
Flexible Non-Autoregressive Extractive Summarization with Threshold:
How to Extract a Non-Fixed Number of Summary Sentences

Ruipeng Jia,1,2 Yanan Cao,1,2 Haichao Shi,1,2 Fang Fang,1,2∗ Pengfei Yin,1,2 Shi Wang3∗

1 Institute of Information Engineering, Chinese Academy of Sciences
2 School of Cyber Security, University of Chinese Academy of Sciences

3 Institute of Computing Technology, Chinese Academy of Sciences
{jiaruipeng, caoyanan, shihaichao, fangfang0703, yinpengfei}@iie.ac.cn

wangshi@ict.ac.cn

Abstract

Sentence-level extractive summarization is a fundamental yet
challenging task, and recent powerful approaches prefer to
pick sentences sorted by the predicted probabilities until the
length limit is reached, a.k.a. “Top-K Strategy”. This length
limit is fixed based on the validation set, resulting in the lack
of flexibility. In this work, we propose a more flexible and
accurate non-autoregressive method for single document ex-
tractive summarization, extracting a non-fixed number of sum-
mary sentences without the sorting step. We call our approach
ThresSum as it picks sentences simultaneously and individu-
ally from the source document when the predicted probabili-
ties exceed a threshold. During training, the model enhances
sentence representation through iterative refinement and the
intermediate latent variables receive some weak supervision
with soft labels, which are generated progressively by adjust-
ing the temperature with a knowledge distillation algorithm.
Specifically, the temperature is initialized with high value and
drops along with the iteration until a temperature of 1. Experi-
mental results on CNN/DM and NYT datasets have demon-
strated the effectiveness of ThresSum, which significantly
outperforms BERTSUMEXT with a substantial improvement
of 0.74 ROUGE-1 score on CNN/DM.

Introduction
Encoder-decoder mechanism is widely used for single doc-
ument extractive summarization. The encoder is to encode
one sentence into vector representation, while the popular
decoder with top-k strategy can be divided into three steps:
predict the probability scores of those sentence vectors, sort
sentences in descending order in line with the probability
scores, and pick sentences until exceeding the length limit.
(Nallapati, Zhai, and Zhou 2017; Xiao and Carenini 2019;
Liu and Lapata 2019; Xu et al. 2020). However, there are still
two inherent obstacles for sentence-level extractive summa-
rization:

1) Redundant phrases between selected sentences. The
naive approach for the first prediction step of decoder is to
make independent binary decisions for each sentence, leading
to the absence of overlap or redundancy modeling between

∗Corresponding authors: Fang Fang and Shi Wang
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the selected target sentences (Xu et al. 2020; Zhong et al.
2020). The first natural solution is to introduce an autoregres-
sive decoder (Chen and Bansal 2018; Jadhav and Rajan 2018;
Liu and Lapata 2019; Xu et al. 2020), extracting sentences
one by one and allowing different sentences to influence
each other. Secondly, reinforcement learning is introduced
for decoder to consider the semantics of the entire target sum-
mary (Narayan, Cohen, and Lapata 2018; Dong et al. 2018;
Bae et al. 2019), which combines the maximum-likelihood
cross-entropy loss with the rewards from policy gradient to
directly optimize the evaluation metric for the summarization
task. The third popular solution is to build summarization
system with a two-stage decoder (Aliguliyev 2009; Galanis
and Androutsopoulos 2010; Zhang et al. 2019a; Zhong et al.
2020), with the first stage to extract some fragments of the
original text and the second stage to select or modify on the
basis of these fragments. Unfortunately, all these approaches
with an autoregressive decoder are unstable, for there are the
train-inference gap and error propagation when extracting
sentences one by one.

2) Fixed number or proportion of summary sentences.
SummaRuNNer (Nallapati, Zhai, and Zhou 2017) first sets a
“sort” step after the “predict” step, and “pick” sorted sentences
until the length limit is reached (a.k.a. “Top-K Strategy”),
which has been a popular method employed by the following
models (Narayan, Cohen, and Lapata 2018; Zhang et al. 2018;
Zhang, Wei, and Zhou 2019; Liu and Lapata 2019; Xu et al.
2020; Wang et al. 2020). While a flexible extractor should
generate a non-fixed number of summary sentences based
on source document length, topics, or other aspects. The
reasonable approach is to pick sentences whose predicted
probability is over a threshold. However, it may not be an
optimal stratety since the training data is very imbalanced
in terms of summary-membership of sentences (Nallapati,
Zhai, and Zhou 2017). Furthermore, Mendes et al. (2019)
introduces the length variable into the decoder and Zhong
et al. (2020) can choose any number of sentences by matching
candidate summary in semantic space. But the decoders of
these two solutions are either autoregressive or two-stage.

To address the above two obstacles, we introduce Thres-
Sum, a heuristic approach to strengthen the encoder by en-
hancing sentence representation through iterative refinement
and simplify the decoder by removing the “sort” step:

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

13134

• For the encoder, we first map textual tokens into hidden
states by contextualized interactions. Secondly, the sen-
tence embedding is extracted through hierarchical atten-
tion to adaptively aggregate information from its word
elements. Finally, we fuse the redundant information be-
tween selected sentences by iterative refinement and this
process is supervised by knowledge distillation.

• The decoder is non-autoregressive with low redundancy,
for that our encoder has modeled the overlap information
between the selected sentences. In that case, our decoder
only consists of two steps instead of the former three steps:
predict the probability scores of those sentence vectors,
and pick sentences simultaneously and individually when
the predicted probability exceeds a threshold.

• The key component of our extractive model includes a
weak supervision for the intermediate latent variables of
iterative refinement. We design a teacher algorithm of
knowledge distillation to produce high entropy soft la-
bels at a high temperature, and progressively reduce the
temperature along with iteration until a temperature of
1. Therefore, the former iterative steps with high temper-
ature are equivalent to minimize the square difference
between ground-truth and prediction, and the latter steps
with a lower temperature will pay much more attention
to matching the positive elements (Hinton, Vinyals, and
Dean 2015).

Experimental results validate the effectiveness of Thres-
Sum, which significantly outperforms BERTSUMEXT by
0.74 ROUGE-1 score on CNN/DM. The human evaluation
also shows that our model is better in relevance compared
with others. Our contributions in this work are concluded as
follows:

1) Instead of extracting sentences one by one to form a
top-k summary, we formulate a non-autoregressive decoder,
which can extract a non-fixed number of summary sentences
simultaneously and individually.

2) We propose iterative refinement to strengthen encoder
and enhance the sentence representation. Simultaneously, we
introduce and expand the knowledge distillation algorithm to
progressively supervise the iterative refinement.

3) Our proposed framework has achieved superior per-
formance compared with strong baselines. Moreover, we
conduct an analysis to investigate where the performance
gain of our model comes from.

Related Work
Extractive Summarization
There are two main lines of summarization: abstractive and
extractive. The abstractive paradigm (Celikyilmaz et al. 2018;
Sharma et al. 2019) focuses on generating a summary word-
by-word after encoding the full document. The extractive
approach (Cheng and Lapata 2016) directly selects sentences
from the document to assemble into a summary. The abstrac-
tive approach is more flexible and generally produces less
redundant summaries, while the extractive approach enjoys
better factuality and efficiency (Cao et al. 2018).

Recent research work on extractive summarization spans
a large range of approaches. These work usually instantiate
their encoder-decoder architecture by choosing RNN (Nal-
lapati, Zhai, and Zhou 2017; Zhou et al. 2018), Transformer
(Wang et al. 2019; Zhong et al. 2019b; Liu and Lapata 2019;
Zhang, Wei, and Zhou 2019) or GNN (Wang et al. 2020; Jia
et al. 2020b) as encoder, autoregressive (Jadhav and Rajan
2018; Liu and Lapata 2019) or RL-based (Narayan, Cohen,
and Lapata 2018; Arumae and Liu 2018; Bae et al. 2019)
decoders. Despite the effectiveness, these models are with
the top-k strategy essentially.

For two-stage summarization, Chen and Bansal (2018)
and Bae et al. (2019) follow a hybrid extract-then-rewrite
architecture, with policy-based RL to bridge the two net-
works together. Lebanoff et al. (2019), Xu and Durrett (2019)
and Mendes et al. (2019) focus on the extract-then-compress
learning paradigm, which will first train an extractor for con-
tent selection. Zhong et al. (2020) introduces extract-then-
match framework, which employs BERTSUMEXT (Liu and
Lapata 2019) as first-stage to prune unnecessary information.
However, these two-stage approaches are inherently with
error propagation and difficult to train.

Knowledge Distillation
The common formulation of knowledge distillation (KD) is
proposed in (Buciluundefined, Caruana, and Niculescu-Mizil
2006; Hinton, Vinyals, and Dean 2015; Kim and Rush 2016),
where a smaller student model is trained on soft probability
labels provided by a larger teacher model (with temperature
T for final softmax). More recently, (Tan et al. 2019) applied
KD to multilingual NMT, and (Sun et al. 2019) proposed
patient KD for BERT model compression. Our distillation
focuses on using KD to generalize student model for fitting
the cumbersome inter-relationship of sentences, while these
previous work mostly focused on model compression.

Methodology
Problem Definition
Given a documentD consisting of a sequence ofM sentences
(s1, s2, ..., sM) and a sentence si consisting of a sequence of
N words (wi1, wi2, ..., wiN). We denote by hi and hij the
embedding of sentences and words in a continuous space.
The extractive summarizer aims to produce a summary S by
selecting m sentences from D (where m ≤ M). For each
sentence si ∈ D, there is ground-truth yi ∈ {0, 1} and we
will predict a label ŷi ∈ {0, 1}, where 1 means that si should
be included in the summary. We assign a score p(ŷi|si, D, θ)
to quantify si’s relevance to the summary, where θ is the
parameters of neural network model. Finally, we assemble a
summary S by selecting m sentences, in which p(1|si, D, θ)
exceeds the threshold.

Overview of Architecture
ThresSum consists of a powerful encoder and an easy-
adjustable decoder, as shown in Figure 1(a).
Encoder: In order to learn the contextual representation of
words, we utilize the pre-trained ALBERT (enhanced version
of BERT) (Lan et al. 2020). The output of ALBERT contains

13135

�5
��4

��3
��1

� �2
�

hidden state

hidden state

�11

�1
0

�12 �13 �22�21

 FF & Sigmoid

Add & Norm

�2
0 �3

0 �4
0 �5

0

�1
�

 FF & Sigmoid

Add & Norm

�2
� �3

� �4
� �5

� �1
�

 FF & Sigmoid

Add & Norm

�2
� �3

� �4
� �5

�

�amb1
* �amb2

* �amb3
*

Flexible Extraction

 with

Adjustable Threshold

hidden state hidden state

hidden state

 Iterative Refinement × L

MH Attention

MH Attention MH Attention

hidden state

Hierarchical Atttention

�21 �22 �2�

��

�1 �2 ��

�21 �22 �22

⋯

⋯
(b) Hierarchical Attention

(a) ThresSum

Figure 1: Overview of ThresSum.

words hidden state hij , special tokens h[CLS] and h[SEP]. Liu
and Lapata (2019) simply choose the h[CLS] as sentence rep-
resentation, while we think it is difficult for [CLS] to identify
the boundary of sentences. Inspired by Yang et al. (2016), we
employ the hierarchical attention mechanism, shown as Fig-
ure 1(b), where the context vector uw can be seen as a high
level representation of a fixed query “what is the informative
word”.

In the process of iterative refinement with L steps, there
are different state representations for si: (h0

i ,h
L
i), where

hl
i is the hidden state of si at l-th iteration. We also intro-

duce intermediate random variables (g0i , ..., g
L−1
i) for each

sentence si, where gli is the importance for sentence state
hl
i. With the assistance of these latent variables, the encoder

can implicitly aggregate the redundant information between
selected summary sentences into hi.
Decoder: For the final sentences state (hL

1 , ...,h
L
M), our

decoder predicts the probabilities (gL1 , ..., g
L
M) with feed-

forward network and sigmoid. Then we adjust the threshold
to pick flexible summary sentences.

Approximate Models
The standard conditional probability distribution of selecting
sentence si from D is as below:

P (ŷi = 1|D, y1, ..., yi−1, yi+1, ..., yM) (1)

where we must have the ground-truth labels of other sen-
tences before calculating si. However, there is still no known
polynomial algorithm to solve it exactly.

Autoregressive originates from the literature on time-series
models, where observations from the previous time-steps are
used to predict the value at the current time step, i.e.,

P (ŷt = 1|D, y<t) (2)

The autoregressive paradigm is with error propagation in-
herently, especially when there is misjudgment for the first
element. In this paper, we introduce a non-autoregressive
architecture,

P (ŷi = 1|D, ŷ′1, ..., ŷ′i−1, ŷ′i+1, ..., ŷ
′
M) (3)

where ŷ′i is the pre-predicted label introduced to implicitly
capture the bidirectional dependencies among target symbols.

Iterative Refinement
Our model iteratively updates the latent variables gli by mask-
ing document semantic information with (gl−11 , ..., gl−1M), es-
pecially:

gli = P (ŷli = 1|D, ŷl−11 , ..., ŷl−1M)

= σ(FFN(LN(Hl + MHAtt(Hl))))i
(4)

where FFN, LN, MHAtt are for feed-forward network, layer
normalize, and multi-head attention; ŷl−1i is the pre-predicted
label for l − 1 iteration; Hl is a matrix which contains the
sentences hidden state (hl

1, ...,h
l
M) at l-th iteration.

As shown in Figure 1(a), for l-th iterative refinement, a
Transformer-like unit layer is stacked on the top of hidden
state:

H̃
l
= LN(Hl−1 + MHAtt(Hl−1))

Hl = WcH̃
l − H̃

l �Wr tanh(Rl)
(5)

where H̃
l

is the input of l-th iteration, and Hl gets updated
by reducing redundancy Rl, a dynamic matrix representation
of redundancy for each sentence (rl1, ..., r

l
M); � means the

dot product of the i-th h̃l
i in H̃l and the corresponding rli, i.e.

h̃l
iWrtanh(r

l
i); � operation returns a new M -dimensional

13136

vector. rli represents the redundant phrase information of
i-th sentence, which is a weighted summation of all other
sentence-level hidden states:

rli =
∑

j∈{1,...,M}\{i}

gl−1j h̃l
j (6)

where gl−1j ∈ [0, 1] is a predicted probability to mask the
sentence information h̃l

j .
Finally, ThresSum is trained to predict the label of sen-

tences and the overall training is equivalent to optimizing the
following conditional probability:

L = −El∼{0,...,L}

[
L+ l

2L
Ei∼{1,...,M}φ(ŷ

l
i = yli|si, D, θ)

]
(7)

where we gradually increase the proportion L+l
2L of each

refinement according to importance; l and i are the index of
randomly sampled iteration step and sentence; φ is the regular
binary cross-entropy loss with respect to the prediction ŷli
against soft ground-truth label yli:

φ(ŷli = yli|si, D, θ) = yli log(g
l
i)+(1−yli) log(1− gli) (8)

Knowledge Distillation for Soft Labels
Most summarization datasets only contain human written ab-
stractive summaries as ground truth. Thus, a greedy approach
(Nallapati, Zhai, and Zhou 2017; Liu and Lapata 2019) is
employed that adds one sentence at a time incrementally to
the summary, with maximizing the ROUGE score and stop-
ping until none of remaining candidate sentences improves
the score.

Theoretically, soft labels with high entropy will provide
much more information than binary hard labels and much
less variance in the gradient between training cases (Hinton,
Vinyals, and Dean 2015). While, the binary labels can maxi-
mize the margin between positive and negative examples by
extracting salient sentences and reduce redundancy.

Intuitively, the former iterative steps in our architecture
serve as a small model with few iteration, and the latter
steps are larger with more iterations. Therefore, the iterative
refinement with gli should be gradually trained with soft labels
yli, until the last step gLi with ground-truth binary label {0, 1}.

In this work, we modify the knowledge distillation (Jia
et al. 2020a) to design more soft target labels (y0i , ..., y

L
i)

for the intermediate variables (g0i , ..., g
L
i). As Algorithm 1,

we design a teacher algorithm of knowledge distillation to
produce high entropy soft labels at a high temperature, and
progressively reduce the temperature along with the iterations
until a temperature of 1. As a result, the former iterative
steps with high temperature are equivalent to the regression
approach and the latter steps with lower temperature will
pay much more attention to matching positive units (Hinton,
Vinyals, and Dean 2015).

We denote ri, r2, ..., rM as the individual ROUGE scores
of each sentence against the human-written summary, espe-
cially:

Algorithm 1: Teacher Algorithm for Soft Labels
Initialize Sentence Set D = {s1, ..., sM} ;
Initialize ROUGE r1, ...rM , and Iteration Steps L ;
Sort D by r1, ..., rM in descending order ;
for l from 0 to L− 1 do

Set the Temperature T as L− l ;
for t from T to 1 do

Temporary Sentence Set: Dtemp ← {} ;
Temporary ROUGE of Dtemp: Rtemp ← 0 ;
for si from D[0] to D[end] do

Dtemp ← Dtemp + si ;
if Rtemp is increasing then

D ← D − si
else

Dtemp ← Dtemp − si ;
end

end
Set the Sentence s in Dtemp with Soft Label t

T ;
end
Set the Sentence s Remained in D with Label 0 ;
Record these Soft Labels as (yl1, y

l
2, ..., y

l
M) ;

Re-Initialize Sentence Set D = {s1, ..., sM} ;
Re-Sort D by r1, ..., rM in descending order ;

end

Experiments
Datasets
As shown in Table 1, we employ two datasets widely-
used with multiple sentences summary: CNN and Dailymail
(CNN/DM) (Hermann et al. 2015) and New York Times
(NYT) (Sandhaus 2008).

CNN/DM. We used the standard split (Hermann et al.
2015) for training, validation and test (90,266/1,220/1,093
for CNN and 196,96/12.148/10,397 for Daily Mail), with
splitting sentences by Stanford CoreNLP (Manning et al.
2014) toolkit and pre-processing the dataset following (See,
Liu, and Manning 2017) and (Xu et al. 2020). This dataset
contains news articles and several associated abstractive high-
lights. We use the un-anonymized version as in previous
summarization work and each document is truncated to 768
BPE tokens.

NYT. Following previous work (Zhang, Wei, and Zhou
2019; Xu and Durrett 2019), we use 137,778, 17,222 and
17,223 samples for training, validation and test, respectively.
Input documents were truncated to 768 BPE tokens too. Note
that there are different divisions for NYT (Durrett, Berg-
Kirkpatrick, and Klein 2016; Liu and Lapata 2019) and sev-
eral models are not evaluated on NYT officially. e.g. See, Liu,
and Manning (2017) and Mendes et al. (2019), so we re-train
and evaluate them on NYT with the source code from Github.

Parameters & Metrics
Our code is based on Pytorch (Paszke et al. 2019) and the
pre-trained model employed in ThresSum is ‘albert-xxlarge-

13137

Datasets # docs (train / val / test) avg.doc length avg.summary length
words sentences words sentences

CNN 90,266 / 1,220 / 1,093 760.50 33.98 45.70 3.59
DailyMail 196,961 / 12,148 / 10,397 653.33 29.33 54.65 3.86
NYT 137,778 / 17,222 / 17,223 800.04 35.55 45.54 2.44

Table 1: Data Statistics: CNN/Daily Mail and NYT.

v2’ (huggingface/transformers1). We train ThresSum (with
about 400M parameters) two days for 100,000 steps on
2GPUs(Nvidia Tesla V100, 32GB) with gradient accumula-
tion every two steps. Adam with β1 = 0.9, β2 = 0.999 is
used as optimizer. Learning rate schedule follows the strategy
with warming-up on first 10,000 steps.

We have tried the iteration steps of [1, 3, 5, 7] for knowl-
edge distillation, and L = 5 is the best choice based on the
validation set. In comparison, we have tried to replace bi-
nary cross-entropy with regression objective, but the result
indicates that regression can’t achieve the performance of
cross-entropy. The final threshold of extraction is 0.73 for
CNN/DM and 0.78 for NYT, which are tuned on the valida-
tion set to get the highest ROUGE-1 score. A higher threshold
is for a more concise summary and the lower threshold will
return more information.

We report the F1 ROUGE score of ThresSum by ROUGE-
1.5.5.pl (Lin 2004), which calculates the overlap lexical units
between extracted sentences and ground-truth. Our source
code will be available on Github.2

Baselines
Abstractive Methods: ABS is the normal architecture with
RNN-based encoder and decoder. PGC augments the stan-
dard Seq2Seq attentional model with pointer and cover-
age mechanisms. TransformerABS employs Transformer
in text summarization. T5, BART, and ProphetNet are pre-
trained on large unlabeled data and perform excellent perfor-
mance with Transformer architecture. PEGASUS proposes
Transformer-based models with extracted gap-sentences for
abstractive summarization.
Extractive Methods: Oracle Summary is the extracted
summary according to the ground-truth labels. Specifically,
the oracle summary is essential to reveal the upper bound
performance of the extractive paradigm. Lead-3 is a base
method for extractive text summarization that chooses first
three sentences as a summary. SummaRuNNer takes con-
tent, salience, novelty, and position of each sentence into con-
sideration when deciding if a sentence should be included in
the extractive summary. Exconsumm first extracts sentences
from a document and then compresses them. PNBERT tries
to employ the unsupervised transferable knowledge. Dis-
coBERT extracts sub-sentential discourse units as candi-
dates for extractive selection on a finer granularity. BERT-
SUMEXT applies pre-trained BERT in text summarization
and proposes a general framework for both extractive and

1https://github.com/huggingface/transformers
2https://github.com/coder352/ThresSum

abstractive models. MATCHSUM is a two stage method for
extract-then-match, and the first-stage is BERTSUMEXT.

Result & Analysis
ROUGE Score
The experiment results of ROUGE are shown in Table 2.
These scores are in accordance with original papers and
the missing ones (only for NYT) are calculated with source
code on Github by ourselves. It is obvious that our Thres-
Sum outperforms all the baseline models, demonstrating that
our enhanced encoder can help to model the relationships
across source sentences and selected sentences. Specifically,
our model outperforms MATCHSUM by 0.18 ROUGE-1,
0.29 ROUGE-2 and 0.21 ROUGE-L on CNN/DM. For more
in-depth performance analysis, we note that: 1) Pre-trained
BERT-like model is so powerful for that it can capture bidirec-
tional dependencies by applying deep architecture; 2) Flexi-
bility of the summary length is essential, for the large margin
between ThresSum/MATCHSUM and BERTSUMEXT.

Ablation Studies
We propose several strategies to improve the performance
of extractive summarization, including knowledge distilla-
tion(vs. binary labels), pre-trained ALBERT(vs. BERT), and
iterative refinement(vs. None). To investigate the influence
of these factors, we conduct the experiments and list the re-
sults in Table 3. Significantly, 1) Iterative refinement is more
important than ALBERT, for the reason that the redundant
information in selected sentences are difficult for ALBERT
to model; 2) Knowledge distillation mechanism enlarges the
advantage of extractive method, with high entropy for the
soft labels (Hinton, Vinyals, and Dean 2015).

Human Evaluation for Summarization
It is not enough to only rely on the ROUGE evaluation for a
summarization system, although the ROUGE correlates well
with human judgments (Owczarzak et al. 2012). Therefore,
we design an Amazon Mechanical Turk experiment based
on ranking method. Following (Cheng and Lapata 2016),
(Narayan, Cohen, and Lapata 2018) and (Zhang, Wei, and
Zhou 2019), firstly, we randomly select 40 samples from
CNN/DM test set. Then the human participants are presented
with one original document and a list of corresponding sum-
maries produced by different model systems. Participants are
requested to rank these summaries (ties allowed) by taking
informativeness (Can the summary capture the important in-
formation from the document) and fluency (Is the summary

13138

Models CNN/DM NYT
R-1 R-2 R-L R-1 R-2 R-L

Abstractive
ABS (2015) 35.46 13.30 32.65 42.78 25.61 35.26
PGC (2017) 39.53 17.28 36.38 43.93 26.85 38.67
TransformerABS (2017) 40.21 17.76 37.09 45.36 27.34 39.53
T5Large (2020) 43.52 21.55 40.69 - - -
BARTLarge (2019b) 44.16 21.28 40.90 48.73 29.25 44.48
PEGASUSLarge (2019b) 44.17 21.47 41.11 - - -
ProphetNetLarge (2020) 44.20 21.17 41.30 - - -
Extractive
Oracle (Sentence) 55.61 32.84 51.88 64.22 44.57 57.27
Lead-3 † 40.42 17.62 36.67 41.80 22.60 35.00
SummaRuNNer † ? (2017) 39.60 16.20 35.30 42.37 23.89 38.74
Exconsumm ‡ ? (2019) 41.7 18.6 37.8 43.18 24.43 38.92
PNBERTBase

† ?(2019a) 42.69 19.60 38.85 - - -
DiscoBERTBase (2020) 43.77 20.85 40.67 - - -
BERTSUMEXTLarge

† ?(2019) 43.85 20.34 39.90 48.51 30.27 44.65
MATCHSUMBase

‡ ?(2020) 44.41 20.86 40.55 - - -
ThresSumLarge

‡ •(Ours) 44.59 21.15 40.76 50.08 31.77 45.21

Table 2: Automatic Evaluation of ROUGE F1.
† means Top-K strategy; ‡ means Dynamically Adjusting Summary Length.
? means with Binary Labels / Hard Labels; • means with Soft Labels.

Models R-1 R-2 R-L

ThresSum 44.59 21.15 40.76
ThresSum w/o Distillation 44.18 20.95 40.42
ThresSum w/o ALBERT 44.35 21.03 40.57
ThresSum w/o Iteration 43.98 20.74 40.19

Table 3: Ablation Study on CNN/DM.

Models 1st 2nd 3rd 4th MeanR

BERTSUMEXT 0.20 0.28 0.30 0.22 2.54
MATCHSUM 0.23 0.32 0.27 0.18 2.40
ThresSum 0.47 0.28 0.18 0.07 1.85
Ground-Truth 0.70 0.20 0.08 0.02 1.42

Table 4: Human Evaluation on CNN/DM.

grammatical) into account. Each document is annotated by
three different participants separately.

The input article and ground truth summaries are also
shown to the human participants in addition to the three
model summaries (BERTSUMEXT, MATCHSUM and
ThresSum). From the results shown in Table 4, it is obvious
that ThresSum is better in relevance compared with others.

Trigram-Blocking vs. Iterative Refinement
Trigram blocking (Paulus, Xiong, and Socher 2018; Liu and
Lapata 2019) skips the sentence that has trigram overlaps

with the previously selected sentences, bringing a remarkable
performance improvement on CNN/DM. Whereas there is
another statistic on the test set of CNN/DM:

• 7.35% of the oracle summaries have trigram overlaps
within its sentences.

• 8.64% of the summaries extracted by our ThresSum (with
iterative refinement) have trigram overlaps within its sen-
tences.

• 21.47% of the summaries extracted by our ThresSum (with-
out iterative refinement) have trigram overlaps within its
sentences.

• 0% of the summaries extracted by BERTSUMEXT (with
Trigram-Blocking) have trigram overlaps within its sen-
tences.

The oracle summaries are the upper bound of the extractive
paradigm and 7.35% of them still contain trigram overlaps,
while it is 0% for BERTSUMEXT with Trigram-Blocking.
Consequently, Trigram-Blocking is a straightforward yet not
optimal approach. In this paper, the proposed iterative re-
finement is to model the overlaps between the selected sen-
tences, and it can effectively avoid but not empty the overlaps.
ThresSum with Iterative Refinement reduces the overlaps
from 21.47% to 8.64%, showing superiority over Trigram-
Blocking.

Autoregressive Decoders with Threshold
ThresSum extracts a non-fixed number of summary sentences
with a threshold, but whether there is a barrier that prevents

13139

Models R-1 R-L

ThresSum 44.59 40.76
ThresSum (with Trigram-Blocking) 44.03 40.25
BERTSUMEXT 43.85 39.90
BERTSUMEXT (with Threshold) 41.17 36.52
SummaRuNNer 39.60 35.30
SummaRuNNer (with Threshold) 36.58 33.61

Table 5: Threshold Strategy on CNN/DM.

previous models like SummaRuNNer or BERTSUMEXT
to do this? It has been explained by Nallapati, Zhai, and
Zhou (2017), that picking all sentences by comparing the
predicted probability with a threshold may not be an optimal
strategy since the training data is very imbalanced in terms
of summary-membership of sentences.

Table 5 further summarizes the performance gain of thresh-
old strategy. The thresholds for BERTSUMEXT and Sum-
maRuNNer are tuned on the validation set individually to
get highest ROUGE-1 score. It is obvious that the threshold
strategy is not suitable for BERTSUMEXT/SummaRuNNer,
for that the independent binary decision is based on the over-
laps modeling between selected sentences. On the other hand,
the Trigram-Blocking strategy with fixed top-3 summary sen-
tences will damage the flexibility of ThresSum.

Non-Fixed Number of Summary Sentences
Since the extractive summarization requires sentence-level
summary membership lables, Nallapati, Zhai, and Zhou
(2017) first introduces a simple greedy approach to con-
vert the abstractive summaries into extractive binary labels.
Considering that ThresSum removes the restriction of the
summary sentence number, it is necessary to discuss the dis-
tribution of summary sentence numbers on the test set of
CNN/DM.

According to statistics, 5% / 27% / 68% of the test set
examples are with 1- / 2- / 3-sentences summary. However,
previous extractive approaches (such as SummaRuNNer and
BERTSUMEXT) with top-k strategy only extract 3 sentences,
which is not suitable for almost half of the examples.

In this paper, there are about 6% / 35% / 59% for 1- / 2-
/ 3-sentences summary in CNN/DM test dataset, extracted
by our ThresSum to get the highest ROUGE-1 score. Our
threshold is still a hyper-parameter which need to be tuned.
A higher threshold is for a more concise summary and the
lower threshold will return more information.

Visualization
We visualize the three types of well-trained sentence represen-
tation of SummaRuNNer, BERTSUMEXT, and ThresSum by
employing the t-SNE algorithm. T-SNE is used to visualize
the representations of sentences learned by models, and a
better extractive model should enlarge the distance between
different clusters / different colors. Specifically, we randomly
select 1000 sentences in test set and each sentence is repre-
sented as one point in the two-dimensional space.

�30 �20 �10 0 10 20 30

X

�60

�40

�20

0

20

40

Y

(a) SummaRuNNer

�40 �30 �20 �10 0 10 20 30

X

�60

�40

�20

0

20

40

60

Y

(b) BERTSUMEXT

�40 �20 0 20 40

X

�40

�30

�20

�10

0

10

20

30

Y

(c) ThresSum

Figure 2: T-SNE Visualization on CNN/DM.

In Figure 2, there are five different colors, for five different
soft labels in our ThresSum. It is obvious that: 1) Compared
with BERTSUMEXT or SummaRuNNer, the sentence clus-
ters in ThresSum are more distinguishable and meaningful; 2)
The decoder of ThresSum is easy to score these sentences in-
dividually and extract summary sentences with an adjustable
threshold; 3) That’s why our ThresSum can extract summary
sentences by threshold, while other models only extract top-3
sentences.

Conclusion
In this paper, to remove the restriction that the number of the
summary sentences is fixed, we introduce three substantial
improvements: strengthen the encoder by enhancing sentence
representation through iterative refinement, simplify the de-
coder by removing the “sort” step, and weakly supervise
the intermediate latent variables of iterative refinement by
knowledge distillation. It is amazing that our ThresSum can
extract each sentence separately only according to an ad-
justable threshold, which is a great improvement by fitting
the distribution of sentence number in extractive summariza-
tion. Experimental results show that our method significantly
outperforms previous models on the ROUGE score, the flexi-
bility of summary sentence, and the proportion of the over-
laps. Our future work will focus on extending the flexible
summary-sentences mechanism to unsupervised summariza-
tion.

Acknowledgements
This research is supported by the National Key Research
and Development Program of China (NO.2018YFB1004703)
and National Natural Science Foundation of China
(No.61902394). We thank all authors for their contributions
and all anonymous reviewers for their constructive com-
ments.

13140

References
Aliguliyev, R. M. 2009. The two-stage unsupervised ap-
proach to multidocument summarization. Automatic Control
and Computer Sciences 276–284.

Arumae, K.; and Liu, F. 2018. Reinforced Extractive Summa-
rization with Question-Focused Rewards. In ACL, 105–111.

Bae, S.; Kim, T.; Kim, J.; and goo Lee, S. 2019. Summary
Level Training of Sentence Rewriting for Abstractive Sum-
marization. In arXiv preprint arXiv:1909.08752.

Buciluundefined, C.; Caruana, R.; and Niculescu-Mizil, A.
2006. Model Compression. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, 535–541.

Cao, Z.; Wei, F.; Li, W.; and Li, S. 2018. Faithful to the
Original: Fact Aware Neural Abstractive Summarization. In
AAAI, 4784–4791.

Celikyilmaz, A.; Bosselut, A.; He, X.; and Choi, Y. 2018.
Deep Communicating Agents for Abstractive Summarization.
In NAACL-HLT, 1662–1675.

Chen, Y.-C.; and Bansal, M. 2018. Fast Abstractive Sum-
marization with Reinforce-Selected Sentence Rewriting. In
ACL, 675–686.

Cheng, J.; and Lapata, M. 2016. Neural summarization by
extracting sentences and words. In ACL. doi:10.18653/v1/
p16-1046.

Dong, Y.; Shen, Y.; Crawford, E.; van Hoof, H.; and Cheung,
J. C. K. 2018. BanditSum: Extractive Summarization as a
Contextual Bandit. EMNLP 3739–3748.

Durrett, G.; Berg-Kirkpatrick, T.; and Klein, D. 2016.
Learning-based single-document summarization with com-
pression and anaphoricity constraints. In arXiv preprint
arXiv:1603.08887.

Galanis, D.; and Androutsopoulos, I. 2010. An extractive
supervised two-stage method for sentence compression. In
NAACL-HLT, 885–893.

Hermann, K. M.; Kocisky, T.; Grefenstette, E.; Espeholt, L.;
Kay, W.; Suleyman, M.; and Blunsom, P. 2015. Teaching
machines to read and comprehend. In NIPS, 1693–1701.

Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distilling the
Knowledge in a Neural Network. In NIPS Deep Learning
and Representation Learning Workshop. URL http://arxiv.
org/abs/1503.02531.

Jadhav, A.; and Rajan, V. 2018. Extractive summarization
with swap-net: Sentences and words from alternating pointer
networks. In ACL, 142–151.

Jia, R.; Cao, Y.; Shi, H.; Fang, F.; Liu, Y.; and Tan, J. 2020a.
DistilSum: Distilling the Knowledge for Extractive Summa-
rization. In CIKM, 2069–2072.

Jia, R.; Cao, Y.; Tang, H.; Fang, F.; Cao, C.; and Wang, S.
2020b. Neural Extractive Summarization with Hierarchical
Attentive Heterogeneous Graph Network. In EMNLP, 3622–
3631.

Kim, Y.; and Rush, A. M. 2016. Sequence-Level Knowledge
Distillation. In EMNLP, 1317–1327.

Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.;
and Soricut, R. 2020. ALBERT: A Lite BERT for Self-
supervised Learning of Language Representations. In ICLR.
OpenReview.net. URL https://openreview.net/forum?id=
H1eA7AEtvS.

Lebanoff, L.; Song, K.; Dernoncourt, F.; Kim, D. S.; Kim, S.;
Chang, W.; and Liu, F. 2019. Scoring Sentence Singletons
and Pairs for Abstractive Summarization. ACL 2175–2189.

Lin, C.-Y. 2004. Rouge: A package for automatic evaluation
of summaries. In Text summarization branches out, 74–81.

Liu, Y.; and Lapata, M. 2019. Text summarization with
pretrained encoders. In EMNLP, 3728–3738.

Manning, C.; Surdeanu, M.; Bauer, J.; Finkel, J.; Bethard,
S.; and McClosky, D. 2014. The Stanford CoreNLP Natural
Language Processing Toolkit. In ACL, 55–60.

Mendes, A.; Narayan, S.; Miranda, S.; Marinho, Z.; Martins,
A. F.; and Cohen, S. B. 2019. Jointly Extracting and Com-
pressing Documents with Summary State Representations.
In NAACL-HLT, 3955–3966.

Nallapati, R.; Zhai, F.; and Zhou, B. 2017. Summarunner: A
recurrent neural network based sequence model for extractive
summarization of documents. In AAAI, 3075–3081.

Narayan, S.; Cohen, S. B.; and Lapata, M. 2018. Ranking
sentences for extractive summarization with reinforcement
learning. In NAACL-HLT, 1747–1759.

Owczarzak, K.; Conroy, J. M.; Dang, H. T.; and Nenkova,
A. 2012. An assessment of the accuracy of automatic eval-
uation in summarization. In Proceedings of Workshop on
Evaluation Metrics and System Comparison for Automatic
Summarization, 1–9.

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
Desmaison, A.; Kpf, A.; Yang, E.; DeVito, Z.; Raison, M.;
Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.;
and Chintala, S. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In NIPS, 8024–8035.

Paulus, R.; Xiong, C.; and Socher, R. 2018. A Deep Rein-
forced Model for Abstractive Summarization. In ICLR.

Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2020. Explor-
ing the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res. 140:1–140:67.

Rush, A. M.; Chopra, S.; and Weston, J. 2015. A Neural
Attention Model for Abstractive Sentence Summarization. In
EMNLP, 379–389.

Sandhaus, E. 2008. The new york times annotated corpus. In
Linguistic Data Consortium, Philadelphia.

See, A.; Liu, P. J.; and Manning, C. D. 2017. Get To The
Point: Summarization with Pointer-Generator Networks. In
ACL, 1073–1083.

13141

Sharma, E.; Huang, L.; Hu, Z.; and Wang, L. 2019. An
Entity-Driven Framework for Abstractive Summarization. In
EMNLP, 3278–3289.

Sun, S.; Cheng, Y.; Gan, Z.; and Liu, J. 2019. Patient Knowl-
edge Distillation for BERT Model Compression. In EMNLP,
4322–4331.

Tan, X.; Ren, Y.; He, D.; Qin, T.; Zhao, Z.; and Liu, T.-
Y. 2019. Multilingual Neural Machine Translation with
Knowledge Distillation. In ICLR. OpenReview.net. URL
https://openreview.net/forum?id=S1gUsoR9YX.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention
is all you need. In NIPS, 5998–6008.

Wang, D.; Liu, P.; Zheng, Y.; Qiu, X.; and Huang, X. 2020.
Heterogeneous Graph Neural Networks for Extractive Docu-
ment Summarization. In ACL, 6209–6219.

Wang, D.; Liu, P.; Zhong, M.; Fu, J.; Qiu, X.; and Huang, X.
2019. Exploring Domain Shift in Extractive Text Summa-
rization. In arXiv preprint arXiv:1908.11664.

Xiao, W.; and Carenini, G. 2019. Extractive Summarization
of Long Documents by Combining Global and Local Context.
In EMNLP, 3009–3019.

Xu, J.; and Durrett, G. 2019. Neural Extractive Text Summa-
rization with Syntactic Compression. EMNLP 3290–3301.

Xu, J.; Gan, Z.; Cheng, Y.; and Liu, J. 2020. Discourse-Aware
Neural Extractive Text Summarization. In ACL, 5021–5031.

Yan, Y.; Qi, W.; Gong, Y.; Liu, D.; Duan, N.; Chen, J.;
Zhang, R.; and Zhou, M. 2020. ProphetNet: Predicting Fu-
ture N-gram for Sequence-to-Sequence Pre-training. In arXiv
preprint arXiv:2001.04063, 2401–2410.

Yang, Z.; Yang, D.; Dyer, C.; He, X.; Smola, A.; and Hovy,
E. 2016. Hierarchical Attention Networks for Document
Classification. In NAACL-HLT, 1480–1489.

Zhang, H.; Gong, Y.; Yan, Y.; Duan, N.; Xu, J.; Wang, J.;
Gong, M.; and Zhou, M. 2019a. Pretraining-Based Natural
Language Generation for Text Summarization. In CoNLL,
789–797.

Zhang, J.; Zhao, Y.; Saleh, M.; and Liu, P. J. 2019b. PEGA-
SUS: Pre-training with Extracted Gap-sentences for Abstrac-
tive Summarization. In arXiv preprint arXiv:1912.08777,
11328–11339.

Zhang, X.; Lapata, M.; Wei, F.; and Zhou, M. 2018. Neural
Latent Extractive Document Summarization. In EMNLP,
779–784.

Zhang, X.; Wei, F.; and Zhou, M. 2019. HIBERT: Document
Level Pre-training of Hierarchical Bidirectional Transformers
for Document Summarization. In ACL, 5059–5069.

Zhong, M.; Liu, P.; Chen, Y.; Wang, D.; Qiu, X.; and Huang,
X. 2020. Extractive Summarization as Text Matching. In
ACL, 6197–6208.

Zhong, M.; Liu, P.; Wang, D.; Qiu, X.; and Huang, X. 2019a.
Searching for Effective Neural Extractive Summarization:
What Works and Whats Next. In ACL, 1049–1058.

Zhong, M.; Wang, D.; Liu, P.; Qiu, X.; and Huang, X. 2019b.
A Closer Look at Data Bias in Neural Extractive Summariza-
tion Models. In arXiv preprint arXiv:1909.13705.
Zhou, Q.; Yang, N.; Wei, F.; Huang, S.; Zhou, M.; and Zhao,
T. 2018. Neural document summarization by jointly learning
to score and select sentences. In ACL, 654–663.

13142

