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Abstract

Machine Translation Quality Estimation (QE) is a task of pre-
dicting the quality of machine translations without relying on
any reference. Recently, the predictor-estimator framework
trains the predictor as a feature extractor, which leverages the
extra parallel corpora without QE labels, achieving promis-
ing QE performance. However, we argue that there are gaps
between the predictor and the estimator in both data qual-
ity and training objectives, which preclude QE models from
benefiting from a large number of parallel corpora more di-
rectly. We propose a novel framework called DirectQE that
provides a direct pretraining for QE tasks. In DirectQE, a gen-
erator is trained to produce pseudo data that is closer to the
real QE data, and a detector is pretrained on these data with
novel objectives that are akin to the QE task. Experiments on
widely used benchmarks show that DirectQE outperforms ex-
isting methods, without using any pretraining models such as
BERT. We also give extensive analyses showing how fixing
the two gaps contributes to our improvements.

Introduction
Evaluating the results of Machine Translation (MT) usually
requires human translations as references, which are expen-
sive to obtain (Papineni et al. 2002; Denkowski and Lavie
2014). Quality Estimation (QE) aims to directly predict the
quality of translations without relying on any reference. An
example is shown in Table 1.

After those methods relying on hand-crafted features (Ko-
zlova, Shmatova, and Frolov 2016; Sagemo and Stymne
2016), neural QE approaches show promising achievements
(Chen et al. 2017; Shah et al. 2016; Abdelsalam, Bojar, and
El-Beltagy 2016). Because labeled QE data is hard to obtain
and often limited in size, it is natural to transfer bilingual
knowledge from parallel data of the MT tasks (Kepler et al.
2019). One well-known framework for this knowledge trans-
fer is the predictor-estimator framework (Kim, Lee, and Na
2017).

In the predictor-estimator framework, a predictor is
trained on parallel data to extract bilingual features. The
training objective is to predict one target token given the
source sentence and the rest tokens in the reference (Ke-
pler et al. 2019; Kim et al. 2019). Then, an estimator will
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Source subsequently , each method calls the
superclass version of itself .

Translation
anschließend wird in jeder Methode
die übergeordnete Superclass-Version
von selbst aufgerufen .

HTER 0.2727

Table 1: An example of QE. Word-level QE assigns labels
to each token/word. For example, some tokens are tagged as
‘BAD’ (marked underline), and the rest are tagged as ‘OK’.
Sentence-level QE labels the whole sentence with a single
quality score, representing the effort to correct the transla-
tion manually.

be trained on the amount-limited real QE data to make qual-
ity estimations, based on features (Fan et al. 2018) provided
by the predictor1.

However, we suggest that the ability of the estimator is
limited due to the limited amount of labeled data. On the
other hand, there are two major gaps between the predictor
and the estimator, which may hinder the transfer of bilin-
gual knowledge. Firstly, the predictor is trained on the well-
translated parallel data for MT. In contrast, the estimator
aims to work for the QE task, which deals with imperfect
translations from MT systems as the input. The differences
in data quality may lead to a degradation of QE perfor-
mance (Shimodaira 2000; Weiss, Khoshgoftaar, and Wang
2016).

Secondly, the predictor is trained with the objective to
make token predictions, but the estimator is trained to do
QE tasks, which discriminate different translation qualities.
The features used to predict tokens may not be suitable to
judge the translation qualities. Moreover, during the training
of the predictor on parallel data, there is no direct supervi-
sion from QE tasks. Hence, it is hard for the predictor to
learn QE-related features that the estimator can directly ex-
ploit.

In this paper, we propose a novel framework called Di-
rectQE that provides a direct pretraining for QE tasks. In
DirectQE, a proposed generator is first trained on parallel
data and then be used to produce a large amount of pseudo

1The predictor could also be finetuned on the QE data.
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QE data. Our design of the generator makes the generated
translations more similar to the real QE data than the paral-
lel data itself and makes it possible to generate the QE labels
automatically. Then a proposed detector learns quality esti-
mation by pretraining on the pseudo QE data and finetuning
on real QE data. We design specific pretraining objectives
so that the training on the pseudo and real QE data could be
well connected.

Unlike the previous estimator, which could only be
trained on limited QE data, the detector in our framework
enables a direct usage of a large amount of pseudo QE data.
Besides, instead of relying on features from a QE-irrelevant
predictor, our detector performs the quality predictions using
features, learned through the direct pretraining, in its own
way. We conduct extensive experiments to show how fixing
these two gaps can contribute to QE tasks. With the same
amount of the extra parallel dataset, DirectQE achieves new
SOTA results on different QE datasets.

Background
Formalization of QE Task
Machine Translation Quality Estimation aims to predict the
translation quality of an MT system without relying on any
reference. Given a source language sentence X and a tar-
get language translation T = {t1, t2, . . . , tn} with n words,
produced by an MT system, the QE system learns to predict
two types of quality labels:
• Word-level labels. Label sequence O = {o1, o2, . . . , on},

where oj is the quality label for the word translation tj ,
which is usually a binary label meaning ‘OK’ or ‘BAD’;

• Sentence-level label. A quality score, q, for the whole
translation T, e.g., Human-targeted Translation Edit Rate
(HTER) score (Snover et al. 2006).

Commonly used QE datasets consist of machine transla-
tions, as well as the above labels, as tuples 〈X,T,O, q〉.
This kind of label is expensive to get because it requires
specific post-editing for the machine translations by experts
with bilingual knowledge. Thus human-labeled QE datasets
are usually limited in size.

Predictor-Estimator Framework
Since parallel data of the same translation direction is much
more available, it is natural to transfer bilingual knowledge
from parallel data to QE tasks. One well-known framework
is the predictor-estimator framework (Kim, Lee, and Na
2017). It first trains a predictor on parallel data, which acts as
a feature extractor. The estimator then uses the features from
the predictor to make QE predictions. Here are two different
kinds of predictors in previous research:
• NMT-based Predictor. Training a Neural Machine Trans-

lation (NMT) model on parallel data as the predic-
tor (Zhou, Zhang, and Hu 2019; Fan et al. 2018; Kim,
Lee, and Na 2017).

• PLM-based Predictor. Using a Pretrained Language
Model (PLM), e.g., BERT (Devlin et al. 2018), as the pre-
dictor (Kepler et al. 2019; Kim et al. 2019).

The task of both these predictor methods can be seen as a
cross-lingual language model, which predicts unseen tokens

SRC TGT

wählen sie eine Organisation [Ratio]

1 1 1 0 0.25

SRC TGT

wählen sie eine [mask]

Generator

Detector

Figure 1: The illustration of our framework. The detector is
trained on the pseudo QE data from the generator. In this
example, the source sentence is select a company name and
the parallel translation is wählen Sie eine Firma.

given the source sentence X and other tokens in the refer-
ences Y. This task is different from the QE tasks, which
aim to predict quality labels.

Once the predictor’s pretraining completes, an estimator
is trained to incorporate the generation probability of each
token in the translation T as features (Fan et al. 2018) to
predict word-level tags and sentence-level scores.

Please note that the estimator can only be trained on the
labeled QE data, which is of limited size. On the other hand,
there exist strong gaps between the predictor and estimator,
preventing the model from making the best of parallel data.

Approach
To bridge the gaps in the data quality and training objectives
between the original predictor and estimator, we propose the
DirectQE framework. As shown in Figure 1, our framework
includes a generator for pseudo QE data generation and a
detector pretrained with the same QE objectives on the gen-
erated data.

Generator
The generator is trained on the parallel data to generate
pseudo QE data. To achieve this goal, we train the gener-
ator as a word-level rewriter. The word-level rewriter is then
used to produce pseudo translations with one-to-one corre-
spondences with the references, from which labels could be
automatically generated.

Training the Word-level Rewriter on Parallel Data. The
generator adopts an encoder-decoder architecture like trans-
former (Vaswani et al. 2017). However, it uses a masked
language model objective at the target side. Given a paral-
lel sentence pair 〈X, Y〉, we generate a masked sentence Ỹ
by randomly replacing some tokens in the reference with a
special tag [MASK]. The generator is trained to recover the
masked tokens given the source tokens and the other tokens
at the target side. Suppose the masked token is yj , then the
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training objective Jgen is to maximize

P (yj |X, Ỹ<j , [MASK], Ỹ>j ; θ). (1)

Following BERT (Devlin et al. 2018), we mask tokens with
a 15% mask ratio.

We do not use a standard NMT model as the generator be-
cause it generates translations that may differ significantly
from the reference ones. It is usually difficult to get trust-
worthy quality labels of these translations automatically.

Generating Pseudo QE Translations. We use the trained
generator as a word rewriter to produce pseudo QE transla-
tions Y′ = {y′1, y′2, . . . , y′n}. Notice that the length of Y′ is
the same as the reference Y, and the tokens have one-to-one
correspondences.

More specifically, we feed parallel data to the generator
with some tokens at the target side masked, which is the
same as the training process. For each masked token, the
generator will output a probability distribution on the whole
vocabulary. Unlike the common practice, we do not simply
choose the best tokens with the highest generation probabil-
ity. These tokens’ quality in sentences is often too good as a
simulation for translation errors.

To generate the pseudo QE translations that share a closer
data quality with real QE data than parallel data do, we
choose to sample pseudo translations according to the proba-
bility distribution. Here, we introduce the following two dif-
ferent strategies:
• Sample. Similar to Clark et al. (2020), we sample tokens

on the whole vocabulary according to the generation prob-
ability. To avoid mostly selecting the token with the high-
est probability, we sample tokens from a softmax with
temperature τ (Hinton, Vinyals, and Dean 2015).

• Top-k. To improve sampling efficiency, we alternatively
randomly select tokens from those with the top k genera-
tion probability. The value of k affects the overall quality
of the translation sentence.

Generating Pseudo QE Labels. The generator produces
a new translation Y′ for each parallel sentence pair. Then
we generate pseudo QE labels on the translation for further
training.

Word-level tags O′ = {o′1, o′2, . . . , o′n} are generated ac-
cording to Y′ and Y, which marks a token as ‘BAD’ if it is
generated and vice visa:

o′j =

{
1, if yj = y′j ,
0, otherwise.

(2)

The sentence-level score q′ is generated as the ratio of
generated tokens in a translation:

q′ = 1− sum(O′)

len(O′)
. (3)

With the above QE labels, we can now get a pseudo tuple
〈X,Y′

,O
′
, q

′〉, which shares the same form of real QE data.
While the real QE dataset is annotated by experts with bilin-
gual knowledge and is quite limited in size, our methods can
dynamically generate pseudo QE data at a scale even larger
than the parallel data.

Detector
With the pseudo and real QE data, the detector could be
pretrained and finetuned, respectively, using the same objec-
tives. That is why we named our method “direct” pretrain-
ing.

Pretraining on Pseudo QE Data. The detector uses the
pseudo QE data produced by the generator for pretraining.
The pretraining task is to jointly predict the tags O′ at the
word-level and score q′ at the sentence-level. The pretraining
objective of word-level Jw(X,Y′, o′j) is to maximize

|O′|∑
j=1

log P (o′j |X,Y′; θ), (4)

and that of sentence-level Js(X,Y′, q′) is to maximize

logP (q′|X,Y′; θ). (5)

The detector also uses the transformer as the basic frame-
work, but it predicts the quality labels. It encodes the source
sentence with self-attention to obtain hidden representations
as the generator does. At the target side, the detector predicts
word-level tags at each position with the representation from
the last encoder layer. We also add a special tag [Ratio] to
the translation sequence, and its representation will be used
to predict the sentence-level score.

Note that, the Sample and Topk strategies enable us to
generate multiple translations given a parallel sentence pair.
In practice, we generate new pseudo QE data for every mini-
batch. Therefore, the detector could possibly be exposed to
diverse translation errors, leading to better QE performance.

It is important to control the pretraining process for the
detector. We randomly cut 2,000 sentence pairs out of the
parallel data and use the generator to produce pseudo QE
data with the Sample strategy. This dataset is used as the
development set to monitor the pretraining process, and the
performance on this dataset will be used for model selection.

Finetuning on Real QE Data. After pretraining, the de-
tector will be finetuned on real QE tasks directly. The objec-
tives of finetuning are Jw(X,T, oj) and Js(X,T, q) using
real data and labels from QE datasets instead of pseudo ones.

When pretraining the detector, we do not finetune the gen-
erator together since it is difficult to back-propagate through
sampling from the generator (Clark et al. 2020).

Unlike existing methods, with the help of the generator,
we can pretrain the detector with QE objectives on a large
amount of pseudo QE data, instead of training a language
model task on parallel data. Furthermore, the detector can
be directly used to do real QE tasks instead of introducing
an extra estimator.

Experiments
Experimental Settings
Dataset. We carry out experiments on the WMT19 and
WMT17 QE tasks for English-to-German (EN-DE) direc-
tion. The translation of the WMT19 task is generated by
an NMT system, while in WMT17 a statistical MT system

12721



Dataset Method Sent-level Dev Sent-level Test Word-level Dev Word-level Test
Pearson↑ MAE↓ RMSE↓ Pearson↑ MAE↓ RMSE↓ F1-MULT↑ F1-MULT↑

WMT19

NMT-based 53.67 10.97 16.06 50.65 11.92 16.77 15.74 17.08
PLM-based* 55.10 10.39 15.94 52.08 11.39 16.66 37.03 37.04
DirectQE-Sample 57.99 10.16 15.75 54.41 11.36 16.56 38.27 36.60
DirectQE-Top-k 57.19 10.14 15.72 55.08 11.25 16.33 40.63 39.71

WMT17

NMT-based 68.62 10.74 15.44 67.44 10.65 14.48 44.43 -
PLM-based* 72.48 9.85 14.07 72.01 9.89 13.30 57.58 -
DirectQE-Sample 72.78 9.95 14.97 72.45 9.71 13.52 58.18 -
DirectQE-Top-k 73.38 9.92 14.72 73.56 9.51 13.15 57.99 -

Table 2: Main results of NMT-based QE, PLM-based QE, and our DirectQE on two EN-DE QE datasets. Sample means we
select tokens on the whole vocabulary according to the generation probability. Top-k means we randomly select one of the
tokens with the top k generation probability. ‘-’ indicates missing test results on WMT17, because the word-level golden tags
are not released yet. ‘*’ indicates systems that use additional resources such as BERT.

is used. The EN-DE parallel dataset is from the WMT19
Shared Task and contains 3.4M sentence pairs, which are far
larger than the QE dataset (about 13k). These datasets are all
officially released for the WMT QE Shared Task.

Models. In our experiments, we reproduce the two best
previous models as our baselines and compare them with
the proposed DirectQE.
• NMT-based QE. Using an NMT model as the predictor,

and a Bi-LSTM (Graves and Schmidhuber 2005) as the
estimator, following the architecture of QE Brain (Fan
et al. 2018).

• PLM-based QE. Using BERT (Devlin et al. 2018) as
the predictor, and a Bi-LSTM (Graves and Schmidhuber
2005) as the estimator. The code and pretrained parame-
ters are from the huggingface (Wolf et al. 2019). Please
note that BERT is pretrained with a large number of ex-
ternal resources.

• DirectQE. We implement the models described in the pre-
vious section with the Sample and Top-k strategies.

When training the estimator, the model is jointly trained to
predict the word-level and sentence-level QE labels.

Implementation Details. For NMT-based QE, The pre-
dictor of NMT-based QE consists of an encoder and a de-
coder, each of them is a 6-layer Transformer with hidden
states dimension 512. The estimator is a single layer Bi-
LSTM with hidden states dimension 512. The total number
of parameters is about 113M.

For PLM-based QE, the encoder is the same as the re-
leased model, which is a 12-layer Transformer with hidden
states dimension 768. The estimator is a single-layer Bi-
LSTM with hidden states dimension 768. The total number
of parameters is about 177M.

For DirectQE, the detector is based on the trans-
former (Vaswani et al. 2017), with one encoder and one de-
coder, also the same size as the NMT-based QE. The gen-
erator is based on a transformer of 6 layers but with hidden
states dimension 256 for each layer (Clark et al. 2020). The
total number of parameters is about 90M.

Please note that our DirectQE is the smallest in size
among all three architectures.

We use BPE (Sennrich, Haddow, and Birch 2015) in our

experiments and set BPE steps to 30,000. For the word-level
task, if subtokens of a word have conflicting prediction re-
sults, we simply consider its word-level label as ‘BAD’.

Metrics. The evaluation of our experiments follows the
WMT QE shared task. For the word-level task, the metric is
the product of the F1-score for the ‘OK’ and ‘BAD’ tokens
(F1-MULT). For the sentence-level task, the main metric is
Pearson’s Correlation Coefficient. We also use mean abso-
lute error (MAE), and root-mean-square error (RMSE).

Main Results
We use the same parallel data and QE data to train all the
systems except for the PLM-based QE, where a pretrained
BERT is employed, as described in (Kim et al. 2019). The
results are reported in Table 2.

The PLM-based QE performs better than the NMT-based
QE, possibly because it contains extra knowledge from the
monolingual corpora where BERT is trained. DirectQE out-
performs the others on the test datasets at both the word-
level and sentence-level. Please note that DirectQE does not
use any extra monolingual data and has the least model pa-
rameters among the three models. Both the two sampling
strategies of DirectQE achieve remarkable performance. We
will discuss more on this in Section .

To figure out the detailed improvement of our model, we
divide the real QE data according to their qualities, i.e. the
ratio of ‘BAD’ tokens in translations. Then we compare the
word-level performance of our method and the NMT-based
method on each part of the data (Figure 2). When the error
ratio is larger than 12.5%, our method achieves better perfor-
mance than the NMT-based method. The relative improve-
ment is much larger when the error ratio becomes larger,
showing that the advantage of our method is stronger when
the translation quality is lower. This improvement could be
attributed to the introduction of pseudo QE data with our
generator, which is closer to the real translations.

Results of Ensemble Models
Instead of the single system results reported in the previous
sub-section, many existing works of QE tasks only report
their results of ensemble models. These results are hard to
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Figure 2: F1-MULT of our method against the NMT-based
method on the data with different error ratios.

compare because different research may use different en-
semble methods or use different data. To get a relatively
clear comparison, we only employ a very simple ensemble
method: we perform a weighted summation on all the test
results from our models with different settings and hyper-
parameters, where the weights are learned from the devel-
opment set (Kepler et al. 2019).

As shown in Table 3, our system can achieve better en-
semble performance on both two datasets. We want to point
out that the existing best ensemble system uses seven differ-
ent methods (Kepler et al. 2019), while our system only en-
sembles the three methods mentioned in our work. Since the
DirectQE is conceptually distinct from the other two meth-
ods, and it is well known that diversity of models matters for
ensemble (Krogh and Vedelsby 1995), we expect our model
could be beneficial for promoting the development of better
QE systems.

Results on Other Language-pairs
We also conduct experiments on the WMT19 EN-RU and
WMT20 EN-ZH QE tasks. For the EN-RU language pair,
we use the official parallel dataset (12M) from the WMT19
QE task. For the EN-ZH language pair, we use the parallel
dataset (7.5M) from the WMT18 translation task. As shown
in Table 4, DirectQE can also achieve better performance on
both datasets.

Analysis
We present analyses of our methods from two perspectives:
data quality and training objectives.

Data Quality
Compared with parallel data, our generator produces transla-
tions with some errors, which is more similar to the quality
estimation data. We first conduct experiments to show the
effects of these data quality differences.

Pseudo QE Data is Better than Parallel Data. Instead of
using the detector, we keep the predictor-estimator architec-
ture and train the NMT-based QE system. The performance

Dataset System Sent-level Dev Sent-level Test

WMT19

QE-BERT 54.50 52.60
SOURCE - 54.74
UNBABEL 59.68 57.18
DirectQE 60.95 57.25

WMT17

UNBABEL 64.33 64.10
POSTECH - 69.54
QE-Brain - 71.59
DirectQE 77.63 76.29

Table 3: Results of ensemble models for the sentence-level
QE. We present results reported in their original papers (Kim
et al. 2019; Zhou, Zhang, and Hu 2019; Kepler et al. 2019;
Martins, Kepler, and Monteiro 2017; Kim, Lee, and Na
2017; Fan et al. 2018). ‘-’ marks missing results, which are
not reported. For the sake of brevity, we only report the Pear-
son Correlation Score for the sentence-level evaluation in
this Table, Table 4, Table 5, Table 7 and Figure 3(a),3(b).

Dataset Method Sent-level Word-level
Dev Test Dev Test

EN-RU
NMT-based 43.85 50.16 26.85 27.03
PLM-based 43.94 52.94 23.35 26.44
DirectQE 48.80 53.34 30.84 35.75

EN-ZH
NMT-based 58.05 56.60 44.07 43.26
PLM-based 61.98 59.54 47.82 47.91
DirectQE 62.48 60.83 52.46 53.06

Table 4: Results on the EN-RU and EN-ZH dataset.

is compared for the NMT-based systems trained with pseudo
translations produced by our generator, and trained with the
original parallel data. Table 5 shows the results. We can see
that the performance is improved in most of the compar-
isons, demonstrating the benefits of generated pseudo QE
data.

Quality of Pseudo Translations is Important. During
the training of the generator, strategies and hyper-parameter
choices may affect the quality of the generated pseudo trans-
lation. We present experiments to study these effects. We
notice that the different choices of strategies and hyper-
parameters mainly affect the ratio of replacement during the
pseudo translation generation process. In the Sample strat-
egy, the higher the temperature is, the more likely the current
word is replaced. In the Top-k strategy, a hyper-parameter k
controls the replacement choices in generated pseudo trans-
lations, where higher k values indicate a higher replacement
ratio.

Thus, we plot the performance of sentence-level qual-
ity estimation with the replacement ratio in Figure 3(a).
As the replacement rate increases, the quality of pseudo-
translations becomes worse and gradually approaches the
real translation, so the QE performance first improves. How-
ever, when the replacement ratio is too high, the qual-
ity pseudo-translations may be worse than real translations
which is clear harm to the QE results. In both strategies,
there is a balance between pseudo data quality and QE re-
sults. The best performance is achieved at temperature 2 for
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Figure 3: (a) QE performances according to different replacement ratios. The Top-k curve is models with k equals to 1, 3, 5,
10, 20, 40. The Sample curve is models with temperature equals to 1, 2, 4, 8. Rand is the model with random replacement. (b)
The results on the pseudo QE development set according to the time steps.

Dataset Training Sent-level Word-level
Dev Test Dev Test

WMT19 parallel 53.67 50.65 15.74 17.08
pseudo 54.11 51.50 18.85 16.69

WMT17 parallel 68.62 67.44 44.43 -
pseudo 69.45 68.19 45.99 -

Table 5: Results of the the NMT-based QE system trained
on the generated sentence pairs against those on the parallel
sentence pairs.

the Sample strategy and top-10 for the Top-k strategy.
It could be easily seen that with a random replacement, the

QE performance is quite weak (bottom-right corner) because
the quality of the replacement cannot be ensured.

Diversity of Data Matters. During the pretraining of de-
tector, we could re-sample from the generator distribution
every epoch and generate the pseudo QE data dynamically.
This enables us to train the detector with larger and more
diverse data. To understand how this could affect the final
performance, we use the generator to produce a fixed set of
pseudo QE data, which is of the same size as the parallel
data. We then compare the procedures of pretraining the de-
tector on this fixed (static) set v.s. on the dynamically gener-
ated QE data.

As shown in Figure 3(b), the detector pretrained on the
static set converges more quickly, but that pretrained on the
dynamic data has better performance on the development
set at last. Considering the gap of performance when the
pretraining ends, it is obvious that the dynamic generated
pseudo data is necessary for the detector.

Training Objective
Another gap in the predictor-estimator framework is the
training objectives. We conduct the following experiments

1 2 3 4 5 6
Layer

6.5

7.0

7.5

8.0

8.5

9.0

M
I

NMT-based QE
NMT-based QE finetuned
DirectQE
DirectQE finetuned

Figure 4: The mutual information between the representa-
tions and current tokens at the target side.

about DirectQE and the NMT-based system on the same
pseudo QE data to investigate the influence of this gap.

The Detector Representation Contains More Informa-
tion about the Current Tokens. Before making quality
decisions (especially for word-level decisions), it is vital to
gather enough information about the current tokens. We de-
sign experiments to measure the correlation between final
representations and current tokens. For DirectQE, the final
representations refer to the representations in each layer of
the detector; for NLP-based systems, the final representa-
tions refer to the representations in each layer of the decoder
part of the predictor. Our measurement is based on mutual
information (MI) (Voita, Sennrich, and Titov 2019; Shwartz-
Ziv and Tishby 2017). The bigger the MI value, the more
information about current tokens in the final representation.

To estimate the MI, we follow the way described in Voita,
Sennrich, and Titov (2019), which uses the clustering
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Metrics Methods Source↑ Target↑

Linear CKA NMT-based QE 0.8106 0.2415
DirectQE 0.9815 0.8693

RBF CKA NMT-based QE 0.8480 0.4838
DirectQE 0.9478 0.7503

SVCCA NMT-based QE 0.9469 0.8290
DirectQE 0.9711 0.8626

Table 6: Similarity of representations before and after fine-
tuning.

method to discretize representations. We gather representa-
tions of the 100 most frequent tokens at each layer of both
models and cluster these representations into 1000 cluster
centers using k-means. Mutual information is represented
by the co-occurrence frequency of the tokens and centers.

As shown in Figure 4, the NMT-based system does not
contain much information on current tokens at lower layers,
and then the MI becomes higher in higher layers. On the
other hand, DirectQE has much higher MI between current
tokens and representations at each layer than the NMT-based
system. This difference clearly shows the influence of dif-
ferent training objectives. And our proposed method learns
a better representation of current tokens and is more capable
of making quality predictions.

Pretraining with the QE-like Objectives Learns More
Suitable Representations for QE Tasks. We hypothesize
that representations after finetuning are better for the down-
stream tasks (Howard and Ruder 2018). Therefore, in the
process of finetuning the downstream task, the smaller the
representation changes, the more suitable the initial repre-
sentation is for the task.

We measure the similarity representations before and after
finetuning for DirectQE and NMT-based QE, respectively,
where a higher similarity may indicate better representa-
tions. We get all representations of QE pairs from the source
side and target side and calculate their similarity by centered
kernel alignment (CKA) (Kornblith et al. 2019) and canoni-
cal correlation analysis (CCA) (Raghu et al. 2017).

Table 6 shows that the representations of DirectQE have
higher similarity before and after finetuning, on three differ-
ent metrics at both the source and target side. We can also
find a similar phenomenon in Figure 4, that after finetuning
on real QE data, our method does not change a lot while
the NMT-based system has a bigger difference. It demon-
strates that our detector can learn better representations for
QE tasks at the pretraining stage, leading to better final QE
performance.

Sentence-level Pretraining Does Help. We generate both
sentence-level and word-level QE labels for our pseudo QE
data. We provide an experiment to evaluate the importance
of sentence-level pretraining. As shown in Table 7, the per-
formance is greatly affected without sentence-level pretrain-
ing, which means the training objectives of pretraining and
downstream tasks should be strictly consistent.

Dataset Sent-level Word-level
WMT19 51.03 (−4.05) 37.10 (−2.61)
WMT17 72.55 (−1.01) -

Table 7: Results of DirectQE-Top-k on two test sets without
the sentence-level pretraining objective.

Related Work
The combination of a generator and a detector looks
like Generative Adversarial Network (GAN) (Caccia et al.
2018). However, we do not train these two parts together as
GAN does. The usage of the generator is only to produce
pseudo QE data for pretraining the detector.

Our method has a similar model architecture with the
Electra (Clark et al. 2020). We both use a generator to pro-
duce pseudo sentences, and use a detector to find out the
generated tokens in these sentences. However, we do not
share the same motivation nor task. Their work improves
on predictive pretraining for the masked language model,
which lacks efficiency for general scenarios of natural lan-
guage understanding, while a discrimination task may be
more efficient. Our motivation is to bridge the gap between
pretraining on parallel data and finetuning on QE data and
build a direct pretraining method for QE tasks. Meanwhile,
their model is monolingual and can not be used to solve QE
tasks.

We also share the same idea of using pseudo data with
some automatic post-editing (APE) work, which tries to use
different MT systems to produce pseudo APE data (Negri
et al. 2018; Junczys-Dowmunt and Grundkiewicz 2016). It
is similar to what we do that we train the generator on par-
allel data to produce pseudo data. The difference is that they
directly use MT systems to generate machine translations,
while we modify ground-truth translations into corrupted
but natural sentences, where the modified one-to-one cor-
responded tokens can be inferred to provide QE-oriented
learning signals. That is, we require data that can be anno-
tated automatically and trustworthy.

Conclusion
We propose a novel architecture called DirectQE that pro-
vides a direct pretraining for QE tasks. In our method, a
generator is first trained on parallel data and will be used
to produce the pseudo QE data. Then a detector will be di-
rectly pretrained with quality estimation on these pseudo
data and then finetuned on real QE data. Compare with pre-
vious methods, our method can bridge the gaps in the data
quality and training objectives between the pretraining and
finetuning, which enables our model to learn more suitable
knowledge for QE tasks from parallel data. Extensive exper-
iments show the effects of each part of our method.

In future work, it is interesting to investigate automati-
cally obtaining QE labels for naturally generated transla-
tions. Meanwhile, currently, we can only generate errors
with substitution, and it is also interesting to simulate inser-
tion and deletion operations and investigate their influences
on translation quality.
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