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Abstract

A majority of research interests in irregular (e.g., nested or
discontinuous) named entity recognition (NER) have been
paid on nested entities, while discontinuous entities received
limited attention. Existing work for discontinuous NER, how-
ever, either suffers from decoding ambiguity or predicting us-
ing token-level local features. In this work, we present an in-
novative model for discontinuous NER based on pointer net-
works, where the pointer simultaneously decides whether a
token at each decoding frame constitutes an entity mention
and where the next constituent token is. Our model has three
major merits compared with previous work: (1) The pointer
mechanism is memory-augmented, which enhances the men-
tion boundary detection and interactions between the current
decision and prior recognized mentions. (2) The encoder-
decoder architecture can linearize the complexity of struc-
ture prediction, and thus reduce search costs. (3) The model
makes every decision using global information, i.e., by con-
sulting all the input, encoder and previous decoder output
in a global view. Experimental results on the CADEC and
ShARe13 datasets show that our model outperforms flat and
hypergraph models as well as a state-of-the-art transition-
based model for discontinuous NER. Further in-depth analy-
sis demonstrates that our model performs well in recognizing
various entities including flat, overlapping and discontinuous
ones. More crucially, our model is effective on boundary de-
tection, which is the kernel source to NER.

Introduction
Named Entity Recognition (NER), which aims to detect the
span as well as the semantic category of an entity mention
from text, has long been a fundamental task in natural lan-
guage processing (NLP) (Florian et al. 2004; Sutton, McCal-
lum, and Rohanimanesh 2007; Collobert et al. 2011; Lample
et al. 2016; Yu, Bohnet, and Poesio 2020). Most traditional
methods formalize NER as a sequence labeling task (Laf-
ferty, Mccallum, and Pereira 2001; Collobert et al. 2011;
Lample et al. 2016), assigning a single label to each token.
Those methods, however, only solve flat NER where a token
can only be assigned to one mention, while they are inca-
pable of handling irregular NER where entity mentions may
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tolerate the malformed knee with inflammation and cramps .

I already have anemia due to the gastric bleed .
(a) Standard NER

(b) Irregular NER
e1 e2

e3 e4
e5

Figure 1: Examples for standard NER (a) and irregular NER
(b). Different entity mentions (ei) are in distinct colors. e1
and e2 are regular entity mentions. e3 overlaps with two dis-
continuous mentions e4 and e5 at the token “knee”.

be nested, overlapped or discontinuous (Lu and Roth 2015;
Li et al. 2018; Wang and Lu 2019).

Nested NER (Kim et al. 2003), as one of common irregu-
lar NER problems, has drawn much research attention (Kim
et al. 2003; Alex, Haddow, and Grover 2007; Finkel and
Manning 2009; Lu and Roth 2015; Katiyar and Cardie 2018;
Yu, Bohnet, and Poesio 2020). Yet discontinuous NER,
where entities may consist of a discontinuous sequence of
words, has been neglected by most of previous work. Dis-
continuous NER is ubiquitous in many practical scenarios,
especially in biomedical and clinical domain (Tang et al.
2013; Xu et al. 2015; Tang et al. 2018). Another character
of discontinuous entity mentions is that there certain words
may be overlapped, and thus recognizing discontinuous en-
tities also needs to handle the nested mentions. In Figure 1,
we exemplify some cases of irregular entity mentions. For
example, the mentions e4 and e5 are discontinuous, and they
share a common word “knee” with the mention e3. Appar-
ently, discontinuous NER poses more challenges than tra-
ditional NER (Muis and Lu 2016; Wang and Lu 2019; Dai
et al. 2020).

Existing works for discontinuous NER can be roughly
divided into several categories. The first one is still based
on the sequence labeling architecture but extending the
BIO label scheme to more complex label schemes such
as BIOHD (Tang et al. 2013) to represent discontinuous
and overlapping structures (Xu et al. 2015; Metke-Jimenez
and Karimi 2016; Tang et al. 2018). Other approaches aim
to build more effective inference systems by modeling the
structure as a whole graph, e.g. such as hypergraph models
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(Muis and Lu 2016), the two-stage method (Wang and Lu
2019) and the transition system (Dai et al. 2020). Neverthe-
less, label-scheme-extension approaches (Tang et al. 2013)
or hypergraph models (Muis and Lu 2016) may suffer from
decoding ambiguity, while the two-stage method (Wang and
Lu 2019) disables the interactions between the entity seg-
ment recognition and combination stages. The current state-
of-the-art transition system (Dai et al. 2020) may suffer from
the long-distance dependency issue (McDonald and Nivre
2011; Kurita and Søgaard 2019) due to its local and incre-
mental decision-making mechanism.

In this work, we present a novel solution for discontinu-
ous NER1 using pointer networks (Vinyals, Fortunato, and
Jaitly 2015), which have been demonstrated to be effective
for a wide range of NLP tasks (See, Liu, and Manning 2017;
Ma et al. 2018; Li, Ye, and Shang 2019). As shown in Fig-
ure 2, we establish our model based on the encoder-decoder
architecture, where the decoder is equipped with a pointer
network to indicate whether a token at each decoding frame
constitute a mention and where the next constituent token is.

Unlike previous methods that exclusively make token-
level predictions, our pointer-network-based architecture
makes decisions by consulting all the input elements in a
global view. Moreover, our model linearizes the complex-
ity of structure prediction, resulting in a significant decrease
in search costs compared with previous methods. Last but
not least, we believe that the most difficult problem for dis-
continuous NER lies in recognizing the complex boundaries
of entities. We thus propose a memory-augmented pointer
mechanism (cf. Figure 3), where each pointer decision can
be made based on prior recognized mentions cached in a
memory, allowing to better capture informative cues for the
boundary detection of the current partial mention.

We evaluate our model on two benchmark datasets for
discontinuous NER, i.e., CADEC (Karimi et al. 2015) and
ShARe13 (Pradhan et al. 2013). Results show that our
model achieves much better performance than all the base-
lines (Muis and Lu 2016; Tang et al. 2018; Wang and Lu
2019; Dai et al. 2020), demonstrating its effectiveness on
recognizing discontinuous mentions as well as regular and
overlapped mentions. Further analyses reveal that our model
is more powerful on detecting mention boundaries. We sum-
marize the contributions of this work and the strengths of our
method as follows:
• We are the first to introduce a pointer-network-based

model for discontinuous NER. Our model can avoid mak-
ing decisions only based on local information and fully uti-
lize the global information via the pointer network (Vinyals,
Fortunato, and Jaitly 2015).
• Benefiting from the linear complexity of the encoder-

decoder architecture (Sutskever, Vinyals, and Le 2014),
our model has a lower decoding complexity than those of
hypergraph-based methods (Muis and Lu 2016; Wang and
Lu 2019). In addition, it can detect both regular and irregu-
lar entity mentions in an entire end-to-end fashion without
any constraint used in previous work (Muis and Lu 2016;

1Our system also support the recognition of regular, nested or
overlapped entities.

Wang and Lu 2019).
• We propose a memory-augmented pointer mechanism

to encourage the current pointer to interact with prior recog-
nized mentions, in order to effectively capture informative
clues for improving the boundary detection.
• Our framework wins state-of-the-art performances on

two benchmark datasets, which demonstrates that it is effec-
tive for both regular and irregular NER.

Related Work
Named Entity Recognition (NER) as the fundamental NLP
task has drawn much research attention (Florian et al. 2004;
Sutton, McCallum, and Rohanimanesh 2007; Collobert et al.
2011; Lample et al. 2016; Yu, Bohnet, and Poesio 2020).
Traditional NER (i.e., flat or regular NER) casts the task as
sequential labeling, i.e., assigning each token with a label
(e.g., BIO tagging scheme). On the other hand, there can be
irregular NER, which cannot be solved by those flat NER
methods. One of the common tasks for irregular NER is
nested NER, which aims to extract the overlapping entities
(Kim et al. 2003; Alex, Haddow, and Grover 2007; Finkel
and Manning 2009; Lu and Roth 2015; Katiyar and Cardie
2018; Fei, Ren, and Ji 2020a,b) Nevertheless, another im-
portant task for irregular NER, namely discontinuous NER
has not received much attention yet (Pradhan et al. 2013). In
addition, since discontinuous entity mentions are often par-
tially overlapped with each other, discontinuous NER covers
nested NER but is more challenging to some extent (Tang
et al. 2013).

Existing methods for discontinuous NER can be mainly
categorized into two classes: label-extension methods and
hypergraph-based methods. One representative work of
label-extension methods is proposed by Tang et al. (2013),
in which the BIO label scheme is extended to the BIOHD
label scheme with special labels to represent discontinu-
ous structures. This approach is then widely extended by
several other studies (Xu et al. 2015; Metke-Jimenez and
Karimi 2016; Tang et al. 2018). By contrast, hypergraph-
based methods (Lu and Roth 2015) cast the task as structural
prediction, detecting the combination of mentions within
a sentence. For example, Muis and Lu (2016) proposed
a hypergraph model for extracting the discontinuous and
overlapping mentions. Unfortunately, all the above meth-
ods suffer from more or less decoding ambiguity (Tang
et al. 2013; Muis and Lu 2016). Recently, Wang and Lu
(2019), introduce a two-stage method, where the first stage
is hypergraph-based entity segment recognition and the sec-
ond is relation-based segment combination. Because such
design makes their method not end-to-end, two separated
stages may result in interaction deficiency.

The latest attempt dealing with discontinuous NER is Dai
et al. (2020). They designed a transition-based model for ex-
tracting irregular mentions in an end-to-end manner, achiev-
ing higher performance than prior models. However, there
are two main limitations in their model. First, due to the na-
ture of transition-based systems (i.e., incremental decision-
making by local features), their model may suffer from the
long-range dependency issue (McDonald and Nivre 2011;
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Figure 2: The main architecture of our model, which includes an input layer and a transformer layer in the encoder side, and a
LSTM-based (memory-augmented) pointer network in the decoder side. The decoding process starts with <S>. If the pointer
network points to <NEXT>, the next token will be the input of the decoder (e.g., if <S>→<NEXT>, the next input is “tolerate”).
If the pointer network points to a real word (e.g., “malformed”→“knee”), the input token and pointed token belong to an entity
mention (e.g., “malformed knee”). If the pointer network points to <EOM> (e.g., “knee”→<EOM>), the input token is the end
token of a mention. Through such method, our model in this case can decode out three entity mentions by the following pointers:
“malformed”→“knee”→<EOM>, “knee→“inflammation”→<EOM> and “knee”→“cramps”→<EOM>, respectively.

Kurita and Søgaard 2019). Second, limited by the design-
ing of the shift-reduce system, their model may fail to detect
some irregular mentions. For example, their model can si-
multaneously recognize e4 and e5 in Figure 1 but not e3 or
e4 simultaneously. In this work, we present a better solution
for fully end-to-end discontinuous NER using pointer net-
works. Our model is able to make predictions in a global
view, and meanwhile recognize all types of irregular entity
mentions without any constraint.

Framework
Method Overview
Given an input sentence s = {w1, · · · , wn}, our system out-
puts a list of mentions Y = {y1, · · · , ym}, where each men-
tion yk = [a, · · · , b] (1 ≤ a < b ≤ n) is represented as a list
of ordered token indexes.2 We design two sentinel tokens,
namely <EOM> (indicating the end of the current mention)
and <NEXT> (indicating the next token will be the decoder
input), to insert into the head and tail of the sentence s.

We adopt an encoder-decoder paradigm (Sutskever,
Vinyals, and Le 2014), which ensures the flexibility that
the output sequence can be variable-length. In Figure 2,
we illustrate the overall encoder-decoder framework of our
model. First, input tokens are projected into vectorial repre-
sentations. Then the encoder generates the contextual rep-

2Following (Dai et al. 2020), only entity mention boundaries
are necessary for discontinuous NER, while entity mention types
are not required. Note that it is convenient for our model to support
entity mention type recognition by adding a softmax classifier on
the mention representation layer.

resentation for each token. Afterwards, the decoder takes a
special token <S> as input at the first-time frame and all the
tokens in the input sentence s at other time frames sequen-
tially. During decoding, the pointer of the decoder will direct
to a token wt in the input sentence s.3

• If wt is a word token (not the sentinel tokens such as
<EOM> or <NEXT>), our system will create a partial men-
tion if there is no previous created mention. When there
has already existed a created mention yk, our system will
add the index t of the token wt into yk. At the next decod-
ing frame, the decoder input will become wt.

• If wt is <EOM>, the current mention yk will be finished
and stored into the decoding output set Y . At the next
decoding frame, the decoder input will be <EOM>.

• If wt is <NEXT>, it means that wt does not belong to any
mention. Therefore the decoder input for the next decod-
ing frame will become 1) the next token of the input token
where the resulting pointer is <NEXT>, or 2) the second
token of the recognized mention.

• The decoding procedure will terminate if all the tokens
in the input sentence have been consumed. Finally, the
mentions stored in Y are used as decoding outputs.

Input Representation and Contextual Encoder
The input representations are derived from three sources.
We first obtain the vectorial representation xw

t of each word
wt from pre-trained embeddings (Bojanowski et al. 2017).
We then represent the absolute position information (Zeng
et al. 2014) for each word as an embedding xp

t . Moreover,

3The pointer for <S> is forced to direct to <NEXT>.
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a convolutional neural network (CNN) is used to encode the
characters inside each word into a character-level word rep-
resentation xc

t . Finally, the total input representation is the
concatenation of all above representations:

xt = [xw
t ;x

p
t ;x

c
t ] . (1)

To encode contextual information into word representations,
we leverage the Transformer (Trm) (Vaswani et al. 2017)
that has shown to be prominent on learning the interaction
between each pair of input words, leading to better contextu-
alized word representations. Formalized, the input and out-
put of the Transformer encoder can be defined as:

h1, · · · ,hn = Trm(x1, · · · ,xn) . (2)

Pointer-Network-Based Decoder
Backbone Decoder We employ the LSTM (Hochreiter
and Schmidhuber 1997) as the decoder of our model. At
each decoding time frame i, the LSTM cell produces the
decoding representation based on three parts of inputs:

si = LSTM(xi ⊕ hi ⊕ si−1) , (3)
where⊕ refers to the concatenating operation. xi and hi are
the corresponding input token representation and encoder
representation. si and si−1 are the current and last decod-
ing representation, respectively.

Basic Pointer Mechanism The basic pointer mechanism
in our framework is based on the vanilla pointer network
(Vinyals, Fortunato, and Jaitly 2015). Technically, given the
encoder representations [h1, · · · ,hn] of input tokens and
the current decoding representation si, we calculate and nor-
malize the relatedness score between si and each hj :

vij = Score(si,hj),

= Tanh(sTi Whj +UT
1 si +UT

2 hj + b) ,

oij = Softmax(vij) , j = [1, · · · , n] .
(4)

We then take the position j∗ with the maximal relatedness
probability oij∗ as the output of the i-th decoding, formal-
ized as:

Pi = j∗ = Argmax
1≤j≤n

(oi1, ..., oin) , (5)

where Pi denotes the position that the current pointer di-
rects to. Note that since each pointer decision is made by
consulting all input tokens, our model can utilize the global
information.

Memory-Augmented Pointer Mechanism
Overview To enhance the boundary detection for NER,
we introduce a memory-augmented pointer mechanism as
illustrated in Figure 3. Our motivation is to enrich the input
of the pointer network by considering the prior recognized
mentions. Specifically, we build a memory to store the rep-
resentations of prior recognized mentions and encourage the
current pointer to make interactions with the representations
in the memory.

Mention Representation For each mention yk =
[a, · · · , b] (1 ≤ a < b ≤ n), we can construct its repre-
sentation rk as below:

rk = Att([ha, · · · ,hb])⊕Att([sa, · · · , sb]) , (6)
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Figure 3: Illustration of our memory-augmented pointer
mechanism. The orange bar in the histogram denotes the
current pointing.

where Att(·) refers to the attention mechanism (Bahdanau,
Cho, and Bengio 2015; Luong, Pham, and Manning 2015):

µi = vTTanh(Whi) , (7)
αi = Softmax(µi), i = [a, · · · , b] , (8)

Att([ha, · · · ,hb]) =
∑
αihi , (9)

where v and W are learnable parameters. Note that no mat-
ter a mention is partially or fully recognized, we can create
its representation though Equation 6. For a recognized men-
tion yk = [a, · · · , b], we store its representation rk into the
memory M . For a partial mention yk = [a, · · · , i] that starts
at a and ends at i, we define its representation as r′k,i.

Updating Representations via Memory With the mem-
ory that stores the representations of prior recognized men-
tions, namely M = [r1, · · · , rk−1], the current partial men-
tion representation r′k,i can make interactions with the rep-
resentations in the memory as below:

um = Tanh(rTmWr′k,i) , (10)

βm = Softmax(um) , m = [1, · · · , k − 1] , (11)

r†i =
∑k−1

m=1
βmr′k,i , (12)

where W is the weight matrix, um and βm are the attention
score and probability for the m-th mention in the memory,
and r†i is the updated representation for the partial mention
yk = [a, · · · , i] that exactly ends at the position i. Since r†i
can be aligned with the decoding representation si at the po-
sition i, we could replace si with r†i in Equation 4 as below:

vij = Score(r†i ,hj) . (13)
With the memory-augmented pointer mechanism, the

model may capture informative cues for the boundary detec-
tion of the current partial mention. For example, in Figure
3, the pointer at the position “knee” will not direct to “in-
flammation” again, if the pointer module knows that there
exists a recognized mention “knee inflammation”. Thus,
such awareness helps the pointer direct to the correct word
“cramps”.
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Dataset Document Sentence Mention Discontinuous Mention

#All #Train #Dev #Test #All Avg.Len. #All Avg.Len. #All #Ovlp. Avg.Itv.Len.

CADEC 1,250 875 187 188 7,597 14.2 6,318 2.7 675(10.7%) 594(88.0%) 3.3
ShARe13 298 180 19 99 18,767 12.9 11,161 1.8 1,090(9.7%) 508(46.6%) 3.0

Table 1: Dataset statistics. ‘#’ denotes the amount. ‘Ovlp.’ denotes the overlapping mentions among the discontinuous ones.
‘Avg.Itv.Len.’ means the averaged interval length of the spans in discontinuous mentions.

Training Details
Training Objective For each sentence s={w1, · · · , wn},
our training target is to minimize the negative log-likelihood
losses with regards to the corresponding gold pointers, for-
malized as:

L = − 1

N

N∑
i=1

n+2∑
j=1

ôij logoij , (14)

where N is the number of the decoding frame for the sen-
tence s, ôij and oij are the gold and predicted pointer prob-
abilities (cf. Equation 4) at the i-th decoding frame. Note
that there are n + 2 candidates for the pointer at each de-
coding frame, since we add two sentinel tokens <EOM> and
<NEXT> to the input sentence.

Teacher Forcing and Dynamic Sampling Following pre-
vious encoder-decoder work, we adopt the teacher forcing
strategy (Williams and Zipser 1989), maximizing the like-
lihood of each predicted pointer under the gold standard.
That is, we feed the gold-standard input into the decoder
at each decoding step. During inference, the input for the
next decoding step will come from the last prediction. How-
ever, since the model may produce incorrect predictions, the
decoder inputs during training and inference are inconsis-
tent, thus yielding biases between training and inference. We
therefore employ the dynamic sampling strategy (Wang et al.
2017; Yu, Zhang, and Fu 2018) to alleviate this problem. We
define an initial threshold γ ∈ [0, 1] which gradually de-
creases within the training process. At each decoding step,
we generate a random value τ ∈ [0, 1]. If τ is less than γ,
the input will be the gold standard, and otherwise the input
will be the predicted one. Thus, the training process can be
gradually changed from a “gold-biased” process towards a
“predicted-biased” process.

Experiment
Setup
Datasets and Resources We experiment on two datasets
for discontinuous NER, namely CADEC (Karimi et al.
2015) and ShARe13 (Pradhan et al. 2013), both of which
are derived from biomedical or clinical domain documents.
These datasets contain about 10% discontinuous entity men-
tions, and a large proportion of discontinuous mentions are
overlapped with each other. In Table 1, we present the de-
tailed statistics of two datasets. In terms of word represen-
tations, we use the pre-trained Fasttext embeddings (Bo-
janowski et al. 2017). Moreover, we use the contextualized
word embeddings, ELMo (Peters et al. 2018), which is also

used in our baseline (Dai et al. 2020). We further employ
BioBERT (Lee et al. 2020; Fei et al. 2020), a BERT model
(Devlin et al. 2019) pre-trained using biomedical text.

Hyper-Parameters The dimensions of word embeddings,
position embeddings and character representations are 300,
30 and 50 respectively. We use the 3-layer Transformer with
a 768-dimension hidden size as encoder. The dimensions of
all the other intermediate representations are set as 300. The
kernel sizes of CNN are [3,4,5]. We adopt the Adam opti-
mizer with an initial learning rate as 1e-4. The mini-batch
size is set as 16. Moreover, the initial value of γ is set as
0.85 according to the development experiments.

Baselines and Evaluation Metrics We make compar-
isons with three types of prior approaches: (1) Flat NER
(Lample et al. 2016), which uses the BiLSTM-CRF model
and BIO label scheme. Thus, it does not support discontin-
uous NER. We follow Dai et al. (2020), replacing a dis-
continuous mention with the shortest span that fully covers
it and merging overlapping mentions into a single mention
that covers them all. (2) BIOHD labeling methods (Metke-
Jimenez and Karimi 2016; Tang et al. 2018), which also
uses the BiLSTM-CRF model but extends the BIO label
scheme to the BIOHD label scheme. (3) Hypergraph-based
approaches (Muis and Lu 2016; Wang and Lu 2019). (4)
Transition-based approach (Dai et al. 2020).

Precision (P), recall (R) and F1 scores are used as the
measurement metrics. We run each experiment for 5 times
and report the averaged value. We denote our model with
the basic pointer as Ptr, and the one with the memory-
augmented pointer as MAPtr.

Results and Discussion
Main Results In Table 2, we find that when flattening
these irregular mentions into flat ones, the BiLSTM+CRF
model can achieve competitive results compared with the
discontinuous NER models. This implies that irregular men-
tions bring more difficulties on boundary detection. More-
over, we find that the BIOHD labeling methods can obtain
better recall, the hypergraph methods achieve higher preci-
sion, and the transition model obtains better overall results
with the help of ELMo or BioBERT. Furthermore, our mod-
els can significantly outperform all these baselines. Espe-
cially, our memory-augmented pointer model (MAPtr) wins
the best performances on all metrics, i.e., with 64.8 F1 % and
76.3% F1 on CADEC and ShARe13 datasets. We next ex-
amine the effects in the help of contextual pre-trained word
representation. Compared with Dai et al. (2020), we see that
their model receives the biggest improvement with ELMo,
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CADEC ShARe13 Decode
word/secP R F1 P R F1

• Flat NER BiLSTM+CRF 65.3∗ 58.5∗ 61.8∗ 78.5∗ 66.6∗ 70.0∗ 1,432

• BIOHD Labelling Metke-Jimenez and Karimi (2016) 64.4∗ 56.5∗ 60.2∗ - - - -
Tang et al. (2018) 67.8∗ 64.9∗ 66.3∗ 78.9 69.2 73.7 -

• Graph Modeling Muis and Lu (2016) 72.1∗ 48.4∗ 58.0∗ 83.9∗ 60.4∗ 70.3∗ 540
Wang and Lu (2019) 71.8 50.2 60.1 82.0 68.6 73.7 318

• Transition System
Dai et al. (2020) 63.2 56.8 61.3 76.5 70.2 74.0 727

+ELMo 68.9∗ 69.0∗ 69.0∗(+7.7) 78.9∗ 73.0∗ 77.7∗(+3.7) 705
+BioBERT 69.0 67.8 68.4 (+7.1) 79.3 71.7 75.6 (+1.6) 680

• Ours

Ptr 71.1 54.5 61.9 82.2 69.4 74.7 1,050
MAPtr 73.5 59.8 64.8 84.7 72.6 76.3 983

+ELMo 74.3 70.6 71.0 (+6.2) 86.7 75.9 79.5 (+3.2) 920
+BioBERT 75.5 71.8 72.4 (+7.6) 87.9 77.2 80.3 (+4.0) 887

Table 2: Main results. The values with ∗ are retrieved from Dai et al. (2020) and others are based on our implementations.
The values above underlines are the best results without using contextualized word representations. In the brackets are the
improvements by contextualized word representations.

CADEC ShARe13

Ours(MAPtr) 64.8 76.3
w/o Char 64.1 76.0
w/o Position 63.2 75.4
w/o Memory-augmented Ptr 61.9 74.7
BiLSTM encoder 62.2 75.0
w/o Dynamic sampling 64.0 75.8

Table 3: The results (F1) of ablation studies.

CADEC ShARe13

P R F1 P R F1
Tang et al. (2018) 60.0 32.6 51.2 53.6 40.5 46.3
Muis and Lu (2016) 69.5 43.2 53.3 82.3 47.4 60.2
Wang and Lu (2019) 67.2 49.6 58.2 81.0 55.7 61.8
Dai et al. (2020) 53.2 50.1 52.7 67.2 53.8 56.3

+ELMo 66.5 64.3 65.4 70.5 56.8 62.9
+BioBERT 64.2 58.3 62.4 71.2 54.4 61.0

Ours(MAPtr) 70.6 53.5 61.2 80.4 56.1 62.4
+ELMo 71.3 65.8 66.7 82.6 58.3 63.8
+BioBERT 72.2 66.3 68.0 83.1 60.4 64.8

Table 4: Results on sentences that have at least one discon-
tinuous mention.

while our model benefits the most from BioBERT. Last but
not least, our models show higher decoding speeds.

Ablation Studies We use MAPtr as the target for abla-
tion studies. As shown in Table 3, both character represen-
tations and position embeddings are effective, but the lat-
ter ones are more prominent since intuitively the positions
are more informative for pointer networks. After we re-
move the memory-augmented pointer mechanism, the per-
formance drops drastically. This suggests that the memory-
augmented pointer mechanism is very crucial for our model
and task. Besides, when replacing the Transformer encoder
with BiLSTM, there are considerable drops in F1. Last, we
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Figure 4: Error rates for boundary detection on ShARe13.

observe that our model also benefits from the dynamic sam-
pling strategy.

Effectiveness for Discontinuous NER Following Dai
et al. (2020), we experiment on the subset of the origi-
nal test set where each sentence has at least one discon-
tinuous mention. As shown in Table 4, we see some dis-
tinct trends against those in Table 2. First, the graph mod-
eling methods show better performances than the BIOHD
labeling method (Tang et al. 2018). Besides, the transi-
tion method (Wang and Lu 2019) obtains higher F1 scores
among all baselines. Notably, our model achieves the best
results against all baselines in terms of all (nearly) metrics.

Effectiveness for Boundary Detection It is a long-
reached understanding that boundary detection is the most
difficult part for NER. Since the boundaries of irregular
mentions are more complex, discontinuous NER entails
more troubles. We now explore the abilities of our model
and the baselines on detecting the boundaries in two lev-
els as shown in Figure 4. The span-level boundary refers to
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CADEC ShARe13

Not Ovlp. Ovlp. Not Ovlp. Ovlp.
Tang et al. (2018) 0.0 15.7 8.9 24.0
Muis and Lu (2016) 0.0 23.8 33.4 30.6
Wang and Lu (2019) 8.3 27.0 31.5 34.8
Dai et al. (2020) 0.0 25.6 37.2 22.7
Ours(MAPtr) 20.2 33.3 53.2 41.9

Table 5: Results (F1) of recognizing overlapped (Ovlp.) and
non-overlapped mentions among discontinuous ones.

the inner-boundaries of the continuous spans within a dis-
continuous mention, and the mention-level boundary means
the boundaries of an entire discontinuous mention. Both of
them contains left and right boundaries, and the latter also
contains the boundaries of those spans in the middle of a
discontinuous mention, denoted as “Avg.Middle”.

In Figure 4, we observe that both of our models have
lower error rates on different types of boundary evalua-
tions. Particularly, MAPtr prominently reduces the error
rates, which explains its higher performances. Besides, we
find that for both types of boundary evaluations, the accu-
racy for right boundary detection are lower than that for
left boundary detection. In the span-level boundary evalua-
tion, all baselines are almost in the same level, while our Ptr
model achieves slightly lower error rates. For the mention-
level boundary evaluation, we find that the baselines (Wang
and Lu 2019; Dai et al. 2020) achieve higher accuracy in the
middle or right boundary detection.

Effectiveness for Overlapped NER In CADEC and
ShARe13, there are 88.0% and 46.6% discontinuous men-
tions overlapped with each other. We now examine the influ-
ences of discontinuous and overlapping structures for mod-
els In Table 5, we find that, in the CADEC dataset, the
recognition for overlapped mentions is more successful than
that for non-overlapped ones. Most of the baselines can-
not recognize any non-overlapped mention, but our model
achieves a much higher F1. For the ShARe13 dataset, most
of the models can recognize certain overlapped and non-
overlapped mentions. However, our model still shows the
best overall results.

Impact of Discontinuous Mention Intervals We study
the impact of interval lengths for discontinuous mentions.
As shown in Figure 5, the trends of line graphs for two
datasets are distinct. For the CADEC dataset, the F1s for
recognizing the mentions with the interval length 2 are uni-
versally higher. By contrast, for the ShARe13 dataset, the
shorter the interval lengths are, the higher the performances
become. In addition, our MAPtr model wins the best perfor-
mance against all baselines under any setting.

Case Study for Pointer Visualization To understand the
working mechanism of the pointer network, we select a case
and visualize the pointer distribution at each decoding frame
in Figure 6. The sentence contains four overlapped men-
tions: “legs started going numb”, “legs started tingling”,
“arms started going numb”, “arms started tingling”, which
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Figure 6: A case study for pointer visualization. Continuous
words in red constitute a mention.

are all recognized successfully. Figure 6 shows that all
the correct positions have the largest pointer weights. The
pointer can correctly detect all the boundaries of each text
span within a discontinuous mention. For example, given the
input “legs”, the pointer directs to “started” as the next com-
ponent, followed by “going” and “numb”.

The visualization also partially reveals the effectiveness
of the memory-augmented pointer mechanism. For instance,
when detecting “legs started tingling” with the current de-
coding input “started”, our model points to the correct word
“tingling” rather than “going”, by consulting the prior rec-
ognized mention “legs started going numb” in the memory.
Furthermore, we can see that the word “going” receives a
much lower pointer weight than that of “tingling”.

Conclusion
We present a pointer-network-based model for discontinu-
ous entity mention recognition. Unlike prior methods, our
framework makes each decision by consulting all the input
elements and thus benefits from global information. More-
over, our framework is able to detect discontinuous, over-
lapped and flat entity mentions in an end-to-end fashion
simultaneously. We further propose a memory-augmented
pointer mechanism to enhance boundary detection of entity
mentions. Experimental results on two benchmark datasets
show that our model outperforms all previous state-of-the-
art models. Further in-depth analyses show that our pro-
posed mechanisms are effective for various NER problems.
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