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Abstract
Keyphrase Generation compresses a document into some
highly-summative phrases, which is an important task in nat-
ural language processing. Most state-of-the-art adopt greedy
search or beam search decoding methods. These two de-
coding methods generate a large number of duplicated
keyphrases and are time-consuming. Moreover, beam search
only predicts a fixed number of keyphrases for different doc-
uments. In this paper, we propose an adaptive generation
model-AdaGM, which is mainly inspired by the importance
of the first words in keyphrase generation. In AdaGM, a novel
reset state training mechanism is proposed to maximize the
difference in the predicted first words. To ensure the dis-
creteness and get an appropriate number of keyphrases ac-
cording to the content of the document adaptively, we equip
beam search with a highly effective filter mechanism. Ex-
periments on five public datasets demonstrate the proposed
model can generate marginally less duplicated and more ac-
curate keyphrases. The codes of AdaGM are available at:
https://github.com/huangxiaolist/adaGM.

Introduction
Keyphrase generation is an important task that compresses
a document into some salient and discrete phrases, which
vary as widely as possible in terms of word choice, topic,
and meaning. These phrases can help people understand the
content quickly and further benefit downstream applications,
such as summarization (Li et al. 2018), translation (Tang
et al. 2016), and so forth. As depicted in Figure 1, the input
is usually a document, and the output is a set of keyphrases.
These keyphrases can be categorized into present keyphrases
that appear in the document like “dynamic programming”
and absent keyphrases that do not appear in the document
like “craft woodworkers”.

To predict present and absent keyphrases, generative
methods (Meng et al. 2017; Yuan et al. 2018; Chen et al.
2018; Chan et al. 2019; Chen et al. 2020) are proposed. Most
of the above methods are implemented by the sequence-to-
sequence (seq2seq) model (Sutskever, Vinyals, and Le 2014;
Cho et al. 2014). Beam search (Meng et al. 2017; Chen
et al. 2018, 2019) is adopted initially as the decoding al-
gorithm. The standard beam search sets a large beam size
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Figure 1: An example of an input document and keyphrase
labels. We list the present and absent keyphrases, respec-
tively, and present keyphrases are highlighted in red in the
document. We can see that the first words (marked with un-
derline) of these keyphrases are different, which highlights
the importance of discreteness for keyphrase generation.

(e.g., 200) to over-generate at every decoding time-step, and
only top-K(e.g., K=10) phrases are kept, where K is con-
sistent for each document. As a result, it suffers from high
computational costs and can only generate a fixed number
of keyphrases for various documents. To solve these prob-
lems, (Yuan et al. 2018; Chan et al. 2019; Chen et al. 2020)
utilize a greedy search decoding strategy with a new train-
ing setup. Concretely, they concatenate keyphrases using de-
limiters into a sequence to make the model determine the
number of keyphrases, denoted as one-to-many (one2many)
mode. However, these methods tend to generate a large num-
ber of repeated keyphrases, and the extra noise (i.e., delim-
iter) aggravates the duplication issue (Yuan et al. 2018; Chan
et al. 2019).

In this work, we present an effective method to increase
the discreteness of the keyphrase generation, intending to
mitigate the issues mentioned above. Our method is moti-
vated by the observation that the keyphrases of each docu-
ment usually have different first words. It indicates that the
diversities of first words are the basis of keyphrases’ dis-
creteness. We verify our intuition by counting the percent-
age of keyphrases with diverse first words in five popular
datasets, as shown in Table 1. It can be seen that the aver-
age proportion of all datasets reaches to near 89%, and the
percentage of three datasets even exceeds 90%.

With regard to the crucial role of the first words to inter-
pret the discreteness of keyphrases, we propose the Adaptive
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Dataset total diff percentage

Inspec 4913 4422 90.0%
Krapivin 2339 2188 93.5%
NUS 2458 1961 79.8%
SemEval 1466 1256 85.7%
KP20k 2903008 2781524 95.8%

Table 1: Results of the number of keyphrases with different
(diff) first words accounts for (in percentage) the number of
total keyphrases for each dataset.

keyphrase Generation Model (AdaGM). To enhance the dis-
creteness and accuracy of generated keyphrases, we intro-
duce a reset state mechanism during the training process
to maximize the difference between the first words. When
making inferences, an adaptive beam search decoding strat-
egy is proposed, which is equipped with a novel filter mech-
anism. Note that, benefit from the reset state mechanism, our
adaptive decoding method can set a small beam size and de-
termine the number of keyphrases adaptively. Therefore, it
possesses the following virtues: (a) ability to predict a rea-
sonable number of keyphrases for each document, (b) high
discreteness, and (c) fast inference.

We evaluate the AdaGM on five public science article
datasets. Our results significantly outperform the start-of-
the-art on most metrics: the improvement gain ofDupRaito
is up to 42.9%. For present (absent) keyphrase predictions,
the improvement gain of F1-measure at 5 is up to 18.3%
(38.7%).

We summarize our contributions as follows:

• We propose a reset state mechanism, which can reduce
the impact of delimiter noise in the one-to-many mode
and generate the first words accurately.

• We propose an adaptive beam search decoding method,
which encourages the model to generate less duplicated
and an appropriate number of keyphrases.

• Our AdaGM achieves the SOTA on most datasets and has
higher computational effectiveness.

Related Work
Keyphrase Extraction and Generation
Extractive methods select important information from a
document as keyphrases. Most of them follow two steps:
over-extracting present candidates firstly and then ranking
them according to their different scoring mechanisms (Hulth
2003; Kim et al. 2010; Wang, Sheng, and Wu 2017; Flo-
rescu and Caragea 2017; Mahata et al. 2018; Prasad and
Kan 2019). Recently, sequence tagging models (Gollapalli,
Li, and Yang 2017; Luan, Ostendorf, and Hajishirzi 2017;
Alzaidy, Caragea, and Giles 2019; Sahrawat et al. 2020) are
proposed to recognize keyphrases. However, these methods
cannot predict absent keyphrases, which are necessary to un-
derstand a document.

To produce extra absent keyphrases, generative models
are proposed. CopyRNN (Meng et al. 2017) is the first

attention-based encoder-decoder model (Bahdanau, Cho,
and Bengio 2015) with a copy mechanism (Gu et al. 2016)
to generate present and absent keyphrases, and multiple ex-
tensions are introduced based on it. CorrRNN (Chen et al.
2018) considers the correlation between phrases. TG-Net
(Chen et al. 2019) incorporates title information to enhance
the representation of the input document. All of the above
generative models rely on beam search with beam size as
K, beam depth as M , and select top-N as the final predic-
tion. As a result, regardless of the content, each document
has consistent N keyphrases, which is unreasonable.

In order to generate an appropriate number of keyphrases
for each document, researchers propose a scheme that con-
catenates keyphrases with delimiters as a sequence. This
method considers the relationships between keyphrases
and generates keyphrases sequentially. catSeq and catSeqD
(Yuan et al. 2018) propose a target encoding module and or-
thogonal regularization. Kp-RL (Chan et al. 2019) utilizes
a reinforcement learning approach with adaptive rewards.
Concurrent to us, ExHiRD (Chen et al. 2020) also points out
the importance of the first words in keyphrase generation.
They propose a complex exclusive hierarchical decoding
framework that includes a hierarchical decoding process and
two exclusion mechanisms. However, these models gener-
ally generate some duplicated keyphrases, as shown in Fig-
ure 6, and involve complex but weakly effective mechanisms
to avoid this issue. In contrast, our model integrates an ef-
fective reset state mechanism and a simple filter-based beam
search method to generate diverse and accurate keyphrases.

Diversity Generation Methods
Many one2many tasks adopt beam search to generate a wide
range of results, which also causes some redundancy. To
solve this problem, (Cho 2016) adds noise to the hidden
state of the decoder at each step. (Li and Jurafsky 2016)
proposes a group mechanism to select the top g from each
group as final predictions. (Vijayakumar et al. 2016) adopts
an additional diversity-promoting term to the log-likelihood
before re-ranking. (Tam et al. 2019) applies a clustering-
based method to filter meaningless candidates. However,
these methods are still limited by producing a fixed number
of results. Different from these works, we corporate beam
search with a simple but effective filter mechanism to get the
dynamic number of outputs at the first decoding time-step.

Methodology
Problem Formulation
Suppose that we have a datasetD =

{
xi, yi

}M
i=1

, whereM is
the number of documents, xi =

(
wi

1, wi
2, . . . , w

i
T−1, w

i
T

)
,

T is the number of words in one document. For yi ={
yi,j
}Ni

j=1
, Ni represents the number of keyphrases in the

corresponding document and yi,j =
(
yi,j1 , yi,j2 , . . . , yi,jLj

)
,

where Lj represents the number of words in the keyphrase
yi,j . In an overview, by maximizing the probability of∏M

i=1

∏Ni

j=1 P
(
yi,j |xi

)
, we force our model to generate ac-

curate keyphrases.
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Keyphrase Generation Basic Model
Training Setup. For each document keyphrases pair (xi,
yi), we join all keyphrases in yi into one sequence, written
as yi = 〈bok〉yi,1〈eok〉yi,2〈eok〉...〈eok〉yi,N 〈eok〉, where
〈bok〉 and 〈eok〉 are special tokens that indicate the start
of the first keyphrase and the end of each keyphrase, re-
spectively. Using such (xi, yi) sample as training data, the
encoder-decoder model (Bahdanau, Cho, and Bengio 2015)
can generate all keyphrases.
Encoder Module. We use an embedding lookup table
to map each word into a dense vector with size de. To
merge words in one document, we use a bi-directional
Gated-Recurrent Unit (Bi-GRU) (Cho et al. 2014) as the
encoder. The encoder converts the input document x =
(w1, w2, . . . , wT−1, wT ) into a collection of hidden states
H = (h1, h2, . . . , hT−1, hT ). The i-th hidden state hi =

[
−→
h i;
←−
h i], where [; ] means connection.

Decoder Module. We use a single-layered GRU as the de-
coder. The t-th decoder hidden state st is represented as:

st = GRU(embed(yt−1), st−1), (1)
where embed(yt) is the embedding of t-th predicted word
yt. We set s0 as the last hidden state hT of the encoder and
embed(y0) as embed(〈bos〉). We also apply attention mech-
anism from (Bahdanau, Cho, and Bengio 2015):

ati = softmax(Wd(tanh(Whhi +Wsst))), (2)

Ct =

T∑
i=1

atihi, (3)

where ati is an attention score forwi in the document andCt

is the context vector at the t-th decoding time-step. Besides,
all W terms are trainable parameters and we omit the bias
units. To alleviate the out-of-vocabulary (OOV) issue, we
use the copy mechanism in (See, Liu, and Manning 2017):

P (yt) = ptgenPvocab(yt) + (1− ptgen)
∑

i:wi=yt

αti, (4)

ptgen = sigmoid(Wgen[Ct; st; embed(yt−1)]), (5)

Pvocab(yt) = softmax(Wv′(Wv[Ct; st])). (6)
It indicates the word generation is dependent on the prob-
ability of vocabulary Pvocab(yt) and the sum of the word
attention scores at the t-th decoding time-step in the doc-
ument (i.e.,

∑
i:wi=yt

αti). Pvocab(yt) is achieved by a 2-
layer feed-forward neural net (FNN). We project the con-
catenation of context vector Ct, decoder hidden state st and
the embedding of yt−1 into a scalar by a linear transfor-
mation, and further apply sigmoid function to convert the
scalar scale into ptgen ∈ (0, 1). ptgen is a soft gate to choose
between generating a word from the vocabulary and copy-
ing from the document at t-th time-step. We minimize the
negative log-likelihood loss to train our model:

loss = − 1

M

M∑
i=1

Ni∑
j=1

Lj∑
t=1

logP (yt|y<t;x; θ), (7)

Figure 2: The model adopts Bi-GRU as encoder and GRU as
decoder. We omit the encoder structure. The red areas denote
the reset state mechanism. We reset decoder states including
hidden states and input states when the last phrase is entered
at the training stage. y′n and e′m represent decoder outputs.

Figure 3: Standard beam search chooses different K words
at the first decoding time-step. Here, K is three.

where θ denotes all the learnable parameters.

Reset State Mechanism
Keeping the difference of the first words of keyphrases and
enhancing discreteness in mind, we implement the reset state
mechanism by resetting the decoder input and hidden states
in an one2many training mode. To be more specific, we reset
the input state in the decoder with the character embedding
〈bok〉 and the hidden state with hT from the encoder when
the model input is a delimiter, as shown in Figure 2. The
equation (1) is converted into:

st = GRU(embed(〈bok〉), hT ), (8)

previous methods (Yuan et al. 2018; Chan et al. 2019) mark
both the beginning and end of each keyphrase with the same
token 〈eok〉, which tends to generate a large number of re-
peated predictions. However, the start and the end of each
keyphrase are distinguishable in our training process. As
shown in Figure 2, just like a multi-classification task, the
gradient of keyphrase can compete with each other and fo-
cus on the different parts of a document through the attention
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Figure 4: The process of adaptive beam search decoding
method. At the first decoding time-step, we preserve Top-
K first words. After applying the Filter operation, we get
d first words.

mechanism (Eq. 3), which helps to better model global se-
mantics and maximize the discreteness of the first words at
the first decoding time-step.

Adaptive Beam Search Decoding Method
The basis of discreteness of generated keyphrases is maxi-
mizing the difference between the first words of keyphrases.
A natural alternative is beam search during inference, which
selects K different words at the first decoding time-step, as
shown in Figure 3. However, huge computation costs and
number-fixed keyphrases generation make it hard for direct
use. In order to satisfy the discreteness of the generated
keyphrases but overcome the shortages of beam search, we
propose an adaptive beam search decoding method.

Filter Mechanism. To predict a reasonable number of
keyphrases rather than fixed K for each document, we pro-
pose a simple but effective filter mechanism. Specifically,
our model selects the top K different words at the first de-
coding time-step similar to standard beam search and then
filters out the words whose scores are lower than a thresh-
old α. Note that since our reset state mechanism suppresses
the score of wrong first words to a much lower degree (e.g.,
close to 0.0) than that of correct ones, this simple filter im-
plemented with a threshold can preserve a reasonable num-
ber of the first words by filtering out the noise (i.e., the incor-
rect first words). Furthermore, our experiments show that the
model can produce a high recall in the predicted first words,
even set a very small K (e.g., 20) compared to a large num-
ber (e.g., 200) in previous methods. By avoiding the over-
generation problem in standard beam search, a largely small
number of K phrases help to preserve memory-footprint. In
Figure 4, we assume that d first words are kept after applying
the filter mechanism, where d is a variable adaptive number
for different documents.

Decoding Method. Given the retained d first words, a
direct way to generate keyphrases is in a fully parallelized
manner, as depicted in the left of Figure 5. The keyphrases
generated in this manner have completely different first
words. However, just as shown in Table 1, the NUS dataset
still contains 18.7% repeated first words, which makes this
method not optimal. A semi-parallelized manner based on

Figure 5: An example of generation processes in fully par-
allelized decoding and semi-parallelized decoding manner.
Suppose that d =3 after applying the filter mechanism.

beam search is adopted: the algorithm can share the same
words in the previous decoding time-step in current decod-
ing time-step. It helps to preserve the opportunity to choose
identical first words for keyphrase generation adaptively.

Experiment Settings
Datasets
Experiments are carried out on five scientific publica-
tion datasets, including KP20k (Meng et al. 2017), Inspec
(Hulth 2003), Krapivin (Krapivin and Marchese 2009), NUS
(Nguyen and Kan 2007), and SemEval (Kim et al. 2010).
We apply the same preprocess as (Chan et al. 2019): (a)
removing all duplicated documents, (b) filtering documents
in the training dataset, which have over 14 keyphrases or
400 words. After the two operations, the training, valida-
tion, and testing samples of the KP20k dataset are 509,818,
20,000, 20,000, respectively. Following settings in (Meng
et al. 2017; Yuan et al. 2018; Chen et al. 2018; Chan et al.
2019), we train models on KP20k and evaluate the models’
performance on the testing part of all datasets.

Baseline Models and Evaluation Metrics
Baseline Models. We compare our model with seven gener-
ative models, including CopyRNN (Meng et al. 2017), Cor-
rRNN (Chen et al. 2018), TG-Net (Chen et al. 2019), cat-
Seq, catSeqD (Yuan et al. 2018), Kp-RL (Chan et al. 2019),
and ExHiRD (Chen et al. 2020). We train the first five base-
lines with the settings mentioned in their published papers,
respectively. As for Kp-RL and ExHiRD, we use the best re-
sults in their papers.
Evaluation Metrics. Following (Yuan et al. 2018; Chan
et al. 2019; Chen et al. 2020), we adopt three important
metrics, F1@5 (F-measure@5), F1@M , and DupRatio,
for quantitative evaluation. F1@5 uses the top 5 generated
keyphrases and the ground-truth to compute F1 score. If
the model generates less than five predictions, we append
some random answers to reach five. Thereby, similar F1@5
and F1@M can be avoided. F1@M compares all predictions
with the ground-truth without any modification, which is the
actual F1 score. The DupRatio evaluates the model’s ca-
pability of avoiding generating repeated predictions, which
equals the number of duplications divided by the number
of predictions. For all of those, the macro average is re-
ported. We also employ Porter Stemmer to match the two
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Model Inspec Krapivin NUS SemEval KP20k
F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

catSeq 0.235 0.273 0.272 0.357 0.309 0.376 0.247 0.292 0.288 0.365
catSeqD 0.223 0.264 0.256 0.340 0.318 0.393 0.230 0.279 0.280 0.359
Kp-RL 0.253 0.301 0.300 0.369 0.375 0.433 0.287 0.329 0.321 0.386
ExHiRD 0.235 0.291 0.286 0.347 — — 0.284 0.335 0.311 0.374
AdaGM# 0.301 0.332 0.347 0.339 0.427 0.433 0.337 0.346 0.373 0.337
AdaGM 0.305 0.348 0.363 0.323 0.442 0.438 0.343 0.337 0.388 0.345

Table 2: Results of present keyphrases on five datasets. The best results are bold. The first four models adopt greedy search.
AdaGM# and AdaGM denote that we adopt fully- and semi- parallelized generation methods, respectively.

Model Inspec Krapivin NUS SemEval KP20k
F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

catSeq 0.003 0.004 0.017 0.032 0.020 0.036 0.015 0.021 0.015 0.032
catSeqD 0.007 0.013 0.018 0.037 0.013 0.022 0.018 0.025 0.014 0.030
Kp-RL 0.012 0.021 0.030 0.053 0.022 0.037 0.021 0.031 0.027 0.050
ExHiRD 0.011 0.022 0.022 0.043 — — 0.017 0.025 0.016 0.032
AdaGM# 0.010 0.018 0.026 0.049 0.021 0.033 0.026 0.036 0.022 0.042
AdaGM 0.016 0.024 0.050 0.076 0.037 0.059 0.032 0.039 0.043 0.071

Table 3: Results of absent keyphrases on five datasets. The best results are bold.

keyphrases on all the datasets except SemEval. The reason
is that the keyphrases have been stemmed on the SemEval.

Implementation Details
In the preprocessing stage, following (Yuan et al. 2018;
Chan et al. 2019), for each document, we lowercase all char-
acters, replace digits with a specific token <digit>, sort all
the present keyphrase labels according to where they first ap-
pear in the document and append absent keyphrases. We set
the vocabulary as the most frequent 50,002 words and share
it between the encoder and decoder. We set the dimension of
word embedding to 100 and the hidden size of the encoder
and decoder to 300. The word embedding is initialized using
a uniform distribution within [−0.1, 0.1 ]. The initial state
of the decoder is initialized as the encoder’s last time-step’s
hidden state. Dropout with a rate of 0.1 is applied to both the
encoder and decoder states.

During the training stage, we use the Adam optimization
algorithm (Kingma and Ba 2014) with an initial learning rate
of 0.001. The learning rate will be halved if the validation
loss stops dropping. Early stopping is applied when valida-
tion loss stops decreasing for three contiguous checkpoints.
We also set gradient clipping of 1.0, batch size of 32, and
train our model for three epochs.

During the test stage, we set beam-size as 20 and thresh-
old α as 0.015. Moreover, we calculate F1@5 and F1@M
after removing all the duplicated keyphrases.

Results and Analysis
Comparisons with the State-of-the-art Methods
In this part, we compare AdaGM with state-of-the-art meth-
ods in terms of F1@5 and F1@M on five datasets. Accord-

ing to whether the model can generate a dynamic number
of keyphrases, we divide the seven baseline models into
two categories: (a) catSeq, catSeqD, Kp-RL, and ExHiRD,
which can generate a dynamic number of outputs. (b) Copy-
RNN, CorrRNN, and TG-Net, which preserve a fixed num-
ber of keyphrases. The comparison results among (a) are
summarized in Table 2 and Table 3. In these tables, we also
report the results of our model using the fully parallelized
decoding method, denoted as AdaGM#. Since the models in
(b) generate a fixed number of phrases, we only report F1@5
results in Tables 4 and Table 5.

As shown in Table 2 and Table 3, our model achieves
the best results on F1@5 of all datasets and F1@M of most
datasets. For instance, the present F1@5 by AdaGM on NUS
is 0.442, about 17.8% higher than that of Kp-RL at 0.375.
However, AdaGM does not outperform the compared mod-
els on F1@M of Krapivin and KP20k in Table 2. This phe-
nomenon is reasonable since our model tends to copy fre-
quently occurring words in a document at the early stage,
but these two datasets do not consider these words as the
ground-truth. Note that AdaGM with a fully parallelized de-
coding manner also gets great performance on most datasets,
which indicates that even without considering the dupli-
cated first words, our model still has better prediction re-
sults. From Tables 4 and 5, compared with the three baseline
models using beam search, our model achieves the optimal
or suboptimal F1@5 on all datasets.

Duplication Ratio of Predictions
We report the average DupRatio results in Table 6. It can
be seen that our model reduces the duplication ratios on
most of the datasets consistently and significantly. For in-
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Model Inspec Krapivin NUS SemEval KP20k

CopyRNN 0.258 0.342 0.432 0.336 0.371
CorrRNN 0.281 0.329 0.404 0.328 0.333
TG-Net 0.299 0.339 0.423 0.349 0.368
AdaGM 0.305 0.363 0.442 0.343 0.388

Table 4: Results of present keyphrases F1@5 on five
datasets. The best results are bold. All models employ beam
search.

Model Inspec Krapivin NUS SemEval KP20k

CopyRNN 0.015 0.054 0.049 0.027 0.041
CorrRNN 0.006 0.031 0.021 0.014 0.018
TG-Net 0.016 0.048 0.035 0.023 0.041
AdaGM 0.016 0.050 0.037 0.032 0.043

Table 5: Results of absent keyphrases F1@5 on five datasets.
The best results are bold. All models employ beam search.

Model Inspec Krapivin NUS SemEval KP20k

catSeq 0.361 0.341 0.447 0.480 0.261
catSeqD 0.371 0.327 0.374 0.333 0.274
Kp-RL 0.412 0.262 0.591 0.275 0.340
ExHiRD 0.030 0.140 — 0.091 0.100
AdaGM 0.067 0.080 0.076 0.068 0.077

Table 6: The results of average DupRatio on five datasets.
The best results are bold.

stance, on the KP20k dataset, our model achieves 0.077,
about 70.4% lower than catSeq, 71.9% lower than catSeqD,
77.4% lower than Kp-RL, and 23% lower than ExHiRD.
Note that there are still some repeated results in our model,
which are mainly caused by we allow the model to select the
same first words adaptively in a semi-parallelized manner.

Effect of Two Mechanisms
To analyze the impact of the reset state mechanism and the
filter mechanism on the first words generation, we compare
with a representative model: ExHiRD. In Table 7, we count
the number of phrases (i.e., the number of first words) as
Oracle and the accurate first words generated by each model
as Num# in each dataset. We also calculate a recall score,
which equals Num# divided by Oracle. As shown in Ta-
ble 7, our model achieves the best results on all datasets,
which demonstrates these mechanisms can force our model
to predict and preserve more accurate first words.

To further explain the effectiveness of our filter mecha-
nism, we adopt mean absolute error (MAE) to measure the
differences between the number of predictions and the num-
ber of ground-truth keyphrases. The average and variance of
the number of ground-truth are also reported in Table 8. We
compare AdaGM with catSeqD and Kp-RL models, which
all aim to generate a suitable number of keyphrases. From
Table 8, our model can adaptively generate the appropri-

Dataset Oracle ExHiRD AdaGM
Num# recall Num# recall

Inspec 4913 1613 0.328 3323 0.676
Krapivin 2339 845 0.361 1724 0.737
NUS 2458 — — 1249 0.508
SemEval 1466 307 0.209 699 0.477
KP20k 105560 41823 0.396 78824 0.747

Table 7: The first words recall scores. Oracle denotes the
number of keyphrases in each test dataset. Num# is the num-
ber of the correct first words. The best results are bold.

Dataset catSeqD Kp-RL AdaGM Oracle
MAE MAE MAE Avg# Var#

Inspec 7.32 5.43 3.41 9.83 24.89
Krapivin 4.15 3.12 6.37 5.84 12.72
NUS 8.37 6.86 5.29 11.64 58.85
SemEval 8.38 8.28 3.63 14.66 10.06

Table 8: Results of mean absolute error (MAE) on four
datasets. The lower value is better. Oracle denotes the
ground-truth keyphrases. Avg# and Var# denote the mean
and variance of numbers of keyphrases per dataset, respec-
tively.

ate number of keyphrases. For instance, on Inspec and NUS
datasets, which have large differences in data distribution,
our model still generates a smaller MAE than Kp-RL.

Inference Time
To illustrate the advantage in the computation efficiency of
our method, we compare the average inference time of our
model with four baselines. For a fair comparison, we use the
same device (i.e., GTX-1080Ti), set the batch size to 1, and
adopt the settings given in the corresponding papers. The
results are summarized in Table 9. AdaGM achieves a con-
siderably higher computational efficiency than other base-
lines, as shown in Table 9. For instance, AdaGM’s time-
consumption is only 89ms, which is about 3.6 times faster
than that of CopyRNN.

Results on Different Thresholds
In general, the selection of threshold α in the filter mech-
anism is related to the number of generated keyphrases.
Hence, in this experiment, we aim to find the appropri-
ate threshold of α. The following α are investigated: α=
{0, 0.01, 0.015, 0.02, 0.025, 0.03}, and results are reported
in Table 10. We also report the d value in Figure 4. As α
increases, our model retains more reliable first words and
generates fewer keyphrases. Therefore, the present F1@M
is positively correlated with α. However, the present F1@5
may lose some correct words, resulting in a decrease in its
effectiveness. For the absent keyphrases, when α is greater
than 0.015, F1@5 and F1@M begin to decrease. This phe-
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Model CopyRNN catSeq TG-Net Kp-RL AdaGM

time(ms) 320 123 360 119 89

Table 9: The average time of predicting one document. The
unit is milliseconds.

Threshold present absent d
F1@5 F1@M F1@5 F1@M

α=0.0 (no filter) 0.392 0.274 0.054 0.068 19.34
α=0.01 0.391 0.327 0.039 0.064 13.37
α=0.015 0.391 0.347 0.043 0.075 11.16
α=0.02 0.388 0.363 0.027 0.051 9.30
α=0.025 0.385 0.376 0.023 0.045 7.99
α=0.03 0.379 0.386 0.020 0.041 7.01

Table 10: Results of different thresholds on the KP20k val-
idation set. α=n means the threshold is n. d refers to the
average number of keyphrases predicted by the model under
the current threshold.

nomenon is reasonable since the absent keyphrase is mainly
dependent on the semantics of a document, the first word
of absence may have little difference in scores. The per-
formance of α=0.015 is competitive to no filter imposed
(i.e., α=0) on F1@5 and F1@M metrics. But the number of
generated keywords is significantly reduced (nearly 50%),
which fits the number of keyphrases in a document more
closely. Hence, we set 0.015 as the final threshold.

Ablation Study
To further demonstrate the effectiveness of the reset state
mechanism, we now perform an ablation study. Present
keyphrases results are reported in Table 11. We set up two
compared models: without any resetting operation and only
without resetting the hidden state. From Table 11, the latter
performs better than the former on Krapivin, F1@M on In-
spec, and F1@5 on SemEval datasets, which indicates that
reset operation can eliminate some noise effect and generate
more accurate keyphrases.

Case Study
We display an example of predictions of our model and four
baselines in Figure 6. Compared to all baselines, our model
can generate the appropriate number of keyphrases. In this
case, the number of ground-truth keyphrases is 6, while only
our model generates six keyphrases. Besides, our model can
generate more discrete keyphrases. For instance, catSeqD
and Kp-RL predict “game theory” keyphrase at least twice,
while our model only generates it once. As for the present
keyphrase, we note that all baseline models fail to predict the
“operations research” keyphrase. But our AdaGM benefited
from the reset state mechanism that can predict the accurate
first word and then generate the corresponding keyphrase. In
conclusion, our model has the advantage of generating more
discrete keyphrases and achieving better results.

Model Inspec Krapivin SemEval
F1@5 F1@M F1@5 F1@M F1@5 F1@M

AdaGM 0.305 0.348 0.363 0.323 0.343 0.337
-reset h 0.273 0.311 0.335 0.248 0.335 0.309
-reset all 0.287 0.309 0.315 0.247 0.328 0.310

Table 11: Results of present keyphrases on ablation exper-
iment. “-reset all” means we remove the holistic reset state
mechanism and train the seq2seq model in a common man-
ner. “-reset h” means we do not reset the decoder hidden
state, but only reset the input state. The best results are bold.

Figure 6: Keyphrases generated by catSeq, catSeqD, Ex-
HiRD, Kp-RL, and AdaGM. Bold keyphrases are correct
and duplicated predictions are highlighted in blue. The digit
in parentheses indicates the number of times that the re-
peated keyphrase has been generated. The digit in square
brackets indicates how many phrases are generated.

Conclusion and Future Work
In this paper, we emphasize the discreteness of the gener-
ated keyphrases. With the intuition that the first words of
keyphrases are almost different, we optimize the training
stage with a reset state mechanism. As each document has
a different number of keyphrases, the proposed AdaGM fur-
ther embeds a filter-based adaptive beam search algorithm to
enhance the discreteness and generate an appropriate num-
ber of keyphrases. Experiments demonstrate our model can
yield better performance on most datasets. Our future work
will focus on incorporating structure or syntax information.
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