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Abstract
Interest in physical therapy and individual exercises such as
yoga/dance has increased alongside the well-being trend, and
people globally enjoy such exercises at home/office via video
streaming platforms. However, such exercises are hard to fol-
low without expert guidance. Even if experts can help, it
is almost impossible to give personalized feedback to every
trainee remotely. Thus, automated pose correction systems
are required more than ever, and we introduce a new cap-
tioning dataset named FIXMYPOSE to address this need. We
collect natural language descriptions of correcting a “current”
pose to look like a “target” pose. To support a multilingual
setup, we collect descriptions in both English and Hindi. The
collected descriptions have interesting linguistic properties
such as egocentric relations to the environment objects, analo-
gous references, etc., requiring an understanding of spatial re-
lations and commonsense knowledge about postures. Further,
to avoid ML biases, we maintain a balance across characters
with diverse demographics, who perform a variety of move-
ments in several interior environments (e.g., homes, offices).
From our FIXMYPOSE dataset, we introduce two tasks: the
pose-correctional-captioning task and its reverse, the target-
pose-retrieval task. During the correctional-captioning task,
models must generate the descriptions of how to move from
the current to the target pose image, whereas in the re-
trieval task, models should select the correct target pose given
the initial pose and the correctional description. We present
strong cross-attention baseline models (uni/multimodal, RL,
multilingual) and also show that our baselines are competitive
with other models when evaluated on other image-difference
datasets. We also propose new task-specific metrics (object-
match, body-part-match, direction-match) and conduct hu-
man evaluation for more reliable evaluation, and we demon-
strate a large human-model performance gap suggesting room
for promising future work. Finally, to verify the sim-to-real
transfer of our FIXMYPOSE dataset, we collect a set of real
images and show promising performance on these images.
Data and code are available: https://fixmypose-unc.github.io.

1 Introduction
As the well-being trend grows and people globally move to
a new online lifestyle, interest in remotely (i.e., at home or
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Description 1 (English): slide your right foot back one step and bend your knees, 
bring your wrists closer to your shoulders but maintain the position of your hands, 
finally drop your arms at the shoulder to level your hands with your neck.

Description 1 (Hindi): अपने दािहने पैर को एक कदम पीछे िखसकाएं और अपने घुटनो ंको मोड़�,
अपनी कलाई को अपने कंधो ंके करीब लाएं लेिकन अपने हाथो ंकी ि�ित को बनाए रख�, अतं म� अपनी गद न
के साथ अपने हाथो ंको समतल करने के िलए अपने हाथो ंको कंध ेपर रख�।

Description 2 (English): bend both of your legs. bring both of your arms down 
almost below your ears. your left palm should be facing towards the chair. the 
back of your right hand should be facing the glass table.
Description 3 (English): bend both knees away from the lamp, lower down your 
body towards the rug, bring both hands down above your shoulder, right palm 
facing front and left palm facing the chair, tilt your head back a little towards the 
lamp.

Current Pose Target Pose

Figure 1: Current and target image pair and the correspond-
ing correctional descriptions in both English and Hindi (we
show only one of the three Hindi descriptions due to space).

in the office) learning health and exercise activities such as
yoga, dance, and physical therapy is growing. Through ad-
vanced video streaming platforms, people can watch and fol-
low the physical movements of experts, even without the ex-
pert being physically present (and hence scalable and less
expensive). For such remote activities to be more effective,
appropriate feedback systems are needed. For example, a
feedback system should catch errors from the user’s move-
ments and give proper guidance to correct their poses. Re-
lated to this line of work, many efforts have been made on
human pose estimation and action recognition (Johnson and
Everingham 2010, 2011; Andriluka et al. 2014; Toshev and
Szegedy 2014; Wei et al. 2016; Andriluka et al. 2018; Yan,
Xiong, and Lin 2018; Zhao, Peng et al. 2019; Cao et al.
2019; Sun et al. 2019; Verma et al. 2020; Rong, Shiratori,
and Joo 2020). Research on describing the difference be-
tween multiple images has also been recently active (Jham-
tani and Berg-Kirkpatrick 2018; Tan et al. 2019; Park, Dar-
rell, and Rohrbach 2019; Forbes et al. 2019). However, there
has been less focus on the human pose-difference caption-
ing tasks, which require solving unique challenges such as
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understanding spatial relationships between multiple body
parts and their movements. Moreover, the reverse task of
retrieving or generating a target pose is also less studied.
Combining these two directions together can allow for more
interweaving human-machine communication in future au-
tomated exercise programs.

Relatedly, interest in embodied systems for effective
human-agent communication is increasing (Kim et al. 2018;
Wang, Smith, and Ruiz 2019; Abbasi et al. 2019; Kim
et al. 2020). Embodiment is also a desirable property when
designing virtual assistants that provide feedback. For ex-
ample, embodied virtual agents can show example move-
ments to users or point at the users’ body parts that need to
move. Furthermore, for effective two-way communication
with embodied agents, reverse information flow (i.e., human
to agents) is also needed. A user may want to describe what
actions they took so that the agent can confirm whether the
user moved correctly or needs to change their movement.
The agent should also be able to move its body to match the
pose that the user is describing to help itself understand.

Therefore, to encourage the multimodal AI research com-
munity to explore these two tasks, we introduce a new
dataset on detailed pose correctional descriptions called
FIXMYPOSE ( ), which consists of image pairs
(a “current” and “target” image) and corresponding correc-
tional descriptions in both English and Hindi (Fig. 1). To
understand our dataset, imagine you are in a physical ther-
apy program following an instructor in a prerecorded video
at home. Your movements and resulting pose are likely to
be wrong, hence, you would like a virtual AI assistant to
provide detailed verbal guidance on how you can adjust to
match the pose of the instructor. In this case, your incorrect
pose is in the “current” image and the pose of the instructor
is in the “target” image, forming a pair. The verbal guidance
from the virtual AI assistant is the correctional description.

From our FIXMYPOSE dataset, we introduce two tasks
for multimodal AI/NLP models: the ‘pose-correctional-
captioning’ task and the ‘target-pose-retrieval’ task. In the
pose-correctional-captioning task, models are given the
“current” and “target” images and should generate a correc-
tional description. The target-pose-retrieval task is the re-
verse of the pose-correctional-captioning task, where mod-
els should select the correct “target” image among other dis-
tractor images, given the “current” image and description.
This two-task setup will test AI capabilities for both impor-
tant directions in pose correction (i.e., agents generating ver-
bal guidance for human pose correction, and reversely pre-
dicting/generating poses given instructions), to enable two-
way communication between humans and embodied agents
in future research. To generate image pairs, we implement
realistic 3D interior environments (see Sec. 4 for details).
We also extract body joint data from characters to allow di-
verse tasks such as pose-generation (Fig. 4). We collect de-
scriptions for these image pairs by asking annotators from
a crowdsourcing platform to explain to the characters how
to adjust their pose shown in the “current” image to the one
shown in the “target” image in an instructional manner from
the characters’ egocentric view (see Table 1). Furthermore,

Figure 2: Example room environments: each room has a di-
verse style/theme (e.g., office, bathroom, living room).

we ask them to refer to objects in the environment to create
more detailed and accurate correctional descriptions, adding
diversity and requiring models to understand the spatial re-
lationships between body parts and environmental objects.
The descriptions also often describe movement indirectly
through implicit movement descriptions and analogous ref-
erences (e.g., ”like you are holding a cane”) (see Sec. 5.2),
which means AI models performing this task should develop
a commonsense understanding of these movements and ref-
erences. To encourage multimodal AI systems to expand be-
yond English, we include Hindi descriptions as well (Fig. 1).

Empirically, we present both unimodal and multimodal
baseline models as strong starting points for each task,
where we apply multiple cross-attention layers to integrate
vision, body-joints, and language features. For the pose-
correctional-captioning model, we employ reinforcement
learning (RL), which uses self-critical sequence training
(Rennie et al. 2017), for further improvement. Also, we
present the results from a multilingual training setup (En-
glish+Hindi) which uses fewer parameters by sharing model
components, but shows comparable scores.

The multimodal models in both tasks show better perfor-
mance than unimodal models, across both qualitative human
evaluation and several of the evaluation metrics, including
our new task-specific metrics: object, body-part, and direc-
tion match (details in Sec. 8.1). There is also a large human-
model performance gap on the tasks, allowing useful fu-
ture work on our challenging dataset. We also show bal-
anced scores on demographic ablations, implying that our
dataset is not biased toward a specific subset. Furthermore,
our model performs competitively with existing works when
evaluated on other image-difference datasets (Image Editing
Request (Tan et al. 2019), NLVR2 (Suhr et al. 2019), and
CLEVR-Change (Park, Darrell, and Rohrbach 2019)). Fi-
nally, to verify the simulator-to-real transfer of our FIXMY-
POSE dataset, we collect a test-real split which consists of
real-world image pairs and corresponding descriptions, and
show promising performance on the real images.

Our contributions are 3-fold: (1) We introduce a new
dataset, FIXMYPOSE, to encourage research on the inte-
grated field of human pose, correctional feedback systems
on feature differences with spatial relation understanding,
and embodied multimodal virtual agents; (2) We collect a
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multilingual (English/Hindi) dataset; (3) We propose two
tasks based on our FIXMYPOSE dataset (pose-correctional-
captioning and target-pose-retrieval), and present several
strong baselines as useful starting points for future work
(and also demonstrate sim-to-real transfer).

2 Related Work
Image Captioning. Describing image contents in natural
language has been actively studied (Xu et al. 2015; Yang
et al. 2016; Rennie et al. 2017; Lu et al. 2017; Anderson
et al. 2018a; Melas-Kyriazi, Rush, and Han 2018; Yao et al.
2018). This progress has been encouraged by the introduc-
tion of large-scale captioning datasets (Hodosh, Young, and
Hockenmaier 2013; Lin et al. 2014; Plummer et al. 2015;
Krishna et al. 2017; Johnson, Karpathy, and Fei-Fei 2016;
Krause et al. 2017). Recently, more diverse image caption-
ing tasks, which consider two images and describes the dif-
ference between them, have been introduced (Jhamtani and
Berg-Kirkpatrick 2018; Tan et al. 2019; Park, Darrell, and
Rohrbach 2019; Forbes et al. 2019). However, to the best
of our knowledge, there exists no captioning dataset about
describing human pose differences. Describing pose differ-
ence or body movement requires detailed multi-focus over
all body parts and understanding relations between them, in-
troducing new challenges for AI agents. This kind of dataset
is promising because of its potential real-world applications
in activities such as yoga, dance, and physical therapy.
Human Pose. Human pose estimation and action recogni-
tion have been a long-standing topic in the research com-
munity (Johnson and Everingham 2010, 2011; Andriluka
et al. 2014; Toshev and Szegedy 2014; Wei et al. 2016; An-
driluka et al. 2018; Yan, Xiong, and Lin 2018; Zhao, Peng
et al. 2019; Cao et al. 2019; Sun et al. 2019; Verma et al.
2020; Rong, Shiratori, and Joo 2020). Recently, researchers
are also focusing on generation tasks which generate a body
pose sequence from an input of a different type from an-
other modality such as audio or spoken language (Shlizer-
man et al. 2018; Tang, Jia, and Mao 2018; Lee et al. 2019;
Zhuang et al. 2020; Saunders, Camgoz, and Bowden 2020).
However, there have been no research attempts on text gen-
eration based on pose correction. Thus, our novel FIXMY-
POSE dataset will encourage the community to explore this
new direction.
Spatial Relationships. Understanding spatial relationships
between objects is an important capability for AI agents.
Thus, the topic has attracted much attention from re-
searchers (Bisk, Marcu, and Wong 2016; Wang, Liang, and
Manning 2016; Li et al. 2016; Bisk et al. 2018). Our FIXMY-
POSE dataset is rich in such reasoning about spatial relations
with a variety of expressions (not only simple directions of
left/right/up/down). Moreover, all the spatial relationships in
the descriptions of the FIXMYPOSE dataset are considered
from the characters’ egocentric perspective, requiring mod-
els to understand the characters’ viewpoints.
Virtual Assistants. Virtual AI assistants such as Alexa,
Google Assistant, Cortana, and Siri are already ubiquitous in
our lives. However, there has been an increasing demand for
multimodal (i.e., vision+language) virtual AI assistants, and

Description: hop 
and extend both of 
your legs outward 
so that they are 
about four feet 
away from each 
other. also extend 
both of your arms 
out to your right and 
to your left.

Current Image Target Candidates

Figure 3: The target-pose-retrieval task: models have to se-
lect the correct “target” image from a set of distractors (the
image with red dashed border is the ground-truth target
pose), given “current” image and correctional description.

as robotic and virtual/augmented/mixed reality technologies
grow, so does interest in embodied virtual assistants (Kim
et al. 2018; Wang, Smith, and Ruiz 2019; Abbasi et al. 2019;
Kim et al. 2020). Our FIXMYPOSE dataset will contribute
to the evolution of embodied multimodal virtual assistants
by providing a novel dataset as well as proposing a new
approach on how to integrate physical movement guidance
with virtual AI assistants.

3 Tasks
Pose Correctional-Captioning Task. During this task, the
goal is to generate natural language (NL) correctional de-
scriptions, considering the characters’ egocentric view, that
describe to a character how they should adjust their pose
shown in the “current” image to match the pose shown in the
“target” image (Fig. 1). As the “current” and “target” image
pairs contain various objects in realistic room environments,
models should have the ability to understand the spatial re-
lationships between the body parts of characters and the en-
vironment from the characters’ perspectives.
Target Pose Retrieval Task. Here, the goal is to select the
correct “target” image among 9 incorrect distractors, given
the “current” image and the corresponding correctional de-
scription (Fig. 3). For the distractor images, we only con-
sider images that are close to the “target” pose in terms of
body joints distances (see Appendix in arxiv full version for
detailed criteria). These distractor choices discourage mod-
els from easily discerning the correct “target” image via
shallow inference or shortcuts, requiring minute differences
to be captured by models. The large human-model perfor-
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Figure 4: The 3D joint configuration of characters (left). The
distribution of joint distances (meters) between poses of the
“current” and “target” images (right). The Avg. of Min joint
distances: 0.04 and the Avg. of Max joint distances: 0.65.

mance gap (Sec. 8.2) verifies the quality of our distractors.

4 Dataset
Our FIXMYPOSE dataset is composed of image pairs with
corresponding correctional descriptions in English/Hindi.
Image, 3D Body Joints, and Environment Generation.
We create 25 realistic 3D diverse room environments, filled
with varying items (Fig. 2). To ensure diversity, we em-
ploy 6 human character avatars of different demographics
across gender/race (each character is equally balanced in our
dataset).1 Since creating/modifying the body of characters
requires 3D modeling/artistic expertise, we use pre-made
character models that are publicly available (hence also
copyright-free for our community’s future use) in Adobe’s
Mixamo2. In the rooms, the characters perform 20 move-
ment animations and the camera captures images on a fixed
interval. We also obtain 3D positional body joint data of the
character’s poses in the “current” and “target” images to pro-
vide additional useful features and allow a potential reverse
pose-generation task (Fig. 4). See Appendix in arxiv full ver-
sion for more on animation examples, environment creation,
body joint data, and image capturing.
Description Collection. We employ annotators from the
crowdsourcing platform Amazon Mechanical Turk3 to col-
lect the correctional descriptions. Workers are provided 3
images, “current”, “target” images, and a “difference” im-
age that shows the difference between the two images, al-
lowing them to write clear descriptions (see Appendix in

1Our task focuses on understanding body movements/angles
and not demographics, but we still ensure demographic diversity
and balance in our dataset for ethical/fairness purposes so as to
avoid unintended biases (e.g., see the balanced demographics abla-
tion results and Sim-to-Real Transfer results on people with differ-
ent demographics with respect to the 6 character avatars in Sec. 8).
We plan to further expand our dataset with other types of diversity
(e.g., height, age) based on digital avatar availability.

2https://www.mixamo.com
3https://www.mturk.com

Reference Frame Freq. Example (English)
Egocentric
Relation 100%

“... rotate your left shoulder so that
your hand is above your elbow ...”

Environmental
Direction 52%

“... turn your left leg and right leg to the
left to face the wall with the door ...”

Implicit Movement
Description 58%

“... lean your body towards and
slightly over your right leg ...”

Analogous
Reference 18%

“... in front of you as if you are
gesturing for someone to stop ...”

Table 1: Examples of linguistic properties in correctional de-
scriptions (see Appendix in arxiv full version for examples
and image examples of implicit movement description).

arxiv full version for the images and collection interface).
We ask them to write as if they are speaking to the char-
acters as assistants who are helping them (like “You should
...”), not calling them by the 3rd person (like “The person
...”, “They/She/He ...”). It also helps prevent accidental bi-
ased terms assuming the demographics of the characters. We
collect 1 description for each image pair for the train split
and 3 for all subsequent splits (i.e., val-seen/val-unseen/test-
unseen) from unique workers, making the computation of
automated evaluation metrics such as BLEU possible.
Description Verification. Each description and its corre-
sponding image pair is given to a separate group of workers
through a verification task. For each description, 3 differ-
ent workers are asked to rank it from 1-4 based on its rel-
evance to the image pair and its clarity, similar to previous
works (Lei et al. 2020). Descriptions that 2/3 of the workers
rate lower than 3 are discarded. Image pairs that are flagged
with certain issues are discarded as they do not provide good
data (see Appendix in arxiv full version for the interface).
Hindi Data Collection. To collect the translated Hindi de-
scriptions, we present a translation task to workers. Work-
ers are given a description that has passed the verification
task and its corresponding image pair to ensure the original
meaning is not lost (see Appendix in arxiv full version for
the translation interface).
Worker Qualification and Payment. We require workers
completing either of the tasks to be fluent in the needed lan-
guages and to have basic MTurk qualifications. The writing
task takes around 1 minute and workers are paid $0.18 per
description. To encourage workers to write more and better
descriptions, an additional increasing-bonus system is im-
plemented. See Appendix in arxiv full version for qualifica-
tion/bonus/payment details.

5 Data Analysis
We collect 7,691 image pairs and 11,127 correctional de-
scriptions for both English and Hindi (1 per train and 3
per evaluation splits). Our dataset size is comparable to
other captioning tasks/datasets such as Image Editing Re-
quest (Tan et al. 2019) (3.9K image pairs/5.7K instructions),
Spot-the-Diff (Jhamtani and Berg-Kirkpatrick 2018) (13.2K
image pairs/captions), and Birds-to-Words (Forbes et al.
2019) (3.3K image pairs/16K paragraphs). We plan to keep
extending the dataset and add other languages in the future.
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5.1 Statistics
Joint Distances. Fig. 4 shows the distribution of average
joint distances (meters) between the poses in the “current”
and “target” images. As indicated by the mean (0.24m), std-
dev (0.18m), and min/max (0.04/0.65m) of the average dis-
tance of individual joints, models should be able to capture
different movement levels simultaneously in an image pair.
Description Vocabulary and Length. The collection of
descriptions in our FIXMYPOSE dataset has 4,045/4,674
unique English/Hindi words. The most common words in
both languages (see Appendix in arxiv full version for de-
tails and pie charts) relate to direction, body parts, and move-
ment, showing that models need to have a sense of direc-
tion with respect to body parts and objects, and also capture
the differences between the poses to infer the proper move-
ments. The average length of the multi-sentenced descrip-
tions (49.25/52.74 words) is high, indicating that they are
well detailed (see Appendix in arxiv full version for details).

5.2 Linguistic Properties
To investigate the diverse linguistic properties in our dataset,
we randomly sample 50 descriptions and manually count oc-
currences of traits. We found interesting traits (see Table 1
and Appendix in arxiv full version for examples), requiring
agents to deeply understand characters’ movements and ex-
press them in an applicable form (the Hindi descriptions also
share these traits).
Egocentric and Environmental Direction. Descriptions in
our FIXMYPOSE dataset are written considering the ego-
centric (first-person) view of the character. Descriptions also
reference many environmental objects and their relation to
the characters’ body parts, again from an egocentric view.
This means models must understand spatial relations of
body parts and environmental features from the egocentric
view of the character rather than the view of the “camera”.
Implicit Movement Description and Analogous Refer-
ence. Implicit movement description and analogous refer-
ence are often present in descriptions. These descriptions
imply movements without needing to say them. Analogous
references are a more extreme form of implicit movement
description, where the movement is wrapped in an analogy.
Models must develop commonsense knowledge of these
movements in order to understand their meaning. See Ta-
ble 1 and Appendix in arxiv full version for examples.

6 Models
We present multiple strong baselines for both the
pose-correctional-captioning and target-pose-retrieval task
(Fig. 5) to serve as starting points for future work.

6.1 Pose Correctional Captioning Model
We employ an encoder-decoder model for the pose-
correctional-captioning task. Also, we apply reinforcement
learning (RL) after training the encoder-decoder model, and
present multilingual training setup which reduces the num-
ber of parameters through parameter sharing.

Encoder. We employ ResNet (He et al. 2016) to obtain vi-
sual features from images. To be specific, we extract fea-
ture maps f c and f t ∈ RN×N×2048 from the “current”
pose image Ic and the “target” pose image It, respectively:
f c = ResNet(Ic); f t = ResNet(It). For 3D joints, Jc, J t ∈
R20×3, we use linear layer to encode: Ĵc = PE(W>j J

c);
Ĵ t = PE(W>j J

t); Jd = PE(W>j (J t − Jc)), where Wj is
the trainable parameter (all W∗ from this point on denote
trainable parameters) and PE (Gehring et al. 2017; Vaswani
et al. 2017) denotes positional encoding.

Decoder. Words from a description, {wt}Tt=1, are embed-
ded in the embedding layer: ŵt−1 = Embed(wt−1), then
sequentially fed to the LSTM layer (Hochreiter and Schmid-
huber 1997): ht = LSTM(ŵt−1, ht−1). We employ the bidi-
rectional attention mechanism (Seo et al. 2017) to align im-
age features and joints features.

f̃ c, J̃ t, f̃ t, J̃c = CA-Stack(f c, Ĵc, f t, Ĵ t) (1)

where CA-Stack is a cross attention stack (see Appendix in
arxiv full version).

f =W>c [f̃ c; f̃ t; f̃ c � f̃ t], J =W>c [J̃c; J̃ t; J̃c � J̃ t] (2)

ft = Att(ht, f), Jt = Att(ht, J), Jdt = Att(ht, Jd) (3)

kt =W>k [ft; Jt;ht;ht � ft;ht � Jt] (4)

gt =W>s [kt; J
d
t ] (5)

where Att is general attention (see Appendix in arxiv full
version for details). The next token is: wt = argmax(gt),
and the loss is: LML = −

∑
t log p(w

∗
t |w∗1:t−1, f, J), where

w∗t is the GT token.

RL Training. We apply the REINFORCE algo-
rithm (Williams 1992) to learn a policy pθ upon the model
pre-trained with the maximum likelihood approach: LRL =
−Ews∼pθ [r(ws)]; ∇θLRL ≈ −(r(ws) − b)∇θ log pθ(ws),
where ws is a description sampled from the model, r(·)
is the reward function, and b is the baseline. We employ
the SCST training strategy (Rennie et al. 2017) and use
the reward for descriptions from the greedy decoding (i.e.,
b = r(wg)) as the baseline. We also employ CIDEr as the
reward, following Rennie et al. (2017)’s observation (using
CIDEr as a reward improves overall metric scores). We
follow the mixed loss strategy setup (Wu et al. 2016; Paulus,
Xiong, and Socher 2018): L = γ1LML + γ2LRL.

Multilingual Parameter Sharing. We implement the mul-
tilingual training setup by sharing parameters between En-
glish and Hindi models, except the parameters of word em-
beddings, description LSTMs, and final fully connected lay-
ers, making the total number of parameters substantially less
than those needed for the separate two models summed.

6.2 Target Pose Retrieval Model

The current and target candidate images are encoded the
same way as the captioning model. A bidirectional LSTM
encodes the descriptions: c = BiLSTM(ŵ). Image features
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Pose Correctional Captioning Model

Target Pose Retrieval Model

MLP Score

Description

Cross-Att.Current Pose 
Image

Target Pose
Image Cross-Att.

Cross-Att.

Cross-Att.

Self
Gate

Description

Cross-Att.Current Pose 
Joints

Target Pose
Joints Cross-Att.

Cross-Att.

Cross-Att.

Self
GateDiff.

Cross-Att. Attn

LTSM

MLP

Cross-Att.
Current Pose

Joints
Current Pose

Image

Cross-Att. Cross-Att.

Target Pose
Image

Target Pose
Joints Attn

Diff. Attn

Reward

Figure 5: The pose-correctional-captioning model (top) and
the target-pose-retrieval model (bottom).

are aligned with description features via cross attention.

c̃c, f̃ ti ,c̃ti , f̃ c = CA-Stack(c, f c, c, f ti) (6)

k1i = Self-Gate([c̃c; c̃ti ; c̃c � c̃ti ]) (7)

g1i = Self-Gate([f̃ ti ; f̃ c; f̃ ti � f̃ c]) (8)

where� is the element-wise product (see Appendix in arxiv
full version for details of the Self-Gate). For joints fea-
ture, we calculate the difference between the two joints set:
Jdti = W>j (J ti − Jc); Jdci = W>j (Jc − J ti). We apply
the same process that the image features go through (i.e., Eq.
6-8) to get k2i and g2i.

pi =W>p [k1i; g1i; k1i � g1i] (9)

qi =W>q [k2i; g2i; k2i � g2i] (10)

si =W>s [pi; qi; pi � qi] (11)

The score si is calculated for each target candidate and the
one with the highest score is considered as the predicted one:
t̂ = argmax([s0; s1; ...; s9]).

7 Experimental Setup
Data Splits & Training Details. For the pose-correctional-
captioning task, we split the dataset into train/val-seen/val-
unseen/test-unseen following Anderson et al. (2018b).
We assign separate rooms to val-unseen and test-unseen
splits for evaluating model’s ability to generalize to
unseen environments. The number of task instances
for each split is 5,973/562/563/593 (train/val-seen/val-
unseen/test-unseen) and the number of descriptions is
5,973/1,686/1,689/1,779. For the target-pose-retrieval task,

Current Pose Target Pose

Description: shift your weight to your right leg. take your left leg off the
ground until only your toes are touching the ground. lean you body to the
right side and keep your hands on your hip but point your elbows back.

Figure 6: An example from Sim-To-Real transfer dataset.

we split the dataset into train/val-unseen/test-unseen. In this
task, “unseen” means “unseen animations”. We split the
dataset by animations so that the task cannot be easily done
by memorizing/capturing patterns of certain animations in
the image pairs. After filtering for the target candidates (see
Sec. 3), we obtain 4,227/1,184/1,369 (train/val-unseen/test-
unseen) instances. We use 512 / 256 as the hidden / word
embedding size. We use Adam (Kingma and Ba 2015) as
the optimizer. See Appendix in arxiv full version for details.
Metrics. For the pose-correctional-captioning task, we
employ automatic evaluation metrics: BLEU-4 (Papineni,
Roukos et al. 2002), CIDEr (Vedantam, Zitnick, and Parikh
2015), METEOR (Banerjee and Lavie 2005), and ROUGE-
L (Lin 2004). Also, motivated by previous efforts towards
more reliable evaluation (Wiseman, Shieber, and Rush
2017; Serban et al. 2017; Niu and Bansal 2019; Zhang
et al. 2019; Sellam, Das, and Parikh 2020), we introduce
new task-specific metrics to capture the important factors.
Object-match counts correspondences of environment ob-
jects, body-part-match counts common body parts men-
tioned, and direction-match counts the (body-part, direction)
pair match between the model output and the ground-truth
(see Appendix in arxiv full version for more information on
direction-match). In the target-pose-retrieval task, we use the
accuracy of the selection as the performance metric.
Human Evaluation Setup. We conduct human evaluation
for the pose-correctional-captioning task models to com-
pare the output of the vision-only model, the language-only
model, and the full vision+language model qualitatively. We
sample 100 descriptions from each model (val-seen split),
then asked crowd-workers to vote for the most relevant de-
scription in terms of the image pair, and for the one best
in fluency/grammar (or ‘tied’). Separately, to set the perfor-
mance upper limit and to verify the effectiveness of our dis-
tractor choices for the target-pose-retrieval task, we conduct
another human evaluation. We sample 50 instances from the
target-pose-retrieval test-unseen split and ask an expert to
perform the task for both English and Hindi samples. See
Appendix in arxiv full version for more details.
Unimodal Model Setup. We implement unimodal models
(vision-/language-only) for comparison with the multimodal
models. See Appendix in arxiv full version for more details.
Other Image-Difference Datasets. We also evaluate our
baseline model on other image-difference datasets to show
that the baseline is strong and competitive: Image Editing
Request (Tan et al. 2019), NLVR2 (Suhr et al. 2019) (the
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Language Models Automated Metrics Task-Specific Metrics Human Eval.
B4 C M R object-match body-part-match direction-match R F/G

English
V-Only 6.90 6.41 16.78 30.09 0.04 1.01 0.05 4% 4%
L-Only 17.74 11.42 22.14 35.16 0.08 1.22 0.15 15% 27%
V+L 17.55 14.47 21.29 35.21 0.18 1.29 0.13 48% 45%

Hindi
V-Only 8.43 4.37 18.90 28.55 0.03 1.21 0.02 9% 10%
L-Only 25.42 11.41 29.68 36.90 0.0 1.42 0.07 19% 26%
V+L 18.99 8.58 29.26 34.73 0.08 1.63 0.10 51% 53%

Table 2: The performance of the unimodal and multimodal models on automated metrics, our new task-specific metrics, and
human evaluation. for both English and Hindi dataset on the val-seen split (B4: BLEU-4, C: CIDEr, M: METEOR, R: ROUGE,
V: Vision+Joints, L: Language, R: Relevancy, F/G: Fluency and Grammar).

Language Models B4 C M R

English

V+L 17.55 14.47 21.29 35.21
(-) Joints 17.39 13.79 21.35 34.86
(+) RL 18.69 16.04 22.35 36.18
(+) Multi-L 19.08 15.71 22.47 36.46

Hindi

V+L 18.99 8.58 29.26 34.73
(-) Joints 18.23 7.93 27.55 34.12
(+) RL 18.57 9.63 28.83 34.76
(+) Multi-L 18.67 9.77 29.05 34.74

Table 3: Model ablations on val-seen split (RL: reinforce-
ment learning, Multi-L: multilingual).

Dataset Model B4 C M R
Image Editing Request

Tan et al. (2019)
DRA 6.72 26.36 12.80 37.25
Ours 7.88 27.70 12.53 37.56

NLVR2
Suhr et al. (2019)

DRA 5.00 46.41 10.37 22.94
Ours 5.30 45.09 10.53 22.79

CLEVR-Change (SC)
Park et al. (2019)

DUDA 42.9 94.6 29.7 -
Ours 44.0 98.7 33.4 65.5

Table 4: Our baseline V+L model performs competitively on
other image-difference captioning datasets (DRA: Dynamic
Relation Attention (Tan et al. 2019), DUDA: Dual Dynamic
Attention Model (Park, Darrell, and Rohrbach 2019); SC =
Scene Change).

variant from Tan et al. (2019)), and CLEVR-Change (Park,
Darrell, and Rohrbach 2019).
Sim-to-Real Transfer. To verify the possibility of the trans-
fer of our simulated image dataset to real images, we col-
lect real image pairs of current and target poses. We ran-
domly sample 60 instances from test-unseen split (test-sim)
and then the authors and their family members4 follow the
poses in the sampled test-sim split to create the real image
version (test-real). Since the environments (thus objects and
their layout too) and poses (though they are told to try to
match as accurately as possible) have differences between
the two splits (i.e., test-sim and test-real), we manually re-
write a few words or phrases in the descriptions to make it
more consistent with images in the test-real split (see Fig. 6).

4Hence covering diverse demographics, including some that are
different from the simulator data splits, as well as different room
environments. All participants consented to the collection of im-
ages (and additionally, we blur all faces).

Predicted: you need to bring your right foot to the right and then 
finally bring your right arm up to be at shoulder height and your 
right hand up in front of your face

Predicted: अपने बाएं पैर को अपने दािहने पैर के सामने ले जाएं अपने दािहने पैर को
थोड़ा सीधा कर� अपने ऊपरी शरीर को बा� ओर थो ड़ा मोड़� अपने िसर को िखड़की से
थोड़ी दूर दा� ओर ले जाएं अपनी बाहो ंको नीचे लाएं और अपने हाथो ंको छाती के  र
के बारे म� ले जाएं।

Ground Truth 1: pull your left foot in right next to your right foot  
extend your right foot out about 2 feet opposite the direction of the 
right curtain on the  window  lift up both hands so that they are in 
front of your face  about a foot from each other and a foot from 
your face

Current Pose Target Pose

Current Pose Target Pose

Ground Truth 1: अपने बाएं पैर को जमीन पर रख� और इसे अपने दािहने पैर के
ऊपर से पार कर�। अपने ऊपरी शरीर को बा� ओर शीष�क द� और अ पनी बाहो ंको तब
तक नीचे रख� जब तक वे छाती की ऊँचाई के आसपास न हो।ं

Figure 7: Output examples of our multimodal model in En-
glish (top) and Hindi (bottom); only showing 1 GT due to
space limitations.

8 Results
8.1 Pose Correctional Captioning Task
As shown in Table 2, the V+L models show better perfor-
mance than V-only models. The L-only model shows higher
scores on some of the automatic metrics, likely because the
descriptions in our FIXMYPOSE dataset are instructional
about body parts (and their movements/directions), so sim-
ilar phrases are repeated and shallow metrics will only fo-
cus on such phrase-matching, not correctly reflecting human
evaluations (Belz and Reiter 2006; Reiter and Belz 2009;
Scott and Moore 2007; Novikova et al. 2017; Reiter 2018).
Thus, we also evaluate the output of each model on our
task-specific metrics that account the important factors (ob-
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Split Automated Metrics Task-Specific Metrics
B4 C M R OM DM

test-sim 16.93 9.91 21.79 35.08 0.04 0.20
test-real 13.01 7.12 21.40 33.05 0.07 0.11

Table 5: Sim-to-Real transfer performance. Since there is no
GT joints for real images, the body-part-match metric is not
available (OM: object-match, DM: direction-match).

jects, body parts, and movement directions), and we also
conduct human evaluation to check the real quality of the
outputs. The V+L models show better performance on the
task-specific metrics and human evaluation, meaning they
capture essential information and their outputs are more rel-
evant to the images and more fluent in the respective lan-
guage. See Appendix for “unseen” split results.5

Ablations. As Table 3 shows, adding body joints features
improves the score much, implying body joints gives addi-
tional important information to capture human movements.
RL/Multilingual Model Results. As Table 3 shows, RL
training helps improve scores by directly using the evalua-
tion metric (CIDEr) as the reward. We leave exploring more
effective reward functions (e.g., the joints distance from a
reverse pose generation task) for future work. Table 3 also
shows that the multilingual training setup achieves compa-
rable scores (similar observation to Wang et al. (2019)) with
only 71% of the parameters of the separate training setup
(13.2M vs 18.7M), promising future work on more compact
and efficient multilingual models.
Other Image-Difference Datasets. Table 4 shows that our
V+L baseline model beats or matches state-of-the-art mod-
els on other datasets, implying our baseline models are
strong starting points for our FIXMYPOSE dataset.
Output Examples. Outputs from our V+L models are pre-
sented in Fig. 7. The English model captures the movement
of the character’s legs and arms (“bring your right foot to
the right” and “bring your right arm up to be at shoulder
height ... right hand up in front of your face”). The Hindi
model captures movement of the body parts and their spatial
relationship to each other (English translation: “move your
left leg in front of your right leg...”), the model can also de-
scribe movement using object referring expressions (English
translation: “...move your head slightly away from the win-
dow...”). See Fig. 7 for the original Hindi and Appendix in
arxiv full version for full analysis and unimodal outputs.
Demographic Ablations. We evaluate our V+L model on
individual character avatar. The results show our dataset is
not skewed to favor a specific demographic or character.
Please see the detailed scores in arxiv full version.
Sim-to-Real Transfer. As shown in Table 5, the sim-to-real
performance drop is not large, meaning information learned
from our simulated FIXMYPOSE dataset can be transferred
to real images reasonably well. Also, considering that the re-
sults are from a set of images of people with different demo-

5We also checked for variance by running models with 3 differ-
ent seeds and the stddev is small (less than/near 0.5% on CIDEr).

Models Accuracy (%)
English Hindi

Random-Selection 9.81
V-Only 34.82
L-Only 8.86 8.96
V+L 38.49 37.84
Human 96.00 96.00

Table 6: The scores for the target-pose-retrieval task. While
the V+L models scores the highest, there is still much room
for improvement when compared with human performance.

graphics and different environments, there is no particular
bias in the models’ output which is trained on our dataset.
Since there is no GT body joints for the real images, we
modify our model so it can also be trained to predict the
joints during training time as well as generate descriptions
(multi-task setup) and use the estimated joints at test time.6

8.2 Target Pose Retrieval Task
As shown in Table 6, V+L models show the highest scores
for the target-pose-retrieval task, indicating that achieving
high performance is not possible by exploiting unimodal bi-
ases. V-Only models score higher than the random-selection
model, which selects an image at random, because even with
our careful distractor choices (see Sec. 3 and Appendix in
arxiv full version), the poses in the “current” and “target”
images are more similar to each other than the other images.
However, the human-model performance gap is still quite
large, implying there is much room for improvement.7

9 Conclusion and Future Work
We introduced FIXMYPOSE, a novel pose correctional de-
scription dataset in both English and Hindi. Next, we pro-
posed two tasks on the dataset, pose-correctional-captioning
and target-pose-retrieval, both of which require models to
understand diverse linguistic properties such as egocentric
relation, environmental direction, implicit movement de-
scription, and analogous reference as well as capture fine vi-
sual movement presented in two images. We also presented
unimodal and multimodal baselines as strong starter mod-
els.Finally, we demonstrated the possibility of transfer to
real images. In future work, we plan to further expand the
FIXMYPOSE dataset with more languages and even more
diversity in the character pool (e.g., height, age, etc. based
on digital avatar availability) and animations.

6For the simulated data results in Table 3 (English), we ob-
tain a CIDEr score of 14.17 using predicted joints (on the val-seen
split), which as expected is between the non-joint (13.79) and GT-
joint (14.47) models’ results (hence showing that reasonable per-
formance can be achieved without GT joints at test time). The aver-
age distance between predicted and GT joints is around 0.4 meters.

7Human performance is 96% when given the full task (English),
but much lower when only given lang. (38%) or only vis. (22%),
further indicating that both lang.+vis. is needed to solve the task.
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