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Abstract

Recently, Transformer has been demonstrating promising
performance in many NLP tasks and showing a trend of re-
placing Recurrent Neural Network (RNN). Meanwhile, less
attention is drawn to Convolutional Neural Network (CNN)
due to its weak ability in capturing sequential and long-
distance dependencies, although it has excellent local feature
extraction capability. In this paper, we introduce an Attentive
Convolutional Transformer (ACT) that takes the advantages
of both Transformer and CNN for efficient text classification.
Specifically, we propose a novel attentive convolution mech-
anism that utilizes the semantic meaning of convolutional fil-
ters attentively to transform text from complex word space to
a more informative convolutional filter space where important
n-grams are captured. ACT is able to capture both local and
global dependencies effectively while preserving sequential
information. Experiments on various text classification tasks
and detailed analyses show that ACT is a lightweight, fast,
and effective universal text classifier, outperforming CNNs,
RNNs, and attentive models including Transformer.

1 Introduction
Text classification is a fundamental problem behind many
research topics in Natural Language Processing (NLP), such
as topic categorization, sentiment analysis, relation extrac-
tion, etc. The key issue in text classification is text represen-
tation learning, which aims to capture both local and global
dependencies of texts with respect to class labels. Com-
pared with traditional bag-of-words/n-grams model (Wang
and Manning 2012), deep neural networks have shown to be
more effective since word order information can be utilized
and more semantic features can be captured. The commonly
adopted neural architectures in deep neural networks include
CNN, RNN, and Transformer.

CNN is a special feed-forward neural network with con-
volutional layers interleaved with pooling layers. For NLP,
the convolutional kernels/filters in CNN can be treated as n-
gram extractors that convert n-gram in each position into a
vector showing its relevance to the filters. With the help of
pooling operations, the overall relevance of the text to each
filter can be captured. Therefore, CNN has advantages in
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capturing semantic and syntactic information of n-grams for
more abstract and discriminative representations (Kim 2014;
Zhang, Zhao, and LeCun 2015; Li and Mao 2019). However,
CNN is relatively weak in capturing sequential information
and long-distance dependencies because convolutional fil-
ters normally have small kernel sizes focusing only on local
n-grams, and the pooling operation results in loss of position
information. Although we could apply dilated CNN (Yu and
Koltun 2015) or construct deep CNNs with one layer stack
on another to widen the convolution context to some extent,
the performance gain is normally marginal with the cost of
more data needed (Le, Cerisara, and Denis 2018). Besides,
the convolutional filters in CNN may misfit to task-irrelevant
words, hence producing non-discriminative features in the
feature map (Li et al. 2017, 2020).

RNN is well-known for processing sequential data recur-
rently and it is widely used for text classification (Tang, Qin,
and Liu 2015; Yogatama et al. 2017; Zhang et al. 2017a).
However, RNN suffers from two problems due to its re-
current nature: gradient vanishing and parallel-unfriendly.
Many works attempt to alleviate the gradient vanishing
problem by incorporating attention mechanisms to RNN
(Zhou et al. 2016; Yang et al. 2016; Zhang et al. 2017b). A
novel neural architecture called Transformer (Vaswani et al.
2017) addresses both problems by relying entirely on self-
attention to handle long-distance dependencies without re-
current computations. The emerging of Transformer-based
neural networks has led to a series of breakthroughs in a
wide range of NLP tasks (Zhang et al. 2018; Li et al. 2019;
Zhong, Wang, and Miao 2019). Especially, the pre-trained
language models based on Transformer have achieved state-
of-the-art performance in many benchmark datasets (Devlin
et al. 2019; Radford et al. 2019; Raffel et al. 2020). However,
the heavy architecture of Transformer often requires more
training data, CPU/GPU memory, and computational power,
especially for long texts. Besides, since self-attention takes
into account all the elements with a weighted averaging op-
eration that disperses the attention distribution, Transformer
may overlook the relation of neighboring elements (i.e. n-
grams) that are important for text classification tasks (Yang
et al. 2018, 2019a; Guo, Zhang, and Liu 2019).

To address the above-mentioned limitations of CNN and
Transformer, we propose an Attentive Convolutional Trans-
former (ACT) which takes the advantages of both Trans-
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former and CNN for efficient text classification. Similar
as Transformer, ACT also has a multi-head structure that
jointly performs attention operations in different subspaces.
However, instead of self-attention, a novel attentive convolu-
tion mechanism is performed in each attention head to better
capture local n-gram features. Different from conventional
CNN, the proposed attentive convolution utilizes the seman-
tic meaning of convolutional filters attentively and trans-
forms texts from complex word space to a more informative
convolutional filter space. This not only simplifies the opti-
mization of capturing important n-grams for classification,
but also allows our model to learn meaningful convolutional
filters since all the filters contribute to the final representa-
tion directly. Compared with self-attention, the proposed at-
tentive convolution focuses more on learning important local
n-gram features globally which are invariant to the specific
inputs. These n-gram features are exactly the keywords and
phrases that are crucial for text classification. While majority
of existing works augment Transformer with conventional
CNNs to improve locality modeling capability with the cost
of introducing more parameters (Yu et al. 2018; Mohamed,
Okhonko, and Zettlemoyer 2019; Yang et al. 2019a; Gulati
et al. 2020), our work is a more lightweight approach and it
is the first to utilize the semantic meaning of convolutional
filters with attention mechanism.

The proposed ACT is also sequence-to-sequence, with an
additional global representation output by keeping the max-
pooling functionality of CNN. Therefore, it is able to cap-
ture both local and global features while preserving sequen-
tial information. Furthermore, we propose a global attention
mechanism to summarize the outputs of ACT and obtain the
final representation by taking local, global, and position in-
formation into consideration. Experiments are conducted on
typical text classification tasks including sentiment analysis
and topic categorization, as well as the more challenging re-
lation extraction task. We present detailed analyses on ACT,
results show that ACT is a lightweight and efficient univer-
sal text classifier, outperforming existing CNN-based, RNN-
based, and attentive models including Transformer.

2 Attentive Convolutional Transformer
We present the proposed ACT in detail in this section. The
attentive convolution mechanism of ACT is introduced in
Section 2.1; the multi-head multi-layer structure of ACT is
described in Section 2.2; the global attention mechanism for
final text representation is presented in Section 2.3.

2.1 Attentive Convolution Mechanism
Attentive convolution mechanism is the fundamental opera-
tion of ACT. It first performs n-gram convolution over text,
then transforms text into convolutional filter space by com-
bining the filters attentively. With different utilization of fea-
ture maps as attention weights, attentive convolution mech-
anism is able to capture both local and global features of
texts. The architecture of the proposed attentive convolution
is shown in Figure 1 (left).

Local feature representation Given a text input t =
[t1, t2, ..., tl], we first represent each word token ti as word

embedding qi ∈ Rdw and obtain the input embeddings
Q = [q1,q2, ...,ql] by looking up the word embedding
matrix Wwrd ∈ Rdw×V , where dw is the dimension of
word embedding and V is vocabulary size. Then, n-gram
convolution over input embeddings Q is performed using
convolutional filters F = [f1, f2, ..., fm], where fi ∈ Rndw

and n is the convolution kernel size. A feature map matrix
M ∈ Rm×l is generated as follows:

M = Q~ F (1)

where ~ indicates the convolution operation of fi over Q.
Specifically, the value in the feature map is calculated as
shown in Equation 2:

mij = f(fi
T · Cat(qj , qj+1, ..., qj+n−1) + b) (2)

where Cat means concatenation, f is a non-linear activation
function and b is a bias term.

The values in the resulted feature map indicate seman-
tic relevance between n-grams and convolutional filters. By
treating the feature map values as attention weights and ag-
gregating the semantic convolutional filters attentively, we
transform each n-gram from complex word space to a more
informative convolutional filter space while preserving the
sequential information of texts. Formally, the attentive con-
volution for local feature representation is shown in Equa-
tion 3.

O = F ·M = F · (Q~ F) (3)
where O = [o1,o2, ...,ol] ∈ Rndw×l is the output obtained
from attentive convolution.

Different from self-attention whose output space is still
a complex word space with varying components depending
on the input, the output space in our proposed attentive con-
volution mechanism is formed by n-gram convolutional fil-
ters which are learned globally and invariant to the inputs.
In such space, important n-grams will be close to the corre-
sponding filters and irrelevant n-grams will have small val-
ues. Therefore, the important local features (n-grams) appear
in the texts can be captured effectively.

Global feature representation Besides local features, at-
tentive convolution mechanism can also capture global fea-
tures of texts by applying the max-pooling technique which
is normally used in conventional CNNs. The max-pooling
over each row of the feature map M finds the overall rel-
evance of the texts to each convolutional filter. By aggre-
gating the convolutional filters attentively using the max-
pooling results, we can find the overall semantics of texts
in the filter space. Formally, the attentive convolution for
global feature representation is shown in Equation 4.

g = F ·max(M) (4)

where g ∈ Rndw and max means row-wise max-pooling.

Comparison with existing methods Compared with con-
ventional CNN whose outputs come from feature maps
only, our proposed attentive convolution utilizes both feature
maps and semantic meaning of convolutional filters for text
representation. This allows our model to learn meaningful
convolutional filters effectively since all the filters contribute
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Figure 1: Left: attentive convolution mechanism. Outputs are obtained by combining convolutional filters attentively utiliz-
ing feature map as attention weights. Right: multi-head multi-layer structure of ACT. h and N indicate number of attentive
convolution heads and layers respectively.

to the final representation directly. Moreover, the pooling op-
eration in conventional CNN ignores the sequential informa-
tion of texts, whereas the local feature representation in our
method preserves the sequential information while capturing
important n-gram features.

Compared with conventional attention mechanism whose
attention weights are calculated from vector product of
queries (Q) and keys (K), our proposed method calculates
attention weights through convolution of queries (Q) using
the keys (F), where the keys and values in our attention
mechanism are convolutional filters learned during end-to-
end training. The convolution operation involves wider con-
text (n-grams) than the vector product of single words, this
allows our model to capture important n-gram features more
effectively. These n-gram features are exactly the keywords
and phrases that are crucial for text classification. Besides,
as mentioned in Section 2.1, the output space is more sim-
plified and informative since it is formed by convolutional
filters that are invariant to the inputs.

2.2 Multi-head Multi-layer Attentive Convolution
Inspired by Transformer (Vaswani et al. 2017), the pro-
posed ACT also has multi-head and multi-layer structures
as shown in Figure 1 (right).

For h-head ACT, we first linearly transform input embed-
dings Q h times and perform h attentive convolution simul-
taneously. Then the outputs from different attention heads
are concatenated together and linearly transformed to the
original input dimension, as shown in Equation 5.

MultiHead(Q) = WOCat(O1,O2, ...,Oh)

where Oi = AttenConv(WQ
i Q)

(5)

Here, AttenConv indicates the proposed attentive convolu-
tion mechanism, WQ

i ∈ R(dw/h)×dw and WO ∈ Rdw×ndw

are the weight matrices of linear transformations. Further-
more, we adopt the residual connection and layer norm as
used in Vaswani et al. (2017). For multi-layer ACT, we sim-
ply pass the local representations of lower-layer to the in-
put of upper-layer to obtain the higher-level local represen-
tations. The global representation is obtained from the top
ACT layer.

The multi-head structure of ACT allows our model to
jointly capture important n-gram features in different sub-
word spaces, where the n-grams in different spaces have dif-
ferent contributions to the final representation. The multi-
layer structure allows our model to capture higher-level se-
mantics effectively. Since the upper-layer involves a wider
context for convolution, it is able to induce more abstract
and discriminative representations.

2.3 Global Attention and Classification
To obtain the final representation of texts for classification,
we propose a global attention mechanism that summarizes
the sequential outputs of ACT. As shown in Figure 2, the
attention weights are calculated by taking both local and
global representations as well as position information of
each token into consideration.

The local representation O ∈ Rdw×l and global repre-
sentation g ∈ Rdw are obtained from the top-layer of ACT.
The position embedding P ∈ Rdp×l is obtained by map-
ping each token’s absolute position to dp-dimensional em-
beddings based on a trainable position embedding matrix
Wp ∈ Rdp×P , where P is the total number of positions.
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Figure 2: Global attention mechanism. Attention weights αi

are calculated based on local representation oi, global rep-
resentation g, and position embedding pi of each token.

The final text representation is obtained by Equation 6:

r = O · Softmax(f(WoO+WpP)T c+
OTg√
dw

) (6)

where f is a non-linear activation function, Wo ∈ Rda×dw

Wp ∈ Rda×dp are linear transformation weight matrices, da
is attention dimension, c ∈ Rda is a context vector learned
by the neural network,

√
dw is a scaling factor depends on

input dimension.
For classification, we pass the final representation r to a

classifier consisting of a fully connected layer and a soft-
max layer to predict class probabilities. Our model is trained
by minimizing categorical cross-entropy loss and center loss
(Wen et al. 2016) using stochastic gradient descent (SGD)
with momentum and learning rate decay.

3 Experiments
We evaluate our proposed ACT on three different text clas-
sification tasks, including sentiment analysis, topic catego-
rization, and relation extraction. Since relation extraction
is slightly different from traditional text classification tasks
where special considerations are needed for target entities,
we conduct experiments on it separately.

3.1 Datasets
We use six widely-studied datasets to evaluate our model,
two for each text classification task. These datasets are di-
verse in the aspects of type, size, number of classes, and
document length. Table 1 shows the statistics of the datasets.

For sentiment analysis, we use two datasets constructed
by Zhang et al. (2015) which are obtained from Yelp Dataset
Challenge 2015. Yelp Review Polarity (Yelp P.) is a binary
sentiment classification dataset whose class is either positive
or negative; Yelp Review Full (Yelp F.) contains more fine-
grained sentiment classes ranging from rating 1 to 5.

For topic categorization, we use AG’s News (AGNews)
and DBPedia datasets created by Zhang et al. (2015). AG-

News contains news articles from four categories: world, en-
tertainment, sports, and business; DBPedia is an ontology
classification dataset containing 14 non-overlapping cate-
gories picked from DBpedia 2014.

For relation extraction, we use TACRED and
SemEval2010-task8 (SemEval) datasets which contain
hand-annotated subject and object entities as well as the
relation type between the entities. TACRED is a large-scale
and complex relation extraction dataset constructed by
Zhang et al. (2017b) which has 41 relation types and a
no relation class; SemEval2010-task8 (Hendrickx et al.
2009) is a relatively smaller relation extraction dataset
which has 9 directed relations and 1 other relation.

3.2 Baseline Models
A variety of baseline models are used for comparison with
our model. Different baseline models are used for relation
extraction since the task is more challenging and normally
requires dedicated models.

Text Classification Models
• CNN-based models including Word-level CNN, Char-

level CNN (Zhang, Zhao, and LeCun 2015), and deep
CNN namely VDCNN (Conneau et al. 2016).

• RNN-based models including standard LSTM (Zhang,
Zhao, and LeCun 2015), discriminative LSTM (D-LSTM)
of Yogatama et al. (2017), and Skim-LSTM which dy-
namically updates its hidden states (Seo et al. 2018).

• Attentive models including bi-directional block self-
attention network (Bi-BloSAN) (Shen et al. 2018), label-
embedding attentive model (LEAM) (Wang et al. 2018),
and Transformer encoder (Vaswani et al. 2017) for text
classification.

Relation Extraction Models
• CNN-based models including the standard CNN for sen-

tence classification (Kim 2014), CNN with position em-
beddings (CNN-PE) (Nguyen and Grishman 2015), and
graph convolutional network (GCN) over pruned depen-
dency trees of sentences (Zhang, Qi, and Manning 2018).

• RNN-based models including standard LSTM and
LSTM with position-aware attention (PA-LSTM) (Zhang
et al. 2017b).

• CNN-RNN hybrid model including contextualized GCN
(C-GCN) where the input vectors are obtained using bi-
LSTM (Zhang, Qi, and Manning 2018).

• Attentive models including Transformer encoder (Bi-
lan and Roth 2018), knowledge-attention encoder (Knwl-
attn) (Li et al. 2019), and knowledge-attention self-
attention integrated model (Knwl+Self).

3.3 Experiment Settings
In our experiments, word embedding matrix Wwrd is ini-
tialized with 300-d Glove word embeddings (Pennington,
Socher, and Manning 2014). The fully connected layer be-
fore softmax has a dimension of 100. Dropout regulariza-
tion (Srivastava et al. 2014) with a rate of 0.4 is applied
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Datasets Types Classes Average
lengths

Train
samples

Test
samples

Yelp Review Polarity (Yelp P.) Sentiment 2 156 560,000 38,000
Yelp Review Full (Yelp F.) Sentiment 5 158 650,000 50,000
AG’s News (AGNews) Topic 4 44 120,000 7,600
DBPedia Topic 14 55 560,000 70,000
TACRED Relation 41 36 90,755 15,509
SemEval2010-task8 (SemEval) Relation 19 19 8,000 2,717

Table 1: Statistics of the six text classification datasets used in our experiments.

Model Yelp P. Yelp F. AGNews DBPedia
Word-level CNN 95.40 59.84 91.45 98.58
Char-level CNN 94.75 61.60 90.15 98.34
VDCNN 95.72 64.72 91.33 98.71
LSTM 94.74 58.17 86.06 98.55
D-LSTM 92.60 59.60 92.10 98.70
Skim-LSTM / / 93.60 /
Bi-BloSAN 94.56 62.13 93.32 98.77
LEAM 95.31 64.09 92.45 99.02
Transformer 96.13* 65.34* 93.89* 98.98*
ACT 97.41 68.16 94.25 99.19

Model TACRED SemEval
CNN 59.3* 70.0*
CNN-PE 61.4* 82.3*
GCN 64.0 /
LSTM 61.5* 80.9*
PA-LSTM 65.1 82.7
C-GCN 66.4 84.8
Knwl-attn 66.4 82.3
Knwl+Self 67.8 84.3
Transformer 66.5 83.1
ACT 68.0 84.5

Table 2: Left: classification accuracy (%) on sentiment analysis and topic categorization tasks. Right: F1 scores on relation
extraction task, official micro-averaged and macro-averaged F1 scores are used for TACRED and SemEval2010-task8 datasets
respectively. * means the results are obtained from our implementation. / means not reported. All other results are directly cited
from the respective papers mentioned in Section 3.2.

during training. The weight and learning rate for center loss
are 0.001 and 0.1 respectively. The models are trained using
SGD with initial learning rate of 0.01 and momentum of 0.9.
Learning rate is decayed with a rate of 0.9 after 10 epochs
if the score on the development set does not improve. Batch
size is set to 100 and the model is trained for 70 epochs.
The dimensions of global attention and position embedding
are 200 and 60 respectively. We use GeLUs (Hendrycks and
Gimpel 2016) for all the nonlinear activation functions.

The hyper-parameters of ACT are selected by grid-search
(refer to Section 4.2 for details). Specifically, for senti-
ment analysis and topic categorization, we set aside 10% of
training data as the development set to tune model hyper-
parameters. We report the average classification accuracy on
the test set based on 5 independent runs. For ACT, we use
3-layer encoder with 6 attentive convolution heads in each
layer, and m = 100 convolutional filters with a kernel size
of 3 in the attentive convolution mechanism. For relation ex-
traction, we use the same settings as Zhang et al. (2017b) for
a fair comparison with baseline models. Particularly, instead
of using absolute positions in global attention, we use two
relative positions for each token with respect to the two tar-
get entities. Each relative position embedding has a dimen-
sion of 30 and they are concatenated together as final po-
sition embedding. For ACT, we use one layer encoder with
6 attentive convolution heads in each layer, and m = 40
convolutional filters with a kernel size of 3 in the attentive
convolution mechanism.

3.4 Results and Analysis

Experiment results on the six text classification datasets are
shown in Table 2. Left table shows the classification accu-
racy on sentiment analysis and topic categorization tasks;
right table shows the F1 score on relation extraction task.
Our proposed ACT achieves the best performance among all
the baseline models for majority of datasets. For SemEval
dataset, ACT ranks the 2nd best and has comparable per-
formance with C-GCN, a sophisticated model for relation
extraction.

Compared with CNN-based models, ACT performs bet-
ter than shallow CNN (word/character-level), graph convo-
lution network (GCN), and deep CNN (VDCNN) with a sig-
nificant margin. The reason is that ACT is able to capture
both local n-gram features and global dependencies effec-
tively while preserving sequential information. Besides, the
learning of convolutional filters is more efficient using the
proposed attentive convolution mechanism where semantic
meanings of the filters are utilized for text representation.

Compared with RNN-based models, ACT consistently
outperforms standard LSTM and improved variants of
LSTM (D-LSTM, Skim-LSTM, and PA-LSTM) for all the
tasks. This credits to the attentive convolution mechanism
for better capturing n-gram features, as well as the multi-
head multi-layer structure that does not suffer from gradient
vanishing problem when capturing long-distance dependen-
cies. The contextualized GCN (C-GCN) using bi-LSTM and
GCN performs slightly better than ACT on SemEval dataset,
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Figure 3: Hyper-parameter study on ACT. X-coordinate indicates the hyper-parameters studied, Y-coordinate indicates classifi-
cation accuracy for Yelp F. dataset and micro-averaged F1 score for TACRED dataset.

probably due to the benefits of dependency trees. Our model
does not require any dependency parsing of the sentences.

It is observed that attentive models generally outperform
RNN-based models. This is due to the better ability of at-
tention mechanisms in capturing long-distance dependen-
cies, especially the self-attention used in Transformer. The
proposed ACT outperforms all the attentive models includ-
ing Transformer encoder. The reason is that ACT has bet-
ter local n-gram feature extraction capability by using at-
tentive convolution mechanism. However, important n-gram
features may not be captured effectively by Transformer be-
cause each token will attend to the whole sequence instead
of n-grams, the output may be affected by irrelevant tokens.
Besides, ACT also simplifies the optimization because it
transforms text representation from complex word space to
more informative filter space, leading to more stable training
and better keyword extraction capability.

The recently proposed knowledge-attention and self-
attention integrated model (Li et al. 2019) performs as well
as ACT on relation extraction task, with the aid of external
lexical resources to better capture the keywords of relations.
Encouragingly, our proposed ACT is able to capture such
keywords effectively without the need of external knowl-
edge resources, yet achieving better performance.

4 Discussions
We present more in-depth analyses and discussions on ACT
in this section. Two relatively different datasets are used to
conduct our experiments: one is Yelp F., a large dataset for
sentiment analysis; the other is TACRED, a relation extrac-
tion dataset which is much smaller. We report accuracy and
micro-averaged F1 score on the development sets of Yelp F.
and TACRED respectively.

4.1 Ablation Study
We perform an ablation study on ACT to investigate the con-
tributions of specific components of ACT. Results are shown
in Table 3.

(1) We replace the proposed attentive convolution mech-
anism with conventional CNN where feature maps are used
for text representation directly, the performance drop by 1.8-
1.9%. This demonstrates the advantage of utilizing the se-
mantic meaning of convolutional filters attentively for text

Model Yelp F. TACRED
ACT 68.3 67.8
1. − Attentive Conv. 67.1 66.5
2. −Multi-head 67.0 65.9
3. − Global rep. 67.6 67.1
4. − Position embed. 67.4 63.5

Table 3: Ablation study on ACT. Accuracy (%) and micro-
averaged F1 score are reported on the development sets of
Yelp F. and TACRED respectively.

representation. (2) The proposed multi-head structure out-
performs single-head significantly, showing the effective-
ness of jointly capturing n-gram features in different sub-
word spaces in the multi-head structure. (3) Removing the
global representation in global attention degrades the perfor-
mance by 1%. This demonstrates that incorporating global
representation into the attention mechanism yields better at-
tention weights for local representations. (4) After remov-
ing the position embeddings in global attention, the perfor-
mance drops by 1.3% for Yelp F. and 6.3% for TACRED.
This shows that position information is important for text
classification, especially for relation extraction task.

4.2 Hyper-parameter Study
In this section, we study the influence of some important
hyper-parameters on the performance of ACT, including
number of layers, number of attentive convolution heads,
kernel size, and number of filters in attentive convolution.
Experiment results are shown in Figure 3.

It is observed that the number of ACT layers affects the
performance significantly. For small datasets like TACRED,
single-layer ACT achieves the best performance. For large
datasets like Yelp F., the optimal number of layers is 3. Fur-
ther increasing the number of layers will increase model
complexity and cause performance drop due to overfitting.
Besides, multiple attentive convolution heads are benefi-
cial for ACT, the optimal number of heads is 6. For ker-
nel size, results show that 3-gram convolution is most ef-
fective for ACT.1 It is also observed that ACT is not very

1We also tried using multiple kernel sizes simultaneously, re-
sults show no improvements over single kernel size.

13266



Sample Sentences True Class Prediction

OBJ-PERSON returned to Buffalo in 1955 and was a part of a group of black intellectuals who included philosopher

and poet SUBJ-PERSON SUBJ-PERSON , whom she married in 1958 . spouse
no relation

OBJ-PERSON returned to Buffalo in 1955 and was a part of a group of black intellectuals who included philosopher

and poet SUBJ-PERSON SUBJ-PERSON , whom she married in 1958 .
spouse

When I worked at the Renaissance tower , I 'd come here when I was too lazy to walk down the street for something

better . Because , honestly , their pizza just is n't that great . Or good , really . But I 've had the breakfast muffin

twice and both times it was beyond awesome ! Just the right amount of grease to let you know it 's good . And super

cheap !
3 star

5 star

When I worked at the Renaissance tower , I 'd come here when I was too lazy to walk down the street for something

better . Because , honestly , their pizza just is n't that great . Or good , really . But I 've had the breakfast muffin

twice and both times it was beyond awesome ! Just the right amount of grease to let you know it 's good . And super

cheap !

3 star

Table 4: Attention visualization for Transformer and ACT. For each sample, the visualization of Transformer is presented first,
followed by our proposed ACT. Words are highlighted based on the attention weights assigned to them. Best viewed in color.

sensitive to number of convolutional filters. However, larger
dataset (Yelp F.) requires more filters than smaller dataset
(TACRED) to achieve the best performance.

4.3 Attention Visualization
To investigate what ACT focuses on, as well as its differ-
ence from Transformer, we conduct visualization of atten-
tion weights assigned to words. We sample sentences from
the development sets of Yelp F. and TACRED. Two of the
visualizations are shown in Table 4.

The visualization results show that the proposed ACT can
capture the keywords and cue phrases more effectively than
Transformer. It is observed that Transformer attends to a
wide range of words in the sentence, including stop words
and punctuations which may be irrelevant for the classifica-
tion task. On the contrary, ACT pays more attention to the
important n-grams such as “married” for “spouse” relation
and “is n’t” for fine-grained sentiment classification. These
n-grams are the keywords and cue phrases of certain class
which are crucial for classification tasks.

4.4 Model Size and Inference Speed
In this section, we investigate two practical aspects of our
model for real-world applications: model size and inference
speed. For model size, we report the number of model pa-
rameters. For inference speed, we report the average time
needed to compute a single batch (batch size of 100) of Yelp
F. dataset using NVIDIA Tesla P40 GPU with Intel Xeon
E5-2667 CPU. We also compare our model with Trans-
former under the same hyper-parameter settings as described
in Section 3.3, results are shown in Table 5.

The proposed ACT is much smaller and faster compared
with Transformer. It has 56% fewer parameters and 2.7 times
faster inference speed. Therefore, ACT is a light-weight and
efficient model for text classification, and it is more practical
for real-world applications. Although the large pre-trained

Model # param. Inf. time
Transformer 3.38M 0.19s
ACT 1.49M 0.07s

Table 5: Comparison of model parameters and inference
time per batch on Yelp F. dataset.

language models based on Transformer such as BERT (De-
vlin et al. 2019) and XLNet (Yang et al. 2019b) have
achieved start-of-the-art performance in many NLP tasks,
the memory and speed constraints will become obstacles for
practical applications.

5 Conclusion and Future Work
We introduce an Attentive Convolutional Transformer
(ACT) for efficient text classification. By taking the advan-
tages of both Transformer and CNN, ACT is able to capture
both local and global dependencies effectively while pre-
serving sequential information of texts. Particularly, a novel
attentive convolution mechanism is proposed to better cap-
ture n-gram features in convolutional filter space. We also
propose a global attention mechanism to obtain the final rep-
resentation by taking local, global, and position informa-
tion into consideration. Detailed analyses show that ACT
is a lightweight and efficient universal text classifier that
achieves consistently good results over different text classi-
fication tasks, outperforming CNN-based, RNN-based, and
attentive models including Transformer.

Although our proposed ACT is dedicated for text classi-
fication tasks where local feature extraction capability is of
particular importance, we will explore the potential applica-
tions of ACT on other NLP tasks such as machine transla-
tion, text summarization, and language modeling in future
work. Furthermore, we will apply the idea of the proposed
attentive convolution mechanism to other fields beyond NLP
domain, such as speech recognition and computer vision.
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