256,
self-attention layer = 12, hidden units = 768, epochs =
15 for MRC and template-level ranking, epochs = 5
for sentence-level ranking, batch size = 8 for MRC,
batch size = 16 for template-level ranking and sentence-
level ranking, learning rate = 1e–5, and attention heads =
12. For knowledge base retrieval we set ε = 2. Inspired by
Jin et al. (2020), for the K-BERT model in our MRC method
(but not the one in TTGen), we coarse-tuned it on C3 (Sun
et al. 2020), a Chinese MRC dataset.

For GPT-2, we used CDialGPT2LCCC-base (Wang
et al. 2020), a pre-trained Chinese GPT-2 model. For
CDialGPT2LCCC-base, and for LSTM and Transformer in

Accuracy
Field-Infusing 0.353 •

GPT-Linearization 0.370
Coarse-to-Fine 0.367
GPT-Linearization+ 0.348 •

Coarse-to-Fine+ 0.359 ◦

Linearization 0.235 •

Templation 0.243 •

TTGen 0.397
Gold-Standard Sentence 0.418

Table 4: Accuracy of TSQA. We mark the results of base-
lines that are significantly lower than TTGen under p <
0.01 (•) or p < 0.05 (◦).

Field-Infusing, we followed the recommended hyperparam-
eter settings in their original implementation.

For our TTGen, by default we set k = 2 to only select
the top-2 generated sentences for MRC. We will report a
comparison in different settings of k.

5.4 Evaluation Metrics
To evaluate TSQA, we measured accuracy, i.e., the propor-
tion of correctly answered questions.

To evaluate sentence ranking, we measured the quality of
the whole ranked list of all the sentences Ŝ generated by our
templates. We used two standard information retrieval eval-
uation metrics: Mean Average Precision (MAP) and Mean
Reciprocal Rank (MRR).

6 Experiment Results
We report average results on the test sets over all the folds.

6.1 Results on TSQA
Comparison with Baselines. Table 4 shows the accuracy
of TSQA achieved by each method. Our TTGen outperforms
all the baselines by 2.7–16.2 percent of accuracy.

TTGen exceeds three state-of-the-art table-to-text genera-
tors, i.e., Field-Infusing, GPT-Linearization, and Coarse-to-
Fine, by 2.7–4.4 percent of accuracy.

The enhanced version of these generators that we imple-
mented, i.e., GPT-Linearization+ and Coarse-to-Fine+, ex-
hibit surprisingly worse performance than their original ver-
sion. Their generation methods are significantly inferior to
our TTGen by 3.8–5.1 percent of accuracy.

The two naive generators, i.e., Linearization and Tem-
plation, produce much noise information for MRC and
achieve accuracy even lower than random guess (i.e., 0.25).
It demonstrates the necessity of ranking and selecting gen-
erated sentences.

The accuracy of using gold-standard sentence is 0.418.
On the one hand, compared with the accuracy 0.397 of our
TTGen, it suggests that there is still room for improving our
templates and/or our sentence ranking model. On the other
hand, the achieved accuracy is not satisfying. To improve the
overall performance of our approach, we need to combine
our TTGen with novel MRC methods that are more powerful
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k = 1 k = 2 k = 3 k = 4 k = 5
Accuracy 0.390 0.397 0.352 0.343 0.330

Table 5: Accuracy of TSQA by varying k in TTGen.

Accuracy
TTGen 0.397
TTGen w/o tabular data 0.372
TTGen w/o domain knowledge 0.380

Table 6: Accuracy of TSQA (ablation study).

than K-BERT to meet the unique challenges raised by the
GeoTSQA dataset. This will be our future work.

Varying k. Table 5 shows the accuracy of TSQA achieved
by our approach under different settings of k. Increasing k
from 1 to 2 (the default value), the accuracy remains sta-
ble. Further increasing k to 3 or larger, the accuracy drops
substantially, probably influenced by the extra noise infor-
mation. It is thus important to rank generated sentences and
only select those useful for answering the question.

Ablation Study. To analyze the usefulness of tabular data
and domain knowledge in TSQA, we implemented two vari-
ants of our approach. The first variant ignored tabular data.
The second variant ignored domain knowledge.

Table 6 shows the accuracy of TSQA achieved by each
variant. Compared with the full version of our approach, the
accuracy of both variants decrease, by 2.5 percent of accu-
racy without tabular data and by 1.7 percent of accuracy
without domain knowledge. The results reveal the useful-
ness of tabular data and of domain knowledge.

6.2 Results on Sentence Ranking
We compared our sentence ranking model with a strong
baseline method: RE2 (Yang et al. 2019a). This state-of-the-
art text matcher is open source. We employed it to compute
the semantic relevance of each generated sentence in Ŝ to
the question. Specifically, we used RE2 as a text pair clas-
sifier to predict a ranking score for each generated sentence
conditioned on (i.e., paired with) a concatenation of the sce-
nario passage and question. We followed the recommended
hyperparameter setting in its original implementation.

Table 7 shows the quality of sentence ranking computed
by each method. Our TTGen exceeds RE2 by 5.2 percent of
MAP and by 6.0 percent of MRR. Paired t-tests show that all
these differences are statistically significant under p < 0.01.

6.3 Error Analysis
We randomly sampled 100 questions to which our approach
provided incorrect answers. We analyzed the question an-
swering process and identified the following three main
causes of errors. Multiple causes could apply to a question.

Knowledge Base. For 76% of the errors, there is a lack of
necessary domain or commonsense knowledge for answer-
ing the question, such as the location of a particular lake.
It suggests expanding our knowledge base. However, this is
orthogonal to our technical contribution.

MAP MRR
RE2 0.434 • 0.461 •

TTGen 0.486 0.521

Table 7: Quality of sentence ranking. We mark the results
of baselines that are significantly lower than TTGen under
p < 0.01 (•).

Reasoning Capabilities. For 62% of the errors, more ad-
vanced reasoning skills are needed. For example, some ques-
tions require multi-hop math calculations over a group of
related domain concepts. K-BERT as a language model can-
not calculate. It is also impracticable to encapsulate such
extremely complex operations with predefined templates.
Therefore, it suggests incorporating specific calculators and
powerful reasoners into MRC models.

Sentence Ranking. For 54% of the errors, our sentence
ranking model chooses a sentence that is not useful for an-
swering the question. Indeed, some templates and their gen-
erated sentences are linguistically similar though logically
different, e.g., is relatively large, reaches maximum, and in-
creases. This sometimes challenges our sentence ranking
model as well as our MRC method. We will focus on this
problem in the future work.

7 Conclusion
Our study aims at solving TSQA in a fully automated man-
ner to avoid manually interpreting tabular data using natu-
ral language descriptions as done in previous research. To
support this study, we constructed and published the first
dataset GeoTSQA that is dedicated to the TSQA task. With
only six templates encapsulating predefined operations for
synthesizing tabular data in various ways, we covered most
needs about tables in GeoTSQA but then, the problem turned
into selecting, among a large number of sentences generated
from templates, the most useful ones for answering the ques-
tion. Our proposed model effectively integrates sentence-
level and template-level ranking, and exploits the scenario
passage, question, and domain knowledge by fusing their in-
formation with K-BERT. Our approach has the potential to
be adapted to other AI applications that require table com-
prehension and explanation.

Although our approach outperformed a variety of strong
baselines in the experiments, its accuracy is still not satisfy-
ing. Following the results of our error analysis, for the future
work, we plan to enhance our sentence ranking model with
more powerful semantic matching techniques. We will also
extend our MRC method to perform math calculation and
logical reasoning over an expanded knowledge base.
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