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Abstract

Named entity recognition (NER) is a well-studied task in
natural language processing. However, the widely-used se-
quence labeling framework is difficult to detect entities with
nested structures. In this work, we view nested NER as con-
stituency parsing with partially-observed trees and model it
with partially-observed TreeCRFs. Specifically, we view all
labeled entity spans as observed nodes in a constituency tree,
and other spans as latent nodes. With the TreeCRF we achieve
a uniform way to jointly model the observed and the latent
nodes. To compute the probability of partial trees with partial
marginalization, we propose a variant of the Inside algorithm,
the MASKED INSIDE algorithm, that supports different in-
ference operations for different nodes (evaluation for the ob-
served, marginalization for the latent, and rejection for nodes
incompatible with the observed) with efficient parallelized
implementation, thus significantly speeding up training and
inference. Experiments show that our approach achieves the
state-of-the-art (SOTA) F1 scores on the ACE2004, ACE2005
dataset, and shows comparable performance to SOTA mod-
els on the GENIA dataset. We release the code at https:
//github.com/FranxYao/Partially-Observed-TreeCRFs.

Introduction
Named entity recognition (NER) is a fundamental task
in natural language processing (McCallum and Li 2003).
Although recent work shows huge success in flat NER
with modern neural architectures and pretrained encoders
(Huang, Xu, and Yu 2015; Devlin et al. 2019), NER with
nested structures is still difficult since simple sequence la-
beling techniques cannot model these structures (Finkel and
Manning 2009). Nested NER is also important because en-
tities of nested structures are observed in many domains due
to their compositionality (Alex, Haddow, and Grover 2007)
and consequently involved in many real-world applications
(Kim et al. 2003).

Figure 1 gives an example sentence with nested entities.
We observe that an inner entity can be part of an outer en-
tity, which is quite similar to the constituency structure. Ad-
ditionally, the boundaries of nested entities cannot cross.
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Figure 1: An example sentence in the ACE dataset with
its nested entities. Viewing the nested entity structure as a
partially observed tree, a key observation is that other spans
without annotation can be modeled as latent nodes (dashed
lines) in a full tree. This observation motivates us to model
nested NER with partially-observed constituency trees.

These observations motivate us to formulate nested NER as
parsing with partially observed constituency trees: we can
view entities with annotations as observed constituents, and
assume a distribution of latent constituents over spans with-
out annotation. For example, State Department and Richard
Boucher can be two possible latent entities in Figure 1.

In this work, we propose to model observed and latent en-
tities jointly with a TreeCRF (Zhang, Zhou, and Li 2020;
Rush 2020). Specifically, we use a pretrained encoder to
obtain word representations, a biaffine scoring mechanism
(Dozat and Manning 2017) to obtain log potentials, and a
TreeCRF to decode full constituency trees. Using TreeCRFs
gives the advantage of modeling different types of entities
in a probabilistically principled way and properly handling
the ambiguities of the latent constituents. For optimization,
we marginalize all latent constituents out, and maximize the
resulting probability of observed partial trees.

Previously, the application of TreeCRFs for parsing is
limited by the cubic time complexity of the Inside algo-
rithm (Eisner 2016). Recent works show that it is possible to
parallelize the Inside algorithm on modern hardware (Rush
2020). While a vanilla Inside algorithm sums over all pos-
sible trees, in our setting, we require an Inside-styled par-
tial marginalization which only sums over latent nodes. To
adapt the Inside algorithm to partial summation, we propose
a masking method that differentiates different nodes during
marginalization. Furthermore, to efficiently compute partial

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

12839



marginalization, we propose a MASKED INSIDE algorithm
that performs different inference operations for different
types of nodes in a unified masked summation framework.
We highlight the advantages of the MASKED INSIDE com-
pared with a naive partial marginalization algorithm from
two perspectives: (a) it is highly batchifiable and paralleliz-
able, allowing us to fully exploit the computational power of
modern hardware (like GPUs) and tensor libraries (like Py-
torch); (b) it is conceptually simple and can be easily imple-
mented by reusing existing implementation of the original
Inside algorithm in highly optimized structured prediction
libraries (like Torch-Struct Rush 2020).

We further propose two regularization techniques for
TreeCRFs. Specifically, we propose potential normaliza-
tion, inspired by batch normalization (Ioffe and Szegedy
2015), and structure smoothing, inspired by label smoothing
(Müller, Kornblith, and Hinton 2019). These two regulariza-
tions can be seamlessly integrated with MASKED INSIDE,
making their implementation simple and efficient.

We conduct experiments on three standard benchmark
datasets. Experimental results show that our approach
achieves 86.6, 85.4, and 78.2 scores in terms of F1 on
the ACE2004, ACE2005, and GENIA datasets, respectively,
which achieves SOTA F1 scores on the ACE2004, ACE2005
dataset, and shows comparable performance to SOTA mod-
els on the GENIA dataset. We will release the codes for fur-
ther research. Our contributions are:

• We propose to formulate nested NER as constituency
parsing with partial trees and use partially-observed
TreeCRFs to jointly model observed and latent nodes.

• We propose the MASKED INSIDE algorithm for efficient
partial marginalization and its regularization techniques.

• We demonstrate the effectiveness of our proposed meth-
ods with extensive experiments.

Related Work
Nested NER
It has been a long history of research involving named entity
recognition (Zhou and Su 2002; McCallum and Li 2003).
In the era of deep learning, the LSTM-CRF model achieves
very good results in recognizing named entities (Huang, Xu,
and Yu 2015; Lample et al. 2016), especially when equipped
with pretrained encoders (Peters et al. 2018; Devlin et al.
2019). Finkel and Manning (2009) point out that named
entities are often nested while traditional sequential label-
ing models cannot handle the nested structure because they
can only assign one label to each token. Earlier research on
nested NER is rule-based (Zhang et al. 2004). Recent works
in nested NER are in various paradigms as follows:
Hypergraph-based Lu and Roth (2015); Katiyar and Cardie
(2018); Wang and Lu (2018) propose the hypergraph-based
method to solve this problem. They design a hypergraph
to represent all possible nested structures, which guaran-
tees that nested entities can be recovered from the hyper-
graph tags. However, the hypergraph needs to be carefully
designed to avoid spurious structures and structural ambigu-
ities which inevitably leads to higher modeling and compu-

tational complexity. Compared with hypergraph-based ap-
proaches, our method tackles ambiguities in a probabilis-
tically principled way by marginalizing all possible latent
spans out, and can be implemented easily and efficiently.
Transition-based Transition-based models are generally
similar to shift-reduce parsers with tailored actions for dif-
ferent formalisms. Wang et al. (2018) propose a method to
construct nested mentions via a sequence of shift/ reduce/
unary actions. Fisher and Vlachos (2019) propose to form
nested structures by merging tokens and/or entities into en-
tities for entity representation. Compare with these methods,
our approach does not involve the manual labor for design-
ing specialized transition systems, which largely requires
domain expertise thus being not generalizable. Our partially
observed TreeCRFs is more general-purpose and can be
flexibly applied to partial trees of different formalisms.
Span-based Another strategy for nested NER is the span-
based methods (Xu, Jiang, and Watcharawittayakul 2017;
Sohrab and Miwa 2018; Xia et al. 2019; Luan et al. 2019;
Zheng et al. 2019; Tan et al. 2020; Jue et al. 2020).
These models first compute the representations for all subse-
quences in a sentence with tailored neural architectures, then
classify these spans with locally-normalized scores. Com-
pared with these models, our TreeCRF can model the depen-
dency for all subsequences with a globally-normalized struc-
tured distribution, which consequently leads to clear perfor-
mance improvements.
Others There are many other attempts for Nested NER.
Muis and Lu (2017) develop a gap-based tagging schema
to capture nested structures. Lin et al. (2019) propose a
sequence-to-nuggets architecture for nested mention detec-
tion. Straková, Straka, and Hajic (2019) propose to use a
sequence-to-sequence framework to predict the entity label
one by one. Li et al. (2020) treat NER as a machine read-
ing comprehension task. Generally, it is hard to study nested
NER in a unified framework and we aim to model it in a
probabilistically principled way with TreeCRFs.

Constituency Parsing with TreeCRFs

TreeCRFs (Eisner 2000, 2016; Zhang, Zhou, and Li 2020)
are well-studied in the parsing literature. Before the resur-
gence of deep learning, their application is limited due to its
cubic time complexity. Recent work shows that with parallel
computation (Zhang, Zhou, and Li 2020; Rush 2020), they
can be efficiently implemented on modern hardware with
high-optimized tensor operation libraries, reducing the com-
plexity to at least quadratic time.

Traditional literature focus on parsing with full annota-
tions. Although some works study partial annotation, many
of them are limited in simulated datasets, e.g., by dropping
out certain nodes from fully-annotated trees (Zhang et al.
2017; Zhang, Li, and Zhang 2020). Rather than being sim-
ulated, we emphasize that our application of TreeCRFs on
Nested NER is a real-world example. Moreover, we note
that our approach is not limited to nested NER, and an in-
teresting future direction would be applying it for parsing
with other types of partial trees.
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Figure 2: An example symbol tree. Left: observed partial
tree (lower) and its corresponding symbol tree (upper) with
different types of nodes induced from the observed tree. The
symbol tree notation further enables us to build different
types of masks for the MASKED INSIDE algorithm. Right:
a full tree compatible with the left partial tree (lower) by re-
alizing the latent nodes from � to � (upper). An entity with
dashed lines corresponds to a realized latent node �. A par-
tial tree may correspond to different realized full trees.

Model
Our model consists of a pretrained encoder, a biaffine scor-
ing module, and a TreeCRF model. Given a sentence, we
obtain the contextualized representations from the encoder,
feed the representations to the biaffine layer to get the log
potentials for the TreeCRF model, then use the TreeCRF to
decode a constituency tree. To calculate the probability of
partial trees, we propose the MASKED INSIDE algorithm as
a simple, efficient algorithm for partial marginalization.

The Base Biaffine Scoring Architecture
Given a sentence x as a sequence of words: x =
[x1, x2, ..., xn], xi ∈ V , V is the vocabulary and n is the sen-
tence length. We use a base biaffine encoder similar to the
biaffine dependency parser in Dozat and Manning (2017) to
predict span scores:

e1, ..., en = FF(Enc(x)) (1)

sijk = eᵀi U
(1)
k ej + (ei + ej)

ᵀU
(2)
k + bk (2)

Where Enc(·) denotes a pretrained encoder, FF(·) denotes a
feed-forward network, ei denotes the contextualized embed-
ding for word xi, U

(1)
k , U (2)

k and bk are the parameters for
the biaffine scoring mechanism, and sijk means the score for
a constituent spanning from word xi to xj (inclusive) with
label k where i, j ∈ [1, 2, ..., n], k ∈ [1, 2, ..., |L|], L is the
set of labels for the constituents. We further noteL is a union
of observed labels Lo and latent labels Ll, as we will explain
later.

Partially-Observed TreeCRFs
A constituency TreeCRF is a probabilistic discriminative
model that defines a distribution over constituency trees T
given sentence x. We represent a labeled constituency tree
as a rank-3 binary tensor T where Tijk = 1 means that there
is a span from word xi to xj with label k. We use the biaffine
scores sijk as the log potentials, and the probability of a tree
is given by the Gibbs distribution:

Algorithm 1 SYMBOL TREE AND MASK CONSTRUCTION

1: Input: partial tree T , Lo observed labels, Ll latent labels.
2: . Initialize all nodes as latent �:

3:
For all i, j ∈ {1, 2, ..., n}:

T̄ [i, j] = �

∀k1 ∈ Lo,M [i, j, k1] = 0; ∀k2 ∈ Ll,M [i, j, k2] = 1
4: for i, j ← 1 to n do
5: if ∃k, Tijk = 1 then . Observe entity (i, j) with label k
6: T̄ [i, j] = •
7: M [i, j, k] = 1, ∀m ∈ L,m 6= k,M [i, j,m] = 0
8: . For all spans with crossed boundaries with (i, j):

9: ∀(i′, j′), i′ < i & i ≤ j′ < j:
T̄ [i′, j′] = ◦, ∀m ∈ L,M [i′, j′,m] = 0

10: ∀(i′, j′), i < i′ ≤ j & j < j′:
T̄ [i′, j′] = ◦, ∀m ∈ L,M [i′, j′,m] = 0

11: Return: symbol tree T̄ , mask M

s(T ) =
∑
ijk

Tijksijk (3)

p(T |x) =
exp(s(T ))

Z
(4)

Z =
∑
T

exp(s(T )) = INSIDE(s) (5)

Where Z is the partition function that sums over all possible
tree structure T , which can be computed exactly with the
Inside algorithm (Eisner 2016).

For nested NER, the annotations of trees are incomplete
so we only get partial trees. With a slight abuse of notation,
we still use T to denote partial trees, and there are locations
in T that might be 1 but filled in with 0 because it is not ob-
served (latent). To better understand the nature of different
nodes in a partial tree, we introduce a convenient symbol tree
notation T̄ given a partial tree T . T̄ is a n×nmatrix with dif-
ference types of nodes. Algorithm 1 gives details for build-
ing symbol trees T̄ (we delay the discussion about the mask
M returned from Algorithm 1 to the next section). Nodes in
T̄ can only be one of •, � or ◦. Figure 2 left gives an exam-
ple of T̄ . A • in T̄ means an observed node (a labeled entity)
in T , a ◦ means a node that is incompatible with observed
nodes because it overlaps with an observed entity (e.g., there
cannot be a latent entity [BC] because B is already in the
observed entity [AB] and the boundaries of entities cannot
cross) and a � means a latent node that is possible to be real-
ized in a full tree (e.g., there is a possible entity [ABC] with
some latent label). We note leaf nodes and the root can only
be observed • or latent �.

Given the partial tree T , a full tree T̃ compatible with T
can be constructed by realizing � to � in T̄ (Figure 2 right.
A � in the upper part denotes a realized latent span corre-
sponding to an entity with a dashed line in the lower part).
We further denote the set of labels for latent spans Ll as
opposed to the labels for observed entities Lo. We restrict
the labels for the latent spans to be within Ll. For example,
the labels for the constituents [ABC] and [DEF] are only al-
lowed to be in Ll because they are latent. This separation
would allow us to decode partial trees during inference by
dropping out entities with latent labels. Since there are mul-
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Algorithm 2 INSIDE FOR PARTIAL MARGINALIZATION

1: Input: Scores s, partial tree T and its corresponding T̄
2: for i← 1 to n do
3: if T̄ [i, i] = • then . Observed leaf
4: ∃k ∈ Lo, Tiik = 1, β[i, i, k] = exp(siik)
5: ∀m 6= k, β[i, i,m] = 0
6: else if T̄ [i, i] = � then . Latent leaf
7: ∀k ∈ Lo, β[i, i, k] = 0
8: ∀k ∈ Ll, β[i, i, k] = exp(siik)

9: for d← 1 to n− 1 do
10: for i← 1 to n− d do
11: j = i+ d
12: if T̄ [i, j] = • then . Observed
13: ∃k ∈ Lo, Tijk = 1

14:
β[i, j, k] = exp(sijk)·∑j−1

l=i

∑
k1,k2∈L β[i, l, k1]β[l + 1, j, k2]

15: ∀m 6= k, β[i, j,m] = 0
16: else if T̄ [i, j] = � then . Latent

17:
∀k ∈ Ll, β[i, j, k] = exp(sijk)·∑j−1

l=i

∑
k1,k2∈L β[i, l, k1]β[l + 1, j, k2]

18: ∀k ∈ Lo, β[i, j, k] = 0
19: else if T̄ [i, j] = ◦ then . Rejected
20: ∀k ∈ L, β[i, j, k] = 0

21: if T̄ [1, n] = • then . Observed root
22: ∃k ∈ Lo, T1nk = 1. Return s(T ) = β[1, n, k]
23: else if T̄ [1, n] = � then . Latent root
24: Return s(T ) = log(

∑
k∈Ll

β[1, n, k])

tiple ways to complete a partial tree, we use T̃ to denote the
set of full trees completed from T .

To train the TreeCRF with partial trees, we maximize the
conditional probability of p(T |x) computed by marginaliz-
ing all latent nodes � out:

log p(T |x) = s(T )− logZ (6)

s(T ) = log
∑
T̃∈T̃

exp(s(T̃ )) (7)

This objective could equivalently be viewed as the average
probability of the observed partial tree T over its all possible
compatible full trees in T̃ .

Masked Inside for Efficient Partial Marginalization
To compute the partial marginalization in equation (7), we
give a tailored Inside algorithm that supports different infer-
ence operations for different nodes. As is shown in Algo-
rithm 2, during the summation process, if the current node
is: (a) an observed •, then we evaluate (add) its correspond-
ing score (line 4 and 14); (b) a latent � whose label can only
be in Ll. So we reject (do not add) all the scores correspond-
ing to observed labels Lo (line 7 and 18), and sum over all
scores corresponding to latent labels Ll for this node (line 8
and 17); (c) a rejected ◦, we reject all scores corresponding
to this node (line 20).

However, a naive implementation of Algorithm 2 can be
inefficient with O(n3) complexity. Such inefficiency has
previously restricted the application of TreeCRFs in pars-
ing literature. More severely, Algorithm 2 does not support

Algorithm 3 MASKED INSIDE

1: Input: Scores s, mask M
2: for i← 1 to n do
3: β[i, i, k] = M [i, i, k] · exp(siik) . Masked leaf scores
4: for d← 1 to n− 1 do
5: Parallelization on i, tensor operation on l, k, k1, k2

1 ≤ i ≤ n− d; j = i+ d; k, k1, k2 ∈ {1, ..., |L|}

6:
β[i, j, k] = (M [i, j, k] exp(sijk)) · . Masked scores∑j−1

l=i

∑
k1,k2∈L β[i, l, k1]β[l + 1, j, k2]

7: Return: s(T ) = log(
∑

k∈L β[1, n, k])

batch computation over sentences, making it more imprac-
tical. Recent works show that, for the original Inside algo-
rithm, it is possible to parallelize it on modern hardware ar-
chitectures with efficient batch computation, reducing the
complexity from O(n3) to at least O(n2), and could fur-
ther be O(n log n) (Rush 2020; Zhang, Zhou, and Li 2020).
It would be ideal if we could use similar batchification
techniques for Algorithm 2, which motivates our proposed
MASKED INSIDE algorithm for efficient marginalization.

As is shown in Algorithm 3, the key insight of MASKED
INSIDE is that all if-else statements for partial summation in
Algorithm 2 can be re-written in a unified masked summa-
tion (line 3 and 6 in Algorithm 3) with a pre-computed mask
M from Algorithm 1. To be specific, in Algorithm 1: (a) for
an observed node •, we mask out all scores except the score
of its observed label (line 7), which corresponds to lines 4,
14 and 21 in Algorithm 2; (b) for a rejected node ◦, we mask
out all its scores (lines 9-10), which corresponds to line 19 in
Algorithm 2; (c) for a latent node �, we mask out the scores
for all observed labels Lo, and retain scores for all latent la-
bels Ll (line 3), which corresponds to lines 6, 16, and 23
in Algorithm 2. Applying different masks to Algorithm 3,
we can recover all if-else statements in Algorithm 2. As two
special cases, if all masks are 1 (not masked), we recover the
original Inside algorithm; if the masks are constructed from
a full tree, we recover the original bottom-up evaluation.

As an efficient alternative for Algorithm 2, the advantages
of Algorithm 3 is that it is (a) conceptually much simpler and
(b) highly parallelizable. The later allows us to fully exploit
the computational power of modern hardware architectures
(like GPUs) and highly optimized tensor operation libraries
(like Pytorch). We note that it the parallelization on i in Al-
gorithm 3 that reduces the complexity to at leastO(n2), Fur-
thermore, as an equivalent implementation to Algorithm 3,
we can apply masks to scores in the logarithm scale then
feed the masked scores to a normal Inside algorithm (rather
than multiplying the masks inside Algorithm 3):

s(T ) = MASKEDINSIDE(s,M)

= INSIDE(logM + s) (8)

p(T |x) =
exp(s(T ))

Z
(9)

In practice, we compute the masksM in the data-processing
stage. For training, by reusing existing implementations of
the Inside algorithm in highly-optimized structured predic-
tion libraries like Torch-Struct (Rush 2020), we can imple-
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ACE2004 ACE2005 GENIA
Train Dev Test Train Dev Test Train Dev Test

# sentences 7,078 859 922 7,194 969 1,047 14,836 1,855 1,855
with nested entities 2,691 290 377 2,691 338 330 3,199 362 448
# entities 22,172 2,510 3,024 24,441 3,200 2,993 46,473 5,014 5,600
# nested entities 10,080 1,086 1,410 9,389 1,112 1,118 8,337 903 1,217
avg length 20.38 20.69 20.96 19.21 18.93 17.19 30.13 29.17 30.48

Table 1: Statistics of ACE2004, ACE2005, and GENIA datasets.

ment the MASKED INSIDE with one single line of code, as
is shown in equation (8), thus significantly reducing the im-
plementation complexity required by Algorithm 2.

Regularization
We propose two regularization techniques for TreeCRFs: (a)
potential normalization, which is inspired by batch normal-
ization (Ioffe and Szegedy 2015), and (b) structure smooth-
ing, which is inspired by label smoothing (Müller, Kornblith,
and Hinton 2019). Potential normalization (PN) is simple:
we normalize the scores s to an empirical distribution of
zero mean and one variance. The difference with batch-norm
(BN) is that we apply PN at an instance-level, rather than a
batch-level. In our experiments, we observe that PN gives a
slightly better convergence.

Structure smoothing regularizes TreeCRFs by putting a
small portion of weights to nodes that are marginalized out.
Specifically, during the partial marginalization, instead of
using a zero mask that does not include the weights of re-
jected nodes, we change the mask to a small value ε

M [i, j, k] = 0→M [i, j, k] = ε for rejected ◦ (10)
This would effectively add the weights of all rejected nodes
to s(T ) with a multiplier ε. This is similar to label smooth-
ing which adds a small portion of weights to all labels other
than the target label. The reason that we call it structure
smoothing is that it not only smooths over the labels, but
also smooths over different tree structures . We further ob-
serve that structure smoothing should be based on potential
normalization for numerical stability. The implementation
of structure smoothing is still easy and aligns with previous
discussions about equation (8) as one only needs to change
the zeros in M to ε.

Training and Inference
During training, we maximize the log conditional probabil-
ity log p(T |x) efficiently computed by equation (8) and (9).
During inference, we use CKY decoding to decode a full
tree with the maximum probability. We only include nodes
whose labels are in the observed label set Lo, and dismiss
nodes whose labels are in the latent set Ll. This would allow
us to decode nested entities (partial trees) for evaluation.

Experiments
We conduct experiments on three standard benchmark
datasets. We show that our proposed approach achieves
SOTA performance. We further conduct detailed error anal-
ysis, case study, and time complexity analysis.

Datasets
We conduct experiments on the ACE2004, ACE2005 (Dod-
dington et al. 2004), and GENIA (Kim et al. 2003) datasets.
There are seven types of entities as ‘FAC’, ‘LOC’, ‘ORG’,
‘PER’, ‘WEA’, ‘GPE’, ‘VEH’ in the ACE datasets and
five types of entities as ‘G#DNA’, ‘G#RNA’, ‘G#protein’,
‘G#cell line’, ‘G#cell type’ in the GENIA dataset. The
statistics of these datasets are shown in Table 1.

Implementation Details
We use variants of BERT (Devlin et al. 2019) to encode sen-
tences. For the ACE2004 and ACE2005 datasets, we use the
bert-large-cased checkpoint. For GENIA, we use BioBERT
v1.1 (Lee et al. 2020). As words in the sentence are divided
into word pieces, we use the representation of the first piece
to represent each word after BERT encoding. The param-
eter in BERT is also trainable. We use AdamW optimizer
with the learning rate 2e-5 on ACE2004 dataset and 3e-5
on ACE2005 and GENIA dataset. The ε used for struc-
ture smoothing is 0.01 on ACE2004 dataset and 0.02 on
ACE2005 and GENIA dataset. We apply 0.2 dropout after
BERT encoding. Denote the hidden size of the encoder as h
(h = 1024 for BERT Large, and 768 for BioBERT). We
apply two feed-forward layers before the biaffine scoring
mechanism, with h and h/2 hidden size, respectively. Con-
sequently, the size of biaffine matrix is h/2 × h/2. We set
the size of latent labels Ll to 1 as in our preliminary exper-
iments we find out the performance does not differ signifi-
cantly with more latent labels.

Baselines
Below we list our baseline models with comparable settings.
We also include the results of models that use additional su-
pervision, which are not directly comparable to ours.

LSTM-CRF is a classical baseline for NER. This model
cannot solve the problem of nested entities (Lample et al.
2016).

FOFE is a span-based method that classifies over all sub-
sequences of a sentence with a fixed-size forgetting en-
coding (Xu, Jiang, and Watcharawittayakul 2017).

Transition is a shift-reduce based system that learns to con-
struct the nested structure in a bottom-up manner through
an action sequence (Wang et al. 2018).

Cascaded-CRF applies several stacked CRF layers to rec-
ognize nested entities at different levels in an inside-out
manner (Ju, Miwa, and Ananiadou 2018).
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ACE2004 ACE2005 GENIA
Model P R F1 P R F1 P R F1
LSTM-CRF (Lample et al. 2016) 71.3 50.5 58.3 70.3 55.7 62.2 75.2 64.6 69.5
FOFE(c=6) (Xu et al. 2017) 68.2 54.3 60.5 76.5 66.3 71.0 75.4 67.8 71.4
Transition (Wang et al. 2018) 74.9 71.8 73.3 74.5 71.5 73.0 78.0 70.2 73.9
Cascaded-CRF (Ju et al. 2018) - - - 74.2 70.3 72.2 78.5 71.3 74.7
SH(c=n) (Wang and Lu 2018) 77.7 72.1 74.5 76.8 72.3 74.5 77.0 73.3 75.1
ML (Fisher and Vlachos 2019) - - - 75.1 74.1 74.6 - - -
BENSC (Tan et al. 2020) 78.1 72.8 75.3 77.1 74.2 75.6 78.9 72.7 75.7
Pyramid (Jue et al. 2020) 81.1 79.4 80.3 80.0 78.9 79.4 78.6 77.0 77.8
with Pretrained LM
MGNER (ELMo) (Xia et al. 2019) 81.7 77.4 79.5 79.0 77.3 78.2 - - -
ML (ELMo) (Fisher and Vlachos 2019) - - - 79.7 78.0 78.9 - - -
ML (BERT) (Fisher and Vlachos 2019) - - - 82.7 82.1 82.4 - - -
Seq2seq (Straková, Straka, and Hajic 2019) - - 84.3 - - 83.4 - - 78.2
BENSC (BERT) (Tan et al. 2020) 85.8 84.8 85.3 83.8 83.9 83.9 79.2 77.4 78.3
Pyramid (BERT) (Jue et al. 2020) 86.1 86.5 86.3 84.0 85.4 84.7 79.5 78.9 79.2
with Additional Supervision
DYGIE (Luan et al. 2019) - - 84.7 - - 82.9 - - 76.2
Yu, Bohnet, and Poesio (2020) 87.3 86.0 86.7 85.2 85.6 85.4 81.8 79.3 80.5
BERT-MRC (Li et al. 2020) 85.0 86.3 86.0 87.2 86.6 86.9 85.2 81.1 83.8

PO-TreeCRFs (ours) 86.7 86.5 86.6 84.5 86.4 85.4 78.2 78.2 78.2
±0.4 ±0.4 ±0.3 ±0.4 ±0.2 ±0.1 ±0.7 ±0.8 ±0.1

PO-TreeCRFs Ablation Study
Change Biaffine to Bilinear 86.0 86.7 86.4 83.0 86.5 84.7 79.9 75.5 77.6
W/o. Structure Smoothing 86.1 86.4 86.2 83.5 85.8 84.6 78.7 76.5 77.6
W/o. Potential Normalization and Structure Smoothing 86.0 85.3 85.7 82.7 86.2 84.4 76.5 78.1 77.3
W/o. TreeCRFs 84.4 85.4 84.9 82.0 86.4 84.1 80.5 74.5 77.4

Table 2: Main results and ablation studies on three datasets. We report the average scores of 5 runs for main results.

SH improves LH (Katiyar and Cardie 2018) by considering
the transition between labels to alleviate labeling ambigu-
ity of hypergraphs (Wang and Lu 2018).

MGNER first applies the Detector to generate possible
spans as candidates and then applies a Classifier for the
entity type (Xia et al. 2019).

Merge and Label (ML) first merges tokens and/or entities
into entities forming nested structures and then labels en-
tities to corresponding types (Fisher and Vlachos 2019).

Seq2seq is under a encoder-decoder framework to predict
the entity one by one (Straková, Straka, and Hajic 2019).

BENSC is a span-based method that incorporates a bound-
ary detection task for multitask learning (Tan et al. 2020).

Pyramid is the state-of-the-art method without external su-
pervision. It recursively inputs tokens and regions into flat
NER layers for span representations (Jue et al. 2020).

Results
Table 2 shows the overall results on ACE2004, ACE2005,
and GENIA. We primarily compare our model with the
Pyramid(BERT) model (Jue et al. 2020), as it achieves
SOTA scores without additional supervision signals. As
we believe there are still rooms for further performance

improvements, e.g., to use a more powerful, larger en-
coder (like GPT3 Brown et al. 2020) or to use more en-
semble methods, e.g., to ensemble FLAIR (Akbik, Blythe,
and Vollgraf 2018) and other pretrained encoders, to stan-
dardize the comparison and validate the effectiveness of
TreeCRFs, we restrict the encoder to be BERT. We denote
our partially-observed TreeCRF as PO-TreeCRF. Our PO-
TreeCRF achieves 86.6, 85.4, and 78.2 scores in terms of F1

on the ACE2004, ACE2005, and GENIA datasets, respec-
tively, which achieves the state of the art F1 scores on the
ACE2004, ACE2005 dataset, and shows comparable perfor-
mance to Pyramid(BERT) on the GENIA dataset.

We further emphasize the evaluation of nested NER is not
strictly standardized and there are more or less differences
across different works. As is in Table 2, there are models that
show improvements with additional information. Specifi-
cally, DYGIE (Luan et al. 2019) uses the OntoNotes an-
notations for better coreference resolution. Yu, Bohnet, and
Poesio (2020) train and evaluate their model at the para-
graph level which gives a better coreference resolution per-
formance. Their work is under a different setting as the train-
ing and evaluation of most works are at the sentence level.
BERT-MRC (Li et al. 2020) takes annotation guideline notes
as references to construct queries, which is strong supervi-
sion and the corresponding corpus are not always easy to
obtain. As we try to align our evaluation with the majority
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 … human rights group amnesty international …  … the center for strategic and international studies in Jakarta … 

Figure 3: Inferred latent tree structure examples. Solid lines: predicted entities; dashed lines: realized latent constituents.
Although there are spans that are not that meaningful like rights group, we still observe meaningful inferred spans like for
strategic and international studies and in Jakarta.

PER LOC ORG GPE FAC VEH WEA
ρ 0.58 0.02 0.17 0.14 0.05 0.03 0.02
PER 0.93 0.00 0.07 0.05 0.01 0.03 0.00
LOC 0.00 0.72 0.00 0.02 0.05 0.00 0.00
ORG 0.02 0.02 0.77 0.00 0.02 0.01 0.00
GPE 0.00 0.06 0.03 0.84 0.03 0.00 0.00
FAC 0.00 0.02 0.01 0.00 0.70 0.03 0.00
VEH 0.00 0.00 0.00 0.00 0.01 0.67 0.00
WEA 0.00 0.00 0.00 0.00 0.00 0.01 0.84
Latent 0.02 0.15 0.08 0.05 0.12 0.15 0.10
None 0.03 0.04 0.04 0.03 0.06 0.10 0.06

Table 3: Error distribution on ACE2005. Rows: entities pre-
dicted by our model. None denotes the entities that are not
predicted. Columns: labeled entities. Numbers are normal-
ized by columns. ρ denotes the prior distribution of labels.

of literature, the models mentioned above are not directly
comparable to our method.

Ablation Study
Table 2 lowest rows show the results of ablation study. We
note that structure smoothing should be based on potential
normalization otherwise the model does not converge. By
without TreeCRFs we mean to use the biaffine scorer and
normalize the scores locally, similar to Yu, Bohnet, and Poe-
sio (2020). Not using TreeCRFs would lead to the largest
performance drop which demonstrates the effectiveness of
global normalization with TreeCRFs. We also observe per-
formance drop when we do not use potential normalization
and structure smoothing which validates their effectiveness
for regularizing TreeCRFs.

Error Analysis
In our experiments, we find out the recall for unlabeled spans
is 96.3 on ACE2005, which means that the spans for most
entities are correctly covered, and it is their labels that are
more difficult to predict. To see which labels are more prone
to errors, we report the error distribution in Table 3. We see
that the VEH, FAC, and LOC are the top three classes prone
to errors as they are extremely imbalanced (0.03, 0.05, and
0.02 respectively), and many of them are predicted as latent.
This indicates that a future direction is to adapt the TreeCRF
to imbalanced labels. We leave it to future work.

Case Study
Figure 3 gives examples of inferred latent tree structures
compatible with predicted entities. As the learning of latent

Method Inside (Vanilla) MASKED INSIDE Biaffine
GPU Time 14m58s 3m20s 2m27s
CPU Time 2h5m 24m 22m10s
Complexity O(n3) O(n log n) O(1)

Table 4: Time for training one epoch on ACE2004. GPU
Nvidia P100, CPU Intel 2.6Hz quad-core i7.

structures is completely unsupervised, we may not expect
that the inferred subtrees should align with human intuition,
and we do observe some spans that are not that interpretable
like rights group. However, we still observe some meaning-
ful constituents like for strategic and international studies
and in Jakarta, which indicates that our approach is indeed
learning meaningful tree structures to a certain extent. We
note there are also related unsupervised grammar induction
works with TreeCRFs (Kim et al. 2019; Kim, Dyer, and
Rush 2019), and we leave the application of our model to
grammar induction to future work.

Time Complexity
Table 4 shows the speed for training different models. We
primarily focus on GPU time, but also report CPU time. The
base Biaffine model is similar to the model in Yu, Bohnet,
and Poesio (2020) which uses locally normalized scores, in-
stead of using a TreeCRF. This model eliminates the com-
plexity of the Inside algorithm and can be computed inO(1)
time. which can be viewed as an upper bound of time com-
plexity. Thanks to the masking mechanism that is compati-
ble with parallelization and tensor operations, our MASKED
INSIDE is significantly quicker than a vanilla implementa-
tion of Inside for partial marginalization, and is close to the
base Biaffine in practice.

Conclusion
In this work, we propose to view nested entity structures as
partially observed constituency trees, and model it with par-
tially observed TreeCRFs. We use a pretrained encoder and a
biaffine scoring module to predict the log potentials, then use
the TreeCRF to decode the entities. We give a detailed dis-
cussion of different nodes within partial trees and their cor-
responding inference operations during partial marginaliza-
tion. To facilitate efficient computation with modern hard-
ware and tensor libraries, we propose the MASKED INSIDE
algorithm that is conceptually simple and practically effi-
cient. We demonstrate the effectiveness and efficiency of our
approach with extensive experiments.
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